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,Trénéformation Equation Block Diagram Equivalent Block
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. . . Equivalent Block
'Transformatlon Equation Block Diagram Diagram
- 7
. . X—’- P Y X P Y
Moving a Takeoff ,
9 | Point Ahead of a Y = PX B
Block Y ' ' Y |
. e -
X J -4 X P ¥
Moving a Takeoff
10{ Point Beyond a Y = PX
Block : S | X 11
P
: : x M Z
Moving a Takeoff -
11{ Point Ahéad of a Z =X*Y Y
Summing Point
zZ
Moving a Takeoff
12| Point Beyond a Z =X=*xY
Summing Point

Fig. 7-6  Continued

7.6 UNITY FEEDBACK SYSTEMS

Definition 7.7: A umty feedback system is one in which the pnmary feedback b is identically equal
: ‘to the controlléd output c.

EXAMPLE 7.6.. H = 1 for a linear, unity feedback system (Fig, 7-7).

B__ "\ E |g c

) ¥

Fig. 7-7

Any feedback systém with only linear time-invariant elements can be put into the form of a unity-
feedback system by using Transformation 5. .

EXAMPLE 7.7.

B3 ¢ E GH |—eC

H

Fig, 7-8
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The charactenstlc equatlon for the unity feedback system, determmed from1+ G=0,is
o D;+ N;=0 (7.7)

where D, is the denominator and N, the numerator of G.

7.7 SUPERPOSITION OF MULTIPLE INPUTS

Sometimes it is necessary to evaluate system performance when several inputs are 31mu1taneously

applied at different points of the system
When multiple inputs are present in a linear system, each is treated independently of the others.

The output due to all stimuli acting together is found in the following manner. We assume zero initial
conditions, as we seek the system response only to inputs. .

Step 1:  Set all inputs except one equal to zero.
Step 2: Transform the block diagram to canonical form using the transformations of Section 7.5.
Step 3: Calculate the response due to the chosen input acting alone.

Step 4:  Repeat Steps 1 to 3 for each of the remaining inputs.

Step 5: Algebraically add all of the responses (outputs) determined in Steps 1 to 4. This sum is the
total output of the system with all inputs acting simultaneously. "

We reemphasize here that the above superpos1t1on process is dependent on the system bemg linear.

'EXAMPLE 7.8. We determine the output C due to inputs U and R for Fig. 7-9.

" U ‘
+ -
B + G + e c

-/

Fig, 7-9

Step 1: Put U=0. ‘
Step 2: The system reduces to -

R +? 4 6.6, Cr

Step 3: By Equation (7.3), the output Cr due to input R is G =[GG,/(1 + G1G,)]R.

Step da:  Put R=0..
Step 4b:  Put —1 into a block, representing the negative feedback effect:

Lk
T
' C
Gy + G, =

Rearrange the block diagram:

U _+mMm G, Cy

+
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Let 'the —1 block be absorbed into the summiﬁg point:

U 0 J e, ' Cu
' \’/ _ Gl

Step 4c: By Equatlon . 3), the output C,; due to mput Uis Cy= [G2 /(1 + G,Gy)U.
Step5:  The total output is

C=C+C GG g% _|yo| % [GR+U
S RTTU1+ 646, 1+ GG, 1+c~;lc;2 ! 1

78 REDUCTION OF COMPLICATED BLOCK DIAGRAMS

The block diagram of a practical feedback control system is often quite complicated. It inay include
several feedback or feedforward loops, and multiple inputs. By means of systematic block diagram
reduction, every multiple loop linear feedback system may be reduced to canonical form. The

- techniques developed in the preceding paragraphs provide the necessary tools.
The following general steps may be used as a basic approach in the reduction of comphcated block

» diagrams. Each step refers to specific transformations listed in Fig. 7-6.
Step 1: Combine all cascade blocks using Transformation-1.
Step 2: Combine all parallel blocks using Transformation 2.
Step 3: Eliminate all minor feedback loops using Transformation 4.

Step 4: Shift summiﬁg points to the left and takeoff points to the right of the major loop, using
Transformations 7, 10, and-12. :
" Step 5: Repeat Stepsl to 4 until the canonical form has been achieved for a particular input.

Step 6: Repeat Steps 1 to 5 for each input, as required.

Transformatlons 3,5, 6, 8 9, and 11 are sometimes useful, and experience with the reductlon
technique will determine their application. » ‘

EXAMPLE 7.9. Let us reduce the block diagram (Fig. 7-10) to canonical form.

o Fig. 7-10
Step 1 :

G

2
0

8
2
\
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Step 2:
G,
+ )\-*-
G )
Step 3:
(O e, - =
T‘L
L H,
Step 4: Does not apply
Step 5:
Rt GG, - C
~ G4G,H, Gat Gy T

others.

Steps 1 and 2:

H,

Step 6: Does not apply.

(

—— G+ Gy [—

161

GGy
1 - G1G4H1
B+, G1G4(Gy+ Gy) C,
1 - G1G4H1
H,

GGy

+

EXAMPLE 7.10. Let us reduce the block diagram of Bxample 7.9, isolating block H,.

G, + Gy

An occasional requirement of block diagram reduction is the isolation of a particular block in a
feedback or feedforward loop. This may be desirable to more easily examine the effect of a particular

block on the overall system.
Isolation of a block generally may be accomplished by applying the same reduction steps to the
system, but usually in a different order. Also, the block to be isolated cannot be combined with any

Rearranging Sumrmng Points (Transformatxon 6) and Transformations 8, 9, and 11 are especially
useful for isolating blocks.
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We do not apply Step 3 at this time, but go directly to Step 4, moving takeoff point I beyond block G, + G;:

GG, G, + Gy 1.2 C
- ,
H
1 Gy + Gy
H,

We may now rearrange summing points / and 2 and combme the cascade blocks in the forward loop using
Transformation 6, then Transformation 1:

2 1 ¢
GGGy + Gy) c,
H,
1
r :
Step 3
R G1G G+ G c

1+ @G Hy(Gz + Gy) "

Finally, we apply Transformation 5 to remove 1/(G, + G;) from the feedback loop:

R G ia + N\ G164 C
2t Gy TF G.GH, (G, 7 Gy

Note that the same result could have been obtained after applying Step 2 by moving takeoff point 2 ahead: of
G, + G, instead of takeoff point I beyond G, + G;. Block G, + G; has the same effect on the control ratio C/R
whether it directly follows R or directly precedes C.




CHAP.7]  BLOCK DIAGRAM ALGEBRA AND TRANSFER FUNCTIONS OF SYSTEMS 163
Solved Problems

BLOCKS IN CASCADE
' 7.1. Prove Equation (7.1) for blocks in cascade.

The block diagram for n transfer functions G,,.G,,..., G, in cascade is given in Fig, 7-11.

X, X, X, . X,

. X
G1 L G2 e Gn n+1

Fig. 7-11

The output transform for any block is equal to the input transform multiplied by the transfer function
(see Section 6.1). Therefore X, =X,Gy, X; = X,G,,..., X, =X, _1G,_1, X, 1 = X,G,. Combining these
equations, we have .
‘Xn+1 = X:Gn = {Yn—lGn—lGn == ‘XIGIGZ T Gn——lGn

Dividing both sides by X, we obtain X, ,,/X, = G\G, -+ G,_,G,.

7.2. Prove the commutativity of blocks in cascade, Equation (7.2).

Consider two blocks in cascade (Fig. 7-12):

X, X414

- G Xivr | G; !

b
Fig, 7-12

From Equation (6./) we have X,,; = X,G;=G X, and X, = X;,,G;= G, X;,,. Therefore X;,, =
(X;G;)G; = X,G,G,. Dividing both sides by X, X,,,/X;= G,G,. : .
T Also, X;,, =G;(G, X)) = G;G, X,. Dividing again by X, X,,,/X, = G,G,. Thus G,G,= G,G,.

This result is extended by mathematical induction to any finite number of transfer functions (blocks)
in cascade. ‘ ) ‘

73. Find X, /X, for each of the systems in Fig. 7-13.

X, 10 | X2 1 X, X, 1 X, 10 X,
(@) s+1 S ls—1 (t) s —1 Tl s+1
(C) X, ~10 X, 1 X, _l_i X,
Yo T s 1 s—1 1 s

Fig. 7-13

(a) One way to work this problem is to first write X, in terms of X;:

10 .
s (25

s+1

NENPRENERR

Multiplying out and dividing both sides by X;, we have X, /X; = 17(5/(s2 —1).

Then write X), in terms of X;:
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A shorter method is ds follows. We know from Equation (7.1) that two blocks can be reduced to
one by simply multiplying their transfer functlons Also, the transfer function of a single block is its
output-to-input transform. Hence

X, 1 10 10
'le—(é'»—l (s+1 521

(b) This system has the same transfer function determined in part (a) because multiplication of transfer
functions is commutative.’
X, [-10\/ 1 \/14 —14
X, \s+1f\s—=1/\ s ] s(s*-1)

(¢) By Equation (7.1), we have
74. The transfer function of Fig. 7-14a is w,/(s + wy), where wy=1/RC. Is the transfer function of
Fig. 7-14b equal to wo/(s + wy)2? Why?

: R
o WA —
Input == C Output
o= —°
Fig. 7-14a

oA ’ M - o
L7l
» T C T C  Output

Fig. 7-14b

No. If two networks are connected in series (Fig. 7-15) the second loads the first by drawing current
from it. Therefore Equation (7.1) cannot be dlrecﬂy apphed to the combined system. The correct transfer
function for the connected networks is' w3/(s% + 3wys + wj) (see Problem 6.16), and this is not equal to

(wo/(s + ‘*’0))2
' - R ,L B

o— AW f e— W —o

l |

. | .
¢ | =C |

‘ y
O : & - o}
; Network 1 Connéeting Network 2 '

. - Points

Fig, 7-15

CANONICAL FEEDBACK CONTROL SYSTEMS

75. Prove Equation (7.3), C/R=G/(1 + GH).

The equatiens describing the canonical feedback system are taken directly from' Fig. 7-16. They are
givenby E=R¥+ B, B=H C and C = GE. Substituting one into the other, we have .

C= G(RZFB) G(RFHC)
=GRF GHC=GR+ (+GHC)
Subtracting (¥ GHC) from both sides, we obtain C + GHC = GR or C/R=G/(1+GH).
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E 4\ E [ & c .
.
B {
H
Fig, 7-16

Prove Equation (7.4), E/R=1/(1 + GH).

From the preceding problem, we have E=R ¥ B, B= HC, and C= GE.
Then E=R¥ HC=RF HGE, E+ GHE=R, and E/R=1/(1 + GH).

Prove Equation (7.5), B/R=GH/(1+ GH).

From E=R%¥.B, B=HC, and C= GE, we obtain B= HGE=HG(R5F B)= GHR :FAGVHB. ‘
Then B+ GHB=GHR, B=GHR/(1+ GH), and B/R= GH/(1 £ GH).

Prove Equation (7.6), Dgpy+ Ngy=0.

The characteristic equation is usually obtained by setting 1+ GH =0. (See Problem 7.9 for an

exception.) Putting GH = Ngp/Dgpy, wWe obtain Dy + Ny =0.

Determine (a) the loop transfer function, (b) the control ratio, (¢) the error ratio, (d) the .
primary feedback ratio, (e) the characteristic equation, for the feedback control system in which
K, and K, are constants (Fig. 7-17).

(a)

(b)

(0

(4)

(e)

R +/\ E K, c
s(s+ p) g
+
K,s
Fig. 7-17

The loop transfer function is equal to GH.
LS KK,
Hence GH=|———|K)s=—"""
. s(s+p) s+p
The control ratio, or clésed-loop transfer function, is given by Equation (7.3) (with a minus sign for

positive feedback): :
c G K,
R 1-GH s(s+p-KK,)

The error ratio, or actuating signal ratio, is given by Equation (7.4):
' E 1 1 : . s+p
R 1-GH. 1-KK/(s+p) s+p—KK,

The primary feedback ratio is given by Equation (7.5):
B GH KK,

R 1-GH s+p-KK,

The characteristic equation is given by the denominator of C/R above, s(s + p— K;K,) = 0. In this
case, 1 — GH =s+ p— K;K, =0, which is not the characteristic equation, because the pole s of G

cancels the zero s of H.
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BLOCK DIAGRAM TRANSFORMATIONS ,
7.IQ.- Prove the equivalence of the block diagrams for Transformation 2 (Section 7.5).

The equation in the second column, ¥= P, X + P, X, governs the construction of the block diagram in
the third column, as shown. Rewrite this equation as Y= (P; £ P,) X. The equivalent block diagram in the
last column is clearly the representation of this form of the equation (Fig, 7- 18)

S PP, b——>

Fig. 7-18 -

7.11. Repeat Problem 7.10 for Transformation 3.

Rewrite V=P, X+ P, X as Y=(P,/P,) P, X+ P, X. The block d1agram for this form of the equauon is
clearly given in Fig. 7-19.

P px
X » PX P, (E) 2 Y
2 E +
=
Fig. 7-19

7.12. Repeat Problem 7.10 for Transformation 5.

We have Y=P[XF PY] =P B{(1/P)X ¥ Y] The block diagram for the latter form is given in Fig,
7-20. :

PP, -

Fig. 7-20

7.13. Repeat. Problém 7.10 for Transformation 7.
We have Z=PX + Y= P[ X + (1/P)Y], which yields the block diagram given in Fig, 7-21.

X+, P z_
*
1 Y
P
Fig. 7-21

7.14. Repeat Problem 7.10 for Transformation 8.
We have Z=P(X + Y) PX + PY, whose block dlagram is clearly given in Fig. 7-22.
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X 1 p + . Z
&+
Y Ny
" Fig. 7-22
UNITY FEEDBACK SYSTEMS

7.15. Reduce the block diagram given in Fig. 7-23 to ﬁnity feedback form and find the system
~gls  characteristic equation. ’

Mathead : R + ™\ 1 ) 1 ' C
A4 g+ 1 % o
1 -
8+ 2
Fig. 7-23

Combining the blocks in the forward path, we obtain Fig, 7-24,

R+ 1, C
" 8(s+41)

1
8+ 2

Fig. 7-24

Applying Transformation 5, we have Fig. 7-25.

B g ' 1 c
—° a(a +1)(s + 2) :
Fig, 7-25 , |
By Equation (7.7), the characteristic equation for this system is s(s + 1)(s +2) + 1 =0 or s + 352 +
25+1=0.

MULTIPLE INPUTS AND OUTPUTS '
7.16. Determine the output C due to U, U,, and R fpr Fig. 7-26.

oI+
U,
Mathcad . . - + c
B+ G, | + G,

+

H — )& H, j

\FL
U,

Fig. 7-26
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Let U; = U, = 0. After combining the cascaded blocks, we obtain Fig. 7-27, where Cj is the output due
to R acting alone. Applying Equation (7.3) to this system, Cp = [G,G, /(1 — G,G, H, H,)]R.

C
R + N\ 6,6, F R
+
H\H,
Fig, 7-27

- Now let R= U, = 0. The block diagram is now given in Fig. 7-28, where C; is the response due to U;
acting alone. Rearranging the blocks, we have Fig, 7-29. From Equation (7.3), we get C, =

[Gz/(l - GleHle)]U1-
U,
P C
G, + G, L

_/

HH,

Fig. 7-28

U,

G,H,H,

Fig: 7-29

Finally, let R= U, = 0. The block diagram is given in Fig. 7-30, where C, is the response due to Uj
acting alone. Rearranging the blocks, we get Fig. 7-31. Hence G, =[G,G, H; /(1 — GG, H H)]U,.

Cy

G1G,

H () H,

¢
U,

Fig. 7-30 -

L) — G,G,H,
T-
, H,

‘Fig. 7-31

Cy
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By superposition, the total output is
G,G,R + GyU;, + GG, HUj
1- GG, H,H,

C=CR+C1+CZ=

7.17. Figure 7-32 is an example of a multiinput-multioutput system. Determine C, and C, due to R,

and R,. - _ '
R, + /-L G Cy ,
_ .
G; -
G, Ca -
Fig. 7-32

\ First put the block diagram in the form of Fig.7-33, ignoring the output C,.

B+ M ‘ e, . &
L G1G, —

+
R,
Fig, 7-33

Gy

Letting R, =0 and combining the sﬁmming points, we get Fig. 7-34.

By + 7\ - G, Cu
+

G460,

Fig, 7-34
Hence C,, the output at C; due to R, alone, is C;, = G,R, /(1 — G,G,GsG,). For Ry =0, we have Fig.
7-35. :
R o]
2+ ? 6,646, ’ 12

4 G2 _

Fig. 7-35

Hence Cy, = — G,G,G, R, /(1 — G,G,G,G,) is the output at C; due to R, alone. Thus C, = Cp+ Cpp=
(GLR; = GiG3G4R,) /(1 — G1G,G3Gy). ' :
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Now we reduce the original.block diagram, ignoring output C;. First we obtain Fig. 7-36.

B ‘ C
it AR Gy 2

4G, ()= Gs
74
Rl

Fig. 7-36

Then we obtain the block diagram given in Fig. 7-37. Hence C,, = G R,/(1 — G1G2G3G4) Next :
letting R, =0, we obtain Fig. 7-38. Hence C); = — GIGZG‘,R1 /(L — GG,G5G,). Finally, C, = CH +Cy =

(GsR; —~ G\GG3 R) /(1 — G1GyG3Gy).

022

By + G,
L
GGGy
Fig. 7-37
R C
1 { +7? —G,G,6, 21
L G,
Fig, 7-38

BLOCK DIAGRAM REDUCTION

7.18. Reduce the block diagram given in Fig. 7-39 to canonical form, and find the output transform C.
K is a constant.

B+~ __+M\ x| 1 %

0.1

Fig. 7-39

First we combine the cascade blocks of the forward path and apply Transformation 4 to the innermost-
feedback loop to obtain Fig. 7-40.

R + N K c
A+Rs + 1 1

0.1

Fig. 7-40

Equation (7.3) or the reapplication of Transformation 4 yields C = KR/[(1 + K)s + (1 + 0.1K)].
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7.19. Reduce the block diagram of Fig. 7-39 to canonical form, isolating block X in the forward loop.

it

3 By Transformation 9 we can move the takeoff point ahead of the 1/(s + 1) block (Fig. 7-41):
Mathca

R+ N+ M K -}-1 c
8
1
8 g+1 : o
1
0.1 s+1
Fig. 7-41

Applying Transformations 1 and 615, we get Fig, 7-42,

R + /N 1 c
K s+1
' + 8
: s+ 1 "
+ .
01
. s+1 ‘
Fig. 7-42
Now we can apply Transformation 2 to the feedback loops, resulting in the final form given in
Fig. 7-43.
R + 1 c
o K Ts+1
s+ 0.1
s+1
‘ Fig, 7-43

7.20. Reduce the block diagram given in Fig. 7-44 to open-loop form.

Hy
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First, moving the leftmost summing point beyond G, (Transformation 8), we obtain Fig. 7-45.

—

@

Fig. 7-45

Next, moving takeoff point a beyond G, we get Fig. 7-46.

Gy

! G,H,

Fig. 7-46

Now, using Transformation 6b, and' thén Transformation 2, to combme the two lower feedback loops
(from G, Hy) entering d and e, we obtain Fig. 7-47.

+
- 1
Gy
+ G\H,
H,
¢ (%) ¢ b
+
1
1 — ————
< G,> GH;

Fig. 7-47

Applying Transformation 4 to this inner loop, the system becomes

|

Hy

, 6 z +/\ C
\_/ 1 G\G:H, + G.H, s

Gs
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Again, applying Transformation 4 to the remaining feedback loop yields

GgGs 5 +

R e L
) T=G,GH,; + G 7 GG,

+O

—| G,

Finally, Transformation 1 and 2 give the open-loop block diagram:

R G\GoB5 + Gy — G1G3GHy + GoGH, + GoGyGH, c . : 1
1= G,GoH, + Gl + G,GH; : '

MISCELLANEOUS PROBLEMS

7.21. Show that simple block diagram Transformation 1 of Section 75 (combmmg blocks in cascade)
is not valid if the first block is (or includes) a sampler. ‘ '

The output transform U*(s) of an ideal sampler was determined in Problem 4.39 as '

U*(s) = Z e"s"Tu(kT)
k=0
Takmg U*(s) as the input of block P, of Transformation 1 of the table, the output transform ¥{(s) of block
P is : ,

¥(s) = By(s) U*(s) =P2<s>k}°=50e-s”u<kz")

.Clearly, the inpuf transform X(s) = U(s) cannot be factored from the right-hand side of Y(s), that is,
Y(s) # F(s)U(s). The same problem occurs if P, includes other elements, as well as a sampler..

. 7.22. Why is the characteristic equation invariant under block diagram transformation?

Block diagram transformations are determined by rearranging the input-output equations of one or
more of the subsystems that make up the total system. Therefore the final transformed system is governed
by the same equations, probably arranged in a different manner than those for the original system.

Now, the characteristic equation is determined from the denominator of the overall system transfer
function set equal to zero. Factoring or other rearrangement of the numerator and denominator of the
system transfer function clearly does not change it, nor does it alter the denominator set equal to zero,

7.23. Prove that the transfer functlon represented by C/R in Equatlon (7.3) can be apprommated by
+1/H when |G| or |GH| are very large. : :

. 1
Dividing the numerator and denominator of G/(1+ GH) by G, we get 1 / ( pe +H ) Then

. [ C] _ 1 . 1
G} el Y I [G[fl w| 1 T H
—tH
_ G
Dividing by GH and taking the limit, we obtain
1
, . H 1
lim [—|= Im. =+—=
IGH| oo [ R ] (Gt CH

g/~
p




