[bookmark: _Hlk110549067]Homework 4B				 Name___
Simulink Modeling – Train System Part 1
Introduction: Simulink Modeling
In Simulink, it is very straightforward to represent and then simulate a mathematical model representing a physical system. Models are represented graphically in Simulink as block diagrams. A wide array of blocks is available to the user in provided libraries for representing various phenomena and models in a range of formats. One of the primary advantages of employing Simulink (and simulation in general) for the analysis of dynamic systems is that it allows us to quickly analyze the response of complicated systems that may be prohibitively difficult to analyze analytically. Simulink is able to numerically approximate the solutions to mathematical models that we are unable to, or don't wish to, solve "by hand."
In general, the mathematical equations representing a given system that serves as the basis for a Simulink model can be derived from physical laws. In this page we will demonstrate how to derive a mathematical model and then implement that model in Simulink. This model is then employed in the Introduction: Simulink Control page in order to demonstrate how to employ Simulink to design and simulate the control for a system.
For this lab, embed your name in screen shots of various results as requested in the lab. Submit these screenshots along with a conclusion for credit for the lab.
Contents
· Train system
· Free-body diagram and Newton's second law
· Constructing the Simulink model
· Running the model
[bookmark: 1]Train system
In this example, we will consider a toy train consisting of an engine and a car. Assuming that the train only travels in one dimension (along the track), we want to apply control to the train so that it starts and comes to rest smoothly, and so that it can track a constant speed command with minimal error in steady state.
The mass of the engine and the car will be represented by M1 and M2, respectively. Furthermore, the engine and car are connected via a coupling with stiffness k. In other words, the coupling is modeled as a spring with a spring constant k. The force F represents the force generated between the wheels of the engine and the track, while μ represents the coefficient of rolling friction.
[image: http://ctms.engin.umich.edu/CTMS/Content/Introduction/Simulink/Modeling/figures/train.gif]
[bookmark: 2]Free-body diagram and Newton's second law
The first step in deriving the mathematical equations that govern a physical system is to draw the free-body diagram(s) representing the system. This is done below for our train system.
[image: http://ctms.engin.umich.edu/CTMS/Content/Introduction/Simulink/Modeling/figures/train2.png]
From Newton's second law, we know that the sum of the forces acting on a body is equal to the product of the mass of the body and its acceleration. In this case, the forces acting on the engine (M1) in the horizontal direction are the spring force, the rolling resistance, and the force generated at the wheel/track interface. The forces acting on the train car (M2) in the horizontal direction are the spring force and the rolling resistance. In the vertical direction, the weight forces are balanced by the normal forces applied by the ground (N = mg). Therefore, there will be no acceleration in the vertical direction.
We will model the spring as generating a force that is linearly proportional to the deformation of the spring, k (x1 – x2), where x1 and x2 are the displacements of the engine and car, respectively. Here it is assumed that the spring is un-deformed when x1 and x2 equal zero. The rolling resistance forces are modeled as being linearly proportional to the product of the corresponding velocities and normal forces (which are equal to the weight forces).
Applying Newton's second law in the horizontal direction based on the above free-body diagrams leads to the following governing equations for the train system.

[bookmark: 3]Constructing the Simulink model – (begin here)
This set of system equations can now be represented graphically without further manipulation. Specifically, we will construct two copies (one for each mass) of the general expression or .
1. Open the Simulink library, and open a new model window by clinking the” New Model” icon.
2. Drag two Sum blocks (from the Simulink Library Browser) into your model window and place them approximately as shown in the figure below.
[image: http://ctms.engin.umich.edu/CTMS/Content/Introduction/Simulink/Modeling/figures/sumfs.png]

The outputs of each of these Sum blocks represent the sum of the forces acting on each mass. Tip: You can obtain any blocks needed for this lab by typing its name into the Search box in the Library Browser window, then drag and drop the block into the model window.

3. Multiplying each output signal by 1/M will give us the corresponding acceleration of each mass. To do this, drag two Gain blocks into your model and attach each one with a line from the output of one of the Sum blocks.

4. Label these two signals as "Sum_F1" and "Sum_F2" in order to make your model clearer. This is accomplished by double-clicking in the space above each of the two signal lines and entering the desired label.
[image:]
5. These Gain blocks should contain 1/M for each of the masses. Double-click on the upper Gain block and enter "1/M1" into the Gain field. Similarly, enter "1/M2" in the Gain field of the second Gain block.

6. You will notice that the gains did not appear in the image of the Gain blocks, rather the blocks display a value of -K-. This is because the blocks are too small on the screen to show the full variable name inside the triangle. The blocks can be resized so that the actual gain value can be seen. To resize a block, select it by clicking on it once. Small squares will appear at the corners. Drag one of these squares to stretch the block. Your model should appear as below.
[image:]
7. The outputs of these gain blocks are the accelerations of each of the masses (the train engine and car). The governing equations we derived above depend on the velocities and displacements of the masses. Since velocity can be determined by integrating acceleration, and position can be determined by integrating velocity, we can generate these signals employing integrator blocks. Drag a total of four Integrator blocks from the Continuous library into your model, two for each of our two accelerations.
8. Connect these blocks and label the signals as shown below. Specifically, the first integrator takes the acceleration of mass 1 ("x1_ddot") as an input and generates the velocity of mass 1 ("x1_dot"). The second integrator then takes this velocity and outputs the displacement of the first mass ("x1"). The same pattern holds for the integrators for the second mass.
[image:]
9. Now, drag two Scopes from the Sinks library into your model and connect them to the outputs of these integrators. Label them "x1" and "x2".
[image:]
10. Now we are ready to add the forces acting on each mass. First, we need to adjust the inputs on each Sum block to represent the proper number of forces (we will worry about the signs later). Since there is a total of three forces acting on mass 1, double-click on the corresponding Sum block and change the List of signs field to "|+++". The symbol "|" serves as a spacer. There are only 2 forces acting on mass 2, therefore, we can leave that Sum block alone for now.
[image:]
11. The first force acting on mass 1 is just the input force, F. Drag a Signal Generator block from the Sources library and connect it to the uppermost input of the corresponding Sum block. Label this signal as "F".
[image:]
12. The next force acting on mass 1 is the rolling resistance force. Recall that this force is modeled as follows:

To generate this force, we can tap off the velocity signal and multiply by an appropriate gain. Drag a Gain block into your model window.

13. Tap off the "x1_dot" signal and connect it to the input of this new Gain block (draw this line in several steps if necessary).

14. Connect the output of the Gain block to the second input of the Sum block.

15. Double-click the Gain block and enter "mu*g*M1" into the Gain field.

16. The rolling resistance force, however, acts in the negative direction. Therefore, change the list of signs of the Sum block to "|+--". The screen shot below has “+-+”, which is wrong. Next, resize the Gain block to display the full gain and label the output of the Gain block "Frr1". Your model should now appear as follows.
[image:]
17. The last force acting on mass 1 is the spring force. Recall that this force is equal to the following.

Therefore, we need to generate a signal which we can then be multiplied by a gain k to create the force. Drag a Subtraction block (or a Sum block or an Addition block) below the rest of your model. In order to change the direction of this block, right-click on the block and choose Format > Flip block from the resulting menu. Alternatively, you can select the block then hit Ctrl-I.

18. Now, tap off the "x2" signal and connect it to the negative input of the Subtract block. Also, tap off the "x1" signal and connect it to the positive input. This will cause signal lines to cross. Lines may cross, but they are only actually connected where a small block appears (such as at a tap point).
[image:]
19. Now, we can multiply this difference by the spring constant to generate the spring force. Drag a Gain block into your model to the left of the Subtraction block.

20. Change the value of the Gain block to "k" and connect the output of the Subtract block to its input. Then connect the output of the Gain block to the third input of the Sum block for mass 1 and label the signal "Fs". Your model should appear as follows:
[image:]
21. We can now apply forces to mass 2. For the first force, we will use the same spring force we just generated, except that it is applied to mass 2 in the positive direction. Simply tap off the spring force signal "Fs" and connect it to the first input of the Sum block for mass 2.
[image:]
22. The last force applied to mass 2 is its rolling resistance force. This force is generated in an analogous manner to the rolling resistance force applied to mass 1. Tap off the signal "x2_dot" and multiply it by a Gain block with value "mu*g*M2". Then connect the output of the Gain block to the second input of the corresponding Sum block and label the signal "Frr2". Next, change the second input of the F2 Sum block to be negative, which will lead to the following model:
[image:]
23. Now the model is complete. We simply need to supply the proper input and define the output of interest. The input to the system is the force [image: F]generated by the engine. Within the Simulink model, we have already defined the force [image: F]to be the output of a Signal Generator block. The output of the system, which we will observe and ultimately try to control, will be the velocity of the train engine. Add another Scope block to your model from the Sinks library.

24. Tap a line from the "x1_dot" signal and connect it to the Scope block. Label this scope as "x1_dot" and your model should appear as in the following:
[image:]
Now, the model is complete and should be saved. Provide a screen capture with your name embedded in the diagram for the lab report.
[bookmark: 4]Running the model
Before running the model, we need to assign numerical values to each of the variables used in the model. For the train system, we will employ the following values.
· M1 = 1 kg
· M2 = 0.5 kg
· k = 1 N/sec
· F = 1 N
· μ = 0.02 sec/m
· g = 9.8 m/s^2
25. Create a new m-file (by going to the MATLAB Command window and clicking ‘New Script” on the top lift of the window) and enter the following commands.
M1 = 1;
M2 = 0.5;
k = 1;
F = 1;
mu = 0.02;
g = 9.8;
Save and run your m-file to define these values, making sure that the m-file is in the same directory as the model. Simulink will recognize these MATLAB variables for use in the model.
26. Now, we need to give an appropriate input to the engine. Double-click on the Signal Generator block (outputs "F").

27. Select square from the Wave form drop-down menu and set the Frequency field to equal "0.001". You may leave the Units as the default Hertz. Also enter "-1" into the Amplitude field (positive amplitude steps negative before stepping positive).
[image: http://ctms.engin.umich.edu/CTMS/Content/Introduction/Simulink/Modeling/figures/fgen.png]
28. The last step before running the simulation is to select an appropriate simulation time. To view one cycle of the 0.001 Hz square wave, we should simulate the model for 1000 seconds. Select Parameters from the Simulation menu at the top of the model window and change the Stop Time field to "1000". Close the dialog box.

29. Now, run the simulation and open the "x1_dot" scope to examine the velocity output (hit autoscale). The input was a square wave with two steps, one positive and one negative. Physically, this means that the engine first went forward, then backward. The velocity output reflects this.
[image: http://ctms.engin.umich.edu/CTMS/Content/Introduction/Simulink/Modeling/figures/xdot.png]Provide a screen capture with your name embedded in the diagram for the lab report.

Simulink Modeling – Train System Part 2 – PID Control
This lab will be a continuation of Part 1, where you effectively took the mathematical expression describing a model train and represented them visually in Matlab using Simulink. In this continuation, we will be collapsing the model you made in Part 1 into a “black box” representation of the train and will be configuring a PID controller to smoothly accelerate and decelerate it while minimizing any steady state errors.
Please ensure you have you .m file with the simulation parameters used in Part 1 loaded into the Matlab Workspace!
Modifying the model
Your completed model from Part 1 should look something like the below example. Please ensure all your operator signs are correct!
[image:]

1. First, remove Scopes and Signal Generator from Part 1 and replace them with “In1” and “Out1” objects from the library browser. These will serve to provide inputs, and outputs to the model once it has been “boxed” into a subsystem.
[image:]
2. Use Ctrl+A to select all blocks within the model space.
3. From the “Diagram” drop down select Subsystem & Model Reference > Create Subsystem from Selection. This will condense the system into a “black box” only exposing the Input (The force applied to the train), and outputs (In this case x1_dot, which corresponds to the trains velocity).
[image:]

4. [image:]Now that the model has been turned into a subsystem, delete the “In1” and “Out1” corresponding to “F” and “x1_dot”, they will be replacing them shortly.

5. From the library browser insert a “PID” block, and connect its output to the train models input. This will enable the PID algorithm to attempt to control the train by emparting a force on it.
[image:]

6. Double click the PID block to open the Block Parameter dialogue box and set the Integral value to Zero. This will effectively turn the PID controller into a Proportional only controller. All other default values can remain
[image:]

7. Add a “Sum” block, with its inputs configured for |+- . This will take the difference between the commanded train velocity (which will be inserted shortly), and its actual velocity and feed it to the PID controller.
[image:]
8. Add “Signal Builder” block. This will provide simulated inputs to the system. In effect, these are simulated inputs to the processes “Setpoint”.
[image:]
9. Now configure the signal builder block to provide us with simulated velocity setpoints. Double click the signal builder block to open its configuration dialogue.
10. From the “Axes” dropdown select “Change Time Range”. Set the “Max Time” field to 300 seconds.
11. Configure the signal to have a rising edge at 15 seconds, and a falling edge at 150 seconds. This can be accomplished either through clicking and dragging each edge, or double clicking each edge and entering the desired time in the “Left Point, T:” field.
[image:]

12. Add a Scope block and connect it to the x1_dot output of the Train Model block. This will allow us to view the trains velocity as it is controlled from the PID block.
[image:]
13. Connect feedback line from x1_dot back to the summation block. This will effectively “close the loop” on the system.
[image:]
14. Change the simulation end time from 1000 seconds, to 300 seconds, run the simulation and examine the output on the scope.

The Correct output is shown below. Note that with a proportional proportional only methodology is insufficient to accurately control this process. The train neve reaches its desired velocity, and notable “ringing” or steady state error is highly visible.
[image:]
Now we can begin exploring some of the PID system building tools provided by Matlab.
· Our approach will be utilizing the “PID Tuner App” which provides a highly simplified modeling environment for quickly commissioning a loop. For a more accurate tuning method utilizing Root Locus plotting see: Introduction: Simulink Control

15. [image:]To open the PID tuning wizard, double click the PID block to open its configuration dialogue. Under the “Main” tab near the bottom you can find the “Automated Tuning” section. Click the button marked “Tune…” to open the PID Tuner App.

· This may take a moment to execute while the model is initialized, and linearized.
16. [image:]The PID Tuner App has now created what it believes will be an appropriate set of PID parameters to more accurately control the loop.
It is important to note that the Tuner App has no idea what this process is trying to control and has simply given us a “best guess” that minimized the “ringing” steady state error and undershoot from the Proportional Only control method.
17. [image:]To examine this further click “Options” in the top left corner, just below “Type PIDF”, and enable “Show Block Response. Next, click “Show Parameters” in the top right corner besides the “Update Block” button. This will allow us to compare the PID Tuner’s proposed changes, to the current block configuration.
From this information it is clear that the tuner is aware the current configuration is unstable and contains steady state error. The velocity peak also never reaches its commanded value. Rise time, Settling time and Overshoot can also be seen here and compared.

18. Pushing the “Update Block” button in the top right corner of the PID Tuner window will automatically load its calculated PID values into the PID control block. Once the updated values are entered the following dialogue should appear in the bottom left corner of the window:
[image:]

19. [image:]Re-Run the model with the newly generated PID parameters and examine the difference the tuning made to the process control. Record these changes for your lab report.

Note the “ringing” steady state error is almost eliminated, but the PID controller is over aggressive in its commands resulting in a significant overshoot. This is the 11.7% overshoot predicted in the tuner. This is an undesirable behavior for this process and needs to be accounted for!

20. Return to to the tuning wizard and adjust the process using the “Response Time” and “Transient Behavior” sliders. As you adjust them, the linearization is updated in real time to reflect your changes.
[image:]
21. Adjust the sliders while examining the “Performance and Robustness” values. The goal here is to minimize any overshoot while also ensuring the train reaches its commanded velocity. Take a screenshot of your final settings and stability metrics for your lab report.
22. Load your newly adjusted control parameters into the PID controller by clicking the “Update Block” button. Run your simulation and view the scope to see how your changes have affected the performance of the system and note any changes. Take a screen shot for your lab report.
23. You have now effectively tuned the model train process! The PID Tuning App’s solution gets the job done, however you may find that more intensive Root Locus method described at Introduction: Simulink Control provides an even better response characteristic. Following these steps is not required for this exercise and are provided for your own reference.
For your report be sure to include screen shots, recorded parameters and a description on how the tuning process affected the liniarization and process as a whole.

image1.gif

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

