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7.6    UNITY FEEDBACK SYSTEMS

Definition ZT: A unity feedback system is one in which the primary feedback b is identically equal
to the controlled output c.

EXAMPLE 7.6.' H = 1 for a linear, unity feedback system (Fig. 7-7).

/

Fig. 7-7

Any feedback system with only linear time-invarian't elements can be put into the form of a unity
feedback system by using Transformation 5.

EXAMPLE 7.7.

Fig. 7-8



CHAP. 71    BLOCK DIAGRAM ALGEBRA AND TRANSFER FUNCTIONS OF SYSTEMS        159

The characteristic equation for the unity feedback system, determined from 1 4- G = 0, is

Do4-NG=0                       (7.7)

where Da is the denominator and Na the numerator of' G.

7.7  SUPERPO'SlTION OF MULTIPLEINPUTS

Sometimes it is necessary to evaluate system performance when several inputs are simultaneously
applied at different points of the system.                                              "

When multiple inputs are present in a linear system, each is treated independently of the others.
The output due to all stimuli acting together is found in the following manner. We assume zero initial
conditions, as we seek the system response only to inputs.

Step 1:  Set all inputs except one equal to zero.

Step 2:  Transform the block diagram to canonical form, using the transformations of Section 7.5.

Step 3:  Calculate the response due to the chosen input acting alone.

Step 4:  Repeat Steps 1 to 3 for each of the remaining inputs.

Step 5:  Algebraically add all of the responses (outputs) determined in Steps 1 to 4. This sum is the
total output of the system with all 'inputs acting simultaneously.

We reemphasize here that the above superposition process is dependent on the system being linear.

EXAMPLE 7.8.  We determine the output C due to inputs U and R for Fig. 7-9.

U

Fig. 7-9

C

Step 1:    Put U-= o.
Step 2:    The system reduces to

By Equation (7.3), the output CR due to input R is CR = [G1G2/(1 + GIG2)]R.
Put R = 0.,              , "

Put - 1 into a block, representing the negative feedback effect:

Step 3:
Step 4a:
Step 4b:

''                 "         U

Cu

Rearrange the block diagram:

U
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Let ihe - 1 block be absorbed into the summing point:

[CHAP. 7

U                                           C.

Step 4e:
Step 5:

By Equation (7.3), the output Cv due to input U is Cv = [G2/(1 + G1G2)]U.
The total output is

[c 1 U]Ca + Cu = [ i + GIG2                   G1G2

Step 1:  Combine all cascade blocks using Transformation 1.

Step 2:  Combine all parallel blocks using Transformation 2.

Step 3: Eliminate all minor feedback loops using Transformation 4.

Step 4:  Shift summing points to the left and takeoff points to the right of the major loop, using
Transformations 7, 10ÿ and-12.

Step 5:  Repeat Steps,,l to 4 until the canonical form has been achieved for a particular input.

Step 6:  Repeat Steps 1 to 5 for each input, as required.

Transformations 3, 5, 6, 81 9, and 11 are sometimes useful, and experience with the reduction
technique will determine.their application.

7.8  REDUCTION OF COMPLICATED BLOCK DIAGRAMS

The block diagram of a practical feedback control system is often quite complicated. It may include
several feedback or feedforward loops, and multiple inputs. By means of systematic block diagram
reduction, every multiple loop linear feedback system may be reduced to canonical form. The
techniques developed in the preceding paragraphs provide the necessary tools.

The following general steps may be used as a basic approach in the reduction of complicated block
diagrams. Each step refers to specific transformations listed in Fig. 7-6.

EXAMPLE 7.9.  Let us reduce the block diagram (Fig. 7-10) to canonical form.

Step li

+      C

Fig. 7-10
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---t o2÷o0

Step 3:

-t  -RGIG4
'1 -- GIG4H1

Step 4:  Does not apply.
Step 5:

I -- GIG4111   ,    Gs q- G3                                 1 -- GIG4HI

Step 6:  Does not apply.

€

An occasional requirement of block diagram reduction is the isolation of a particular block in a
feedback or feedforward loop. This may be desirable to more easily examine the effect of a particular
block on the overall system.

Isolation of a block generally may be accomplished by applying the same reduction steps to the
system, but usually in a different order. Also, the block to be isolated cannot be combined with any
others.

Rearranging Summing Points (Transformation 6) and Transf()rmations 8, 9, and 11 are especially
useful for isolating blocks.

EXAMPLE 7.10.  Let us reduce the block diagram of Example 7.9, isolating block H1.
Steps 1 and 2:

q
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We do not apply Step 3 at this time, but go directly to Step 4, moving takeoffpoint I b'eyond block G2 + G3:
i

[   .1   .2 C

G2 + G3

We may now rearrange summing points 1 and 2 and combine the cascade blocks in the forward loop using
Transformation 6, then Transformation 1:

GI(ÿ4(G2 31- G3) ÿ-ÿ
1 c

Step 3:

R                                 C

Finally, we apply Transformation 5 to rentove 1/(Ga + G3) from the feedback loop:

R ala4       j_ÿ
1 q" GIG4Hz(G2 "1- Gs)    ,

N"

Note that the same result could have been obtained after applying Step 2 by moving takeoff point 2 ahead of
G2 + G3, instead of takeoff point I beyond G2 +G3. Block G2 + Gÿ has the same effect on the control ratio C/R
whether it directly follows R or directly precedes C,
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Solved Problems

]]LOCKS IN CASCADE

7.1.  Prove Equation (7.1) for blocks in cascade.

The block diagram for n transfer functions G1,.Ga  .....  G, in cascade is given in Fig. 7-11.

Xl Xÿ                   Xn

Fig. 7-11

The output transform for any block is equal to the input transform multiplied by the transfer function
(see Section 6.1). Therefore X2 = XaG1, X3 = X2G2  .....  X, = X,,_IG,_I, Xn+1 = XnG,,. Combining these
equations, we have

Xn+1 = XnGn = Xn_IGn_IGn =  ....  XIG1G2 ... Gn_lGi

Dividing both sides by X1, we obtain X,+I/X1 = G1G2 ... G,_IG,.

7,2, Prove the commutativity of b!ocks in cascade, Equation (7.2).

Consider two blocks in cascade (Fig. 7-12):

Fig. 7-12

From Equation (6.1) we have Xj+1 = XtG,. = GiXg and X]+1 = Xÿ+I@ = @.Xi+1. Therefore X]+I =
(X,.Gg)@. = XÿGiGj. Dividing both sides by X,., X]+I/X,. = G;Gj.

Also, Xj.+I = Gj (GiXi) = @.GiXi. Dividing again by Xi, Xj.+I/Xÿ = GiGs. Thus GÿGj = G).Gÿ.
This result is extended by mathematical induction to any finite number of transfer functions (blocks)

in cascade.

7.3.  Find X./X1 for each of the systems in Fig. 7-13.

(a) (b)

Fig. 7-13

(a) One way to work this problem is to first write X2 in terms of X1:

Then write X, in terms of X2:

Multiplying out'and dividing both sides by X1, we have X,,/X1 = 10/(s2 - 1).
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A shorter method is as follows. We know from Equation (7.1) that two blocks can be reduced to
one by simply multiplying their transfer functions. Also, the transfer function of a single block is its
output-to-input transform'. Hence

(b)

(c)

This system has the same transfer function determined in part (a) because multiplication of transfer
functions is commutative.

By Equation (7..1), we have
_,0 ,4

7.4. The transfer function of Fig. 7-14a is %/(s + too), whe.re too = 1/RC. Is the transfer function of
Fig. 7-.14b equal to toÿ/(s + to0)2? Why?

R

Input                              6'   Output

Fig. 7-14a

Input                                C                             C    Output

Fig. 7-14b

No. If two networks are connected 'in series (Fig. 7-15) the second loads the first by drawing current
from it. Therefore Equation (7.1) cannot be directly applied to the combined system. The correct transfer
function for the connected networks is oÿ/(s2 + 3w0s + ÿ0oa) (see Problem 6.16), and this is not equal to
(,Oo/(ÿ + ,00))2.

R           I    R

±.i              c

INetwork 1          Connecting       Network 2
' Points

O

Fig. 7-15

CANONICAL FEEDBACK CONTROL SYSTEMS

7.5.  Prove Equation (Z3), C/R = G/(I + GH).

The equations describing the canonical feedback system are talcen directly from" Fig. 7-16. They are
given by E = R -Y- B, B = HC, and C = GE. Substituting one into the other, we have

C = G( R T-B) = G( R -T- HC)

= GR -T- GHC= OR + ( T- OHC)

Subtracting (:t= GHC) from'both sides, we obtain C + GHC = GR or C/R = G/(1 + GH).
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7.6.

R   +ÿÿ.__ÿ            C

Fig. 7-16

Prove Equation (7.4), E/R = 1/(1 +_ GH).

From the preceding problem, we have E = R T- B, B = HC, and C = GE.
Then E = R 7: HC = R :F HGE, 'E + GHE = R, and E/R = 1/(1 + GH).

7.7.  Prove Equation (7.5), B/R = GH)/(1 + GH).

From E --R :t:B, B = HC, and C = GE, we obtain B = HGE = HG(R T- B) = GHR T- GHB.
Then B + GHB = GHR, B = GHR/(1 + GH), and B/R = GH/(1 + GH).

7.8. Prove Equation (7.6), DGH +_- NGH= O.

The characteristic equation is usually obtained by setting 1 ___ GH= O. (See Problem 7.9 for an
exception.) Putting GH = NcH/DGH, we obtain DCH +_ Nan = O.

7.9, Determine (a) the loop transfer function, (b) the control ratio, (c) the error ratio, (d) the
primary feedback ratio, (e) the characteristic equation, for the feedback control system in which
K1 and K2, are constants (Fig. 7-17).

Fig. 7-17

C

(a)  The loop transfer function is equal to GH.

(b)

K1   ]K2s-K1K2
Hence                      GH= s(ÿp)       s+p

The control ratio, or clOsed-loop transfer function, is given by F_xtuation (7.3) (with a minus sign for
positive feedback):

C   G        K1

1- GH +p- gig2)

(c)  The error ratio, or actuating signal ratio, is given by Equation (7.4):

E      1             1           - s+p

R  1 -aH  1- glg2/(ÿ +p)  ÿ +p- KÿK2

(d)  The primary ,feedback ratio is given by Equation (7.5):

B   OH     KIK2

R  1-GH  s+p-KÿK2

(e) The characteristic equation is given by the denominator of C/R above, s(s +p - KIK2) = O. In this
case, 1 -GH= s +p- KIK2 = O, which is not the characteristic equation, because the pole s of G
cancels the zero s of H.
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BLOCK DIAGRAM TRANSFORMATIONS

7.10.  Prove the equivalence of the block diagrams for Transformation 2 (Section 7.5).

The equation in the second column, Y= P1X+ P2X, governs the construction of the block diagram in
the third column, as shown. Rewrite this equation as Y= (P1 + P2)X. The equivalent block diagram in the
last column is dearly the representation of this form of the equation (Fig. 7-18)

Y

7.11. Repeat Problem 7.10 for Transformation 3.

Rewrite Y = PI X + P2 X as Y= (P1/P2)P2 X +_ P2 X. The block diagram for this form of the equation is
clearly given in Fig. 7-19.

X

Fig. 7-19

7.12.  Repeat Problem 7.10 for Transformation 5.

We have Y= PI[XT- P2Y] = P1P2[(1/P2)X-T- Y]. The block diagram for the latter form is given in Fig.
7-20.

X

1
Fig. 7-20

7.13. Repeat Problem 7.10 for Transformation 7.

We have Z= PX+ Y= P[X+ (1/P)Y], which yields the block diagram given in Fig. %21.

Fig. 7-21

7.14.  Repeat Problem 7.10 for Transformation 8.

We have Z = P(X+ Y) = PX+_ PY, whose block diagram is clearly given in Fig. 7-22.
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X                                             Z

Y

P              '                    q-

• Fig. 7-22

UNITY FEEDBACK SYSTEMS

7.15.

Mathcad

Reduce the block diagram given in Fig. 7-23 to Unity feedback form and find the system
, characteristic equation.

+                                      ,

Fig. 7-23

Combining the blocks in the forward path, we obtain Fig. 7-24.

R +ÿ    1
e(s + i)

1
e+2

Fig. 7-24

Applying Transformation 5, we have Fig. 7-25.

R I C
J

Fig. 7-25

By Equation (7.7), the characteristic equation for this system is s(s + 1)(s + 2) + 1 = 0 or s3 + 3s2 +
2s+1 =0.

MULTIPLE INPUTS AND OUTPUTS

7.16.

Mathcad

Determine the output C due to U1, U2, and R for Fig. 7-26.

•                 +1171                        C  '

•              J                                                                              "       ÿ

rUÿ    .

:              Fig. 7-26
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Let U1 = U2 = 0. After combining the cascaded blocks, we obtain Fig. 7-27; where C1¢ is the' output due
to R acting alone. Applying Equation (7.3) to this.system, Cn = [G1G2/(1 - GIG2H1H2)]R.

R

Fig. 7-27

•   Now let R = U2 = 0. The block diagram is now given in Fig. 7-28, where C1 is the response due to U1
acting alone. Rearranging the blocks, we have Fig. 7-29. From Equation (7.3), we get C1 =
[G2/(1 - G1G2H1H2)]U1,

Fig. 7-28

Finally, let R = uI = o. The block diagram is given in Fig. 7-30, where C2 is the response due to UI
acting alone. Rearranging the blocks, we get Fig. 7-31. Hence C2 = [G1G2H1/(1 - G1G2H1H2)]U2.

Ca

Fig. 7-30

/
' Fig. 7-31

Ca
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By superposifion, the total output is

C=CR+Cÿ+Ca=
G1G2R + G2U1 + G1GaH1U2

1 - 6162H1H2

7.f7. Figure 7-32 is an example of a multiinput-multioutput system. Determine C1 and C2 due to R1
and R2.

R1

R2

Fig. 7-32

First put the block diagram in the form of Fig. '7-33, ignoring the output Ca.

R1

Fig. 7-33

Letting R2 = 0 and combining the summing points, we get Fig. 7-34.

R1                                    C11

Fig. 7-34

Hence Cn, the output at C1 due to R1 alone, is Cll = GaR1/(1 - G1G2G3G4). For R1 = 0, we have Fig.
7-35.

-G1G3G4 ]

Fig. 7-35

I C12:._

Hence C12 = - G1G3G4R2/(1 - G1G2G3G4) is the output at C1 due to R2 alone. Thus C1 = Cll + C12 =
(G1R1 - G1G3G4 Ra)/(1 -- G1G2G3G4).
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Now we reduce the original block diagram, ignoring ou.tput Q. First we obtain Fig. 7-36.

I R1ÿ

Fig. 7-36

Then we obtain the block diagram given in Fig. 7-37. Hence Ca2 = G4R2/(1 -G1G2G3G4)• Next,
letting R2 = 0, we obtain Fig. 7-38. Hence C2t = - G1G2G4R1/(1 - G1G2G3G4). Finally, Ca = C22 + Cat =
(G4R2 -- G,G2G4 R1) /(1 - G1G2G3G4).

Fig. 7-37

BLOCK DIAGRAM REDUCTION

7.18.  Reduce the block diagram given in Fig. 7-39 to canonical form, and find the output transform C.
K is a constant.

Fig. 7-39

First we combine the cascade blocks of the forward path and apply Transformation 4 to the innermost
feedback loop to obtain Fig. 7-40.

R K
(1 + g)s + 1

C

Fig. 7-40

Equation (7.3) or the reapplicafion of Transformation 4 yields C = KR/[(1 + K)s + (1 + 0.1K)].
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7.19.  Reduce the block diagram of Fig. 7-39 to canonical form, isolating block K in the forward loop.

By Transformation 9 we can move the takeoff point ahead of the 1/(s + 1) block (Fig. 7-41):
Mathoad

Fig. 7-41

Applying Transformations 1 and 6b, we get Fig. 7-42.

(

7.20.

8

+

Fig. 7-42

Now we can apply Transformation 2 to the feedback loops, resulting in the final form gtven in
Fig. 7-43.

R

i
Fig. 7-43

Reduce the block diagram given in Fig. 7-44 to open-loop form.

R

Fig. 7-44
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First, moving the leftmost summing point beyond G1 (Transformation 8), we obtain Fig. 7-45.

R         ÿ + /'7"ÿ    +Wÿ   ÿ    ]b

Fig. 7-45

Next, moving takeoffpoint a beyond G1, we get Fig. 7-46.

Fig. 7-46

Now, using Transformation 6b, and' then Transformation 2, to combine the two lower feedback loops
.(from G1H1) entering d and e, we obtain Fig. 7-47.

b

Applying Transformation 4 to this inner loop, the system becomes

t

•    o2.                +    C

1 -- GtGigt + GÿI.

'N

Fig. %47
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Again, applying Transformation 4 to the remaining feedback loop yields

R

Finally, Transformation 1 and 2 give the open-loop block diagram:

R     J GtGÿGs + G4 - GIGÿG4Hÿ + GÿG4Hÿ + aÿGaa4H2
-I 1 -- GIGÿHI + GÿHI + GÿGÿHÿ

MISCELLANEOUS PROBLEMS

7.21.  Show that simple block diagram Transformation 1 of Section 715 (combining blocks in cascade)
is not valid if the first block is (or includes) a sampler.

The output transform U*(s) of an ideal sampler was determined in Problem 4.39 as

v*(s)-- E
k=0

Taking U*(s) as the input of block P2 of Transformation I of thetable, the output transform Y(s) of block
P2 is

Y(s) = P2(s) U*(s) = P2(s) ÿ e-'kru(kT)
k=0

• Clearly, the input transform X(s)= U(s) cannot be factored from the right-hand side of Y(s), that is,
Y(s) ÿ F(s)U(s). The same Problem occurs if P1 includes other dements, as well as a sampler.

7.22. Why is the characteristic equation invariant under block diagram transformation?

Block diagram transformations are determined by rearranging the input-output equations of one or
more of the subsystems thai make up the total system. Therefore the final transformed system is governed
by the same equations, probably arranged in a different manner than those for the original system.

Now, the characteristic equation is determined from the denominator of the overall system transfer
function set equal to zero. Factoring or other rearrangement of the numerator and denominator of the
system transfer function clearly does not change it, nor does it alter the denominator set equal to zero.

7.23. Prove that the transfer function represented by C/R in Equation (7.3) can be approximated by
+_ 1/H when !GI or IGHJ are very large.

Dividing the numerator and denominator of G/(1 + GH) by G, we get      + H . Then
°

[€-]1lim         lim           = !
IGIÿ oo        IGIÿ oo                H

Dividingby GH and taking the limit, we obtain

IGHIÿ oo       IGHIÿ oo

1
H

1
-ÿ+1

1
-H


