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3  Three Theorems 
 
This chapter deals with three theorems that are great tools in analysis of a circuit.  They are useful as 
tools to simplify an electrical circuit instead of using brute force to find all the currents and voltages.  
They make sense when we are discussing linear circuits.  They are applicable in a number of different 
situations and give us some valuable tools for getting a specific answer when that is all that is needed. 
 
We use them in linear circuits today but must remember that they can be helpful in complicated non-
linear circuits.  These involve semiconductors and give us tools to analyze only a portion of the entire 
circuit when that is all that we need. 
 
The Voltage-Divider 
 
When the voltage across a circuit splits across more than one resistor, use the voltage divider theorem 
to calculate the voltage across a resistor.  It is the one-step process.  If one were to find current first, 
then voltage, that would require two steps.  Thus, voltage divider is usually a faster way to a voltage 
than finding current.   
 
Development of the Voltage Divider Formula: 
 
We use I in the Fig. 3.1 to write V2 as: 
 

+

V

--

A

R1

R2

V1

V2

I

Fig. 3-1(a)

 
 

V2 = R2·I 
 

V= (R1+R2)·I 
 
 
We now write the ratio of V2/V: 
 

V2

V
=

R2

R1 + R2
 

 

or         
V2

V
=

R2

RT
 

 

where RT = R1 + R2.  Re-arranging, we get V2:  
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V2 =
R2

RT
V 

This equation makes good sense since we have seen before that the ratio of the voltage is equal to the 
relative values of the series resistors.  In this equation, the ratio is the ratio of the voltage across R2 over 
the total Resistance – RT. 
 
If two resistors are in the voltage divider equation, the following equation is used: 
 

V2

V
=

R2

R1 + R2
 

and  
 

V2 =
R2

R1 + R2
∙ V 

 
We see in Fig. 3.1(b) the equation has just two resistors: 
 

V2 =
R2

𝑅1 + 𝑅2
V =

7000

10000
10 = 7V 

 
 

(b)
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-- +
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--
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 8 k  +
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-- +
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R1 

R2 

R1 

R2 

A

B

R 

R2 

 C

(a)

R 
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+

V

--

Fig. 3-1

Fig. 3-2

(a)

+

V

-- +

V2

--

R1 

R2 

I

 
 
Also, in Fig. 3-1(c) the same equation is used and V2 is: 
 

 

V2 =
R2

RT
V =

2000

10000
15 = 3 V 
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Splitting of Resistors –The Potentiometer 
 
A potentiometer splits a resistance into two resistors.  There are three terminals.  When a 
potentiometer is turned, the resistance between two terminals increases while the other resistor 
decreases.  The potentiometer may be turned all the way to zero in either direction, either to the left or 
to the right.  Again, 
 

V2 =
R2

RT
V 

 
Seeing Fig. 3.2b, the resistance of R2 determines the value of V2. 
 
 
In Fig. 3-3a, we want to find the min and max voltages across the output.  We also want to find the 
voltage at the mid-point of the wiper: 
 
The wiper is totally counter-clockwise with zero resistance across the output: 
 

V2 =
0

RT
V =

0

RT
V = 0 V 

 
Now, with the wiper totally clockwise, with RT across R2: 
 

V2 =
RT

RT
V =

10,000

10,000
2 = 2 V 

 
What is the voltage V2 with the potentiometer in the in the middle? 
 

V2 =
R2

RT
V =

5,000

10,000
2 = 1 V 

 
 
A second example of a switch picking a variety of resistances at terminals is shown in Fig 3-3b.  Each 
resistance is a series resistor and is added as follows: 
 
    RT = 900,000 + 90,000 + 9,000 + 1,000 
       = 1,000,000 Ω = 1 M Ω 
 

At the various positions of the switch, a different voltage may be calculated.  Find the values at the 
different switch positions A through E. 
 
At position E, the voltage across the R2 is zero or no resistance.  Therefore, the voltage at E is 0.  
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10 k  

(a)

+

2

--

Fig. 3-3 

+

V2

--

900 k  

+

10 V

--

+

V2

--

90 k  

9 k  

1 k  

A

B

C

D

E

(b)  
 
At D, R2 = 1 kΩ and  
 

V2 =
R2

RT
V =

1,000

1,000,000
10 = 10 mV 

 
At C, R2 = 10 kΩ and 

V2 =
10,000

1,000,000
10 = 0.1 V = 100 mV 

 
At B, R2 = 100 kΩ and 
 

V2 =
100,000

1,000,000
10 = 1 V 

 
The output steps from 10 mV to 100 mV to 1 V and finally 10 V for the switch positions.   
 
Development of the Thevenin Circuit 
 
When we look at an electronic circuit, we very rarely need to find all the voltages and all currents.  
Usually, we only have to find the equivalent circuit with a voltage and resistor in series.  This is 
somewhat of a ‘lego’ approach to circuits but many times is all that is necessary.  We see this as the 
‘world’s simplest circuit’ and resembles: 
 

2 k  A

+

4 V

--

B
 

 
The 4V source is referred to as the Thevenin voltage. The 2kΩ resistor is the Thevenin resistance and the 
circuit is referred to as the Thevenin circuit.  Some would even say ‘Thevenize, thevenize everything 
before your eyes.  That’s why God made your eyes – to Thevenize.’ 
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What does a truck have to do with our course you might ask? 
 

 
 
This is a lego truck made entirely of 334,544 pieces and took 18 builders 2,000+ hours to build.  It is a 
Chevy Silverado 1500.  We will not be building anything like this but it is a cool concept and the lego idea 
is at work here in spades. 

(a)
(b)

Fig. 3-4   Thevenin quantities

6 k  A

+

12 V

--
3 k  

B

2 k  

6 k  
A

+

12 V

--
3 k  

B

+

Vth

--

(d)

2 k  A

+

4 V

--

B

(c)

6 k  
A

3 k  

B

+

Rth

--

2 k  

2 k  
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Thevenin voltage 
 
The Thevenin voltage is that voltage across a pair of terminals with the circuit open at those terminals.  
Picture the circuit above and a pair of scissors.  Cut the circuit at the A-B terminals.  Then measure the 
voltage across the A-B terminals with the circuit now open and the 2 kΩ resistor not part of the new 
circuit.  We remember the 2 kΩ resistor but not part of the circuit we are creating called the Thevenin 
circuit.  The voltage between the A-B terminals is the new Vth.  This voltage is the first component of the 
new world’s simplest circuit or lego circuit. 
 
In Figure 3-4b 23 use voltage divider to find Vth.  It equals: 
 

Vth =
R2

RT
V =

3,000

9,000
∙ 12 = 4 V 

 
Thevenin resistance 
 
The Thevenin resistance is the resistance between the same terminals where the cuts in the circuit 
occurred.  To find this resistance, the voltage source is shorted and any current source is opened.  The 
voltage source that is shorted is pictured as a line or wire with no source present 
 
If we start at the A terminal and walk the circuit back and end at the B terminal, we notice that the two 
resistances in Fig. 3-4c are in parallel.  The resultant Thevenin resistance is: 
 

Rth =
6000 × 3000

6000 + 3000
= 2 kΩ 

Thevenin circuit 
 
The Thevenin circuit is the world’s simplest circuit with only a single voltage source and single resistance 
in series and open terminals at the right.  We have found these values in Fig. 3-4a; 
 
     Vth = 4 V 
     Rth = 2 kΩ 
 
Figure 3-4d shows the Thevenin circuit with the resistor previously removed ready to be re-attached 
which is usually the final step in the problem.  The original circuit left of the A-B terminals is equal to the 
new Thevenin circuit with the 2 kΩ resistance re-attached. 
 
Figure 3-5a begins with no circuit right of the A-B terminals.  The circuit left of the terminals is to be 
simplified to the simplest circuit similar to the Thevenin circuit above: 
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(a) (b)

Fig. 3-5  Applying the Thevenin theorem

5 k  
A

+

18 V

--
5 k  

B

+

Vth

--

2.5 k  A

+

9 V

--

B

(c)

5 k  
A

5 k  

B

Rth

 
 
 
First, use voltage divider with two equal resistors.  Thevenin voltage is equal to half of the source or: 
 
     VTH = 9 V 
 
Shorting the source, we see the circuit of Fig. 3-5b.  The Thevenin resistance equals: 
 
     RTH = 2.5 kΩ 
 
The resultant Thevenin circuit is shown in Fig. 3-5c. 
 
The next circuit of Fig. 3-6a, while similar to the previous examples, has an added resistor just left of the 
A terminal.  This is known as a ‘dangling resistor’.  It would be part of a larger circuit but after the cut, it 
is left to dangle. 
 
We note that no current passes through this dangling resistor since it goes nowhere so there is no 
voltage across it.  The voltage is the same as the previous circuit with the VTH found using voltage divider 
while ignoring the dangling resistor.  However, when we calculate RTH, the dangling resistor is used since 
the calculation of RTH must include it.  

(a) (b)

Fig. 3-6  The Case of the 
Dangling Resistor - Thevenin s 

theorem

6 k  A

+

15 V

--
3 k  

B

+

Vth

--

4 k  A

+

5 V

--

B

Rth

2 k  6 k  A

3 k  

B

2 k  

Rth

A

2 k  

B

2 k  
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Vth =
R2

RT
V =

3,000

9,000
15 = 5 V 

 
The calculation to find RTH between the circuit’s A-B terminals is 
 
     RTH = 2 kΩ + 2 kΩ = 4 kΩ 
 
Fig. 3-6d gives the final Thevenin circuit. 
 
Figure 3-7 gives a more complicated circuit left of the A-B terminals.  We follow a similar tact in finding 
the VTH, RTH and final Thevenin circuit. 
 
First, use the scissors to separate the circuit at the A-B terminals at the 10-kΩ resistor and get Fig. 3-7b.  
Combine the 6 kΩ and 3 kΩ to get the equivalent 2 kΩ.  Solve for VTH: 
 

VTH =
R2

RT
V =

1,000

3,000
24 = 8 V 

 

(a) (b)

Fig. 3-7  Applying Thevenin s theorem

A

+

24 V

--
1 k  

B

+

Vth

--

667   A

+

8 V

--

B

(c)

Rth

(d)

3 k  

6 k  

10 k  

A

+

24 V

--
1 k  

B

3 k  

6 k  

1 k  
3 k  

6 k  A

B

 
 
Now, short the 24 V source as seen in Fig. 3-7c.  Find the equivalent resistance between A and B 
terminals.  It is: 
 

RTH =
2000 × 1000

2000 + 1000
= 667 Ω 

 
Recombine the circuit in Fig. 3--7d which is the Thevenin equivalent circuit.   
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We picture the Thevenin equivalent circuit as a ‘lego’ which can be built into more complicated circuits.  
It gives the same circuit as the original circuit but with only one voltage source and one resistor.  It can 
be pictured in Fig. 3-8 as the lego block it represents.   
 
 

I

(a)

Fig. 3-8  Thevenin s theorem

A

B

+

Vth

--

Rth

RL 

Circuit with sources 
and linear resistances

+

V

--

A

B

+

V

--

(b)

I

RL 

 
We will not try to prove this theorem, only to say that it works – most of the time.  It works if the circuit 
is a linear circuit and there are only independent sources.   
 
What is a linear circuit?  It can be as simple as to say that the circuit has no semiconductor devices 
involved.  This is - for the most part - true. 
 
We haven’t talked about independent and dependent sources yet.  There are examples of each in Fig 3-
9a and b.  Fig. 3-9a shows independent courses.  Fig. 3-9b shows a dependent source with 10i as the 
second source.  The second example in Fig. 3-9b is not able to have the VTH reduced to zero. 
 

I

(a)

Fig. 3-9    Dependent and 
Independent sources

5 k  

7 k  

A

B

(b)

+

10

--
9 k  

6 k  8 k  

+

2

--

2 k  

+

10

--

7 k  

4 k  6 k  

+

10I

--

+

V

--

+

5V

--

 
 
We will ignore dependent sources through the rest of this text.  For now, the Thevenin circuit can be 
expected to find RTH by shorting the voltage sources. 
 
Use Theven to find a voltage or current at the output of a circuit.  The example of Fig. 3-10 shows how 
this is done.   
 
We first remove the load resistor and find the Thevenin circuit as before.  In Fig. 3-10b, voltage divider 
gives: 
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Vth =
R2

RT
V =

3,000

9,000
12 = 4 V 

 
Next, find RTH using the dangling resistor method giving the resistance of Fig. 3-10c and d. 
 
     RTH = 3 kΩ 
 
Finally, redraw the circuit and add the load previously removed to find I: 
 

I =
4

8000
= 0.5 mA 

 
V across the 5 kΩ equals: 
 
     V = RLI = 5000 × 0.0005 = 2.5 V 
 

(a)

Fig. 3-10   Example of 
Thevenin s Theorem

R1

6 k  

3 k  
+

Vth

--

I

+
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--

5 k  

1 k  

+

V

--
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(b)

R1

6 k  

3 k  
+

12

--

1 k  

R2

R3

Rth

(c)

R1

6 k  

3 k  

1 k  

R2

R3

Rth

(d)

2 k  

1 k  

(e)

3 k  

+

4

--

I

5 k  

+

V

-- RL

(f)

I

RL

Black 
box
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Now, go back and calculate the voltage across the load resistor using the methods of the last chapter to 
see if the answer is equal to the answer above.   
 
Measurements from Black Box: 
 
In Fig. 3-10f a black box is shown with resistance across the load RL.  With RL removed, the voltmeter 
shows 15 V from A to B.  With all voltages jumpered, the resistance from A to B measures 10 kΩ.  Find 
the Thevenin equivalent circuit: 
 

10 k  A

+

15 V

--

B

It would be:

  
 
Thevenize More Than Once 
 
More complicated circuits can be reduced by applying the Thevenin principle more than once.  This 
principle is shown in Fig. 3-11.  First cut at C-D. Then patch the circuit and cut at A-B. This technique 
works very well to solve for the last current or voltage to the right in a complicated circuit such as this: 

(a)

Fig. 3-11  Applying Thevenin s 
Theorem more than once

4 k  

4 k  

I

+

18

--

6 k  

1 k  

8 k  

A

B

C

D

(b)

4 k  

4 k  
+

18

--

C

D

(c)

2 k  

+

9

--

6 k  

1 k  A

B

C

D

3 k  

6 k  
+

9

--

A

2 k  A

B

I = 6/(2+8)K 
=.6 mA 

8 k  
+

6

--

(d)

(e)
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A number of alternative ways are useful for finding VTH and RTH.  They include the Shorted Load Method 
and the Matched Load Method.   
 
First, the Shorted Load Method.  It is not always practical to short the load and is not advisable 
especially in many electrical installations but on paper, it works.  The method involves shorting the load.  
This gives the current commonly referred to as ISL or I Shorted Load.  It can be seen from the thevenin 
circuit that: 
 

VTH = ISL ∙ RTH 
 
Measuring ISL is necessary as well as one of the other two (VTH or RTH) to find the third element. 
 
In Fig. 3-12b, we know VTH and RTH.  The unknown is ISL: 
 

ISL =
VTH

RTH
 

 
We assign VTH = 10 V and RTH= 2 kΩ to find ISL: 

 

ISL =
10

2000
= 5 mA 

Fig. 3-12  Shorted load method

+

Vth

--

ISL

A

B

(a)

+

Vth

--

A

B

(b)

short

RthRth

 
 
Given values for VTH and ISL, one can find RTH: 
 

RTH =
VTH

ISL
 

 
Fig. 3-13 shows finding RTH by indirectly by measuring ISL and given VTH.  First, measure VTH = VAB:  
 

VTH = 4 V 
 

Next, short the circuit from A to B and measure the current from A to B:  
 

ISL = 2 mA 
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(a)

Fig. 3-13  Example of Shorted 
load method

+

12 V

--

ISL

6 k  

(b)

A

B

+

Vth

--

A

B

R1

3 k  R2

+

12 V

--

6 k  

3 k  

+

4 V

--

2 k  A

B
(c)

 
 
We now calculate RTH: 
 

Rth =
VTH

ISL
=

4

0.002
= 2 kΩ 

 
We can also look at the circuit and analyze RTH from our previous experience as 2 kΩ.  Remember this 
method is usually safe with small loads but with larger sources, it may not be.  If not sure of the V or R, 
don’t mess with the I. 
 
Next, the Matched-load Method.  The matched load method sets a variable resistor across the A-B 
terminals and monitors the value at which VAB = .5 VTH.  The value on the variable resistor is exactly 
equal to RTH.   
 

Rmatch = RTH 
 
The example below of Fig. 3-14a shows the method at work.  In Fig. 3-14b, the variable resistor or 
rheostat is adjusted until the load voltage is exactly half the Thevenin voltage: 
 

VL = 0.5VTH 
 
To measure VL, remove the variable resistor and measure it with an ohm-meter.  This reading equals 
RTH. 
 
In Fig. 3-14c, we see another example in which: 
 

VTH = 4 V 
RTH = 2 kΩ 
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(a)

Fig. 3-14  Matched Load method

(b)

A

B

+

VL

--

+

VTH

--

2 k  A

B

+

0.5VTH

--

+

VTH

--

2 k  

Rmatch

 
 
 
 

(a)

Fig. 3-15  
Example of 

matched-load 
method

(b)

A

B

+

4 V

--

+

12 V

--

6 k  

Rmatch

3 k  

+

2 V

--

+

12 V

--

6 k  

3 k  
Rmatch

Ohmmeter 

reads 

2 k  

(c)
 

 
The matched load method is potentially not as destructive as the shorted load method.  There is no risk 
of a high current that can damage equipment as is possible with the shorted load method.  Either 
method can provide insight into a circuit’s RTH and VTH values by methods other than calculation. 
 
Using a Flashlight Battery to Determine a Thevenin Circuit 
 
Let’s use a flashlight battery to determine a simple thevenin equivalent circuit.  The circuit of a flashlight 
battery resembles any black box circuit seen previously (see Fig. 3-16a).  Finding VTH is very easy.  It can 
be found using a voltmeter connected similar to Fig. 3-16b.  The resistance RTH is difficult to find since it 
is not possible to separate the resistance of a battery from the voltage source.  The other variable is ISL 
and this variable can be found by shorting the terminals from A to B with an ammeter. 
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The voltage is read as VTH = 1.5 V.  The ammeter in Fig. 3-16c gives ISL = 1.5 A.  The value RTH can then be 
calculated and the Thevenin Circuit drawn in Fig. 3-16d. 
 

RTH =
VTH

ISL
=

1.5 V

1.5 A
= 1Ω 

 
See in Fig. 3-16d the Thevenin Equivalent Circuit for the flashlight battery. 
 
Fig. 3-16e gives the symbol for a battery.  There is no implied resistance as we just found in the battery 
of Fig. 3-16a-d.  The approximation can be made because the resistance found is so small that it is 
treated as insignificant to the circuit.  If a battery is used in a circuit, it has an internal resistance and 
actually can be represented by Fig. 3-16f. 
 

(a)
Fig. 3-16  Thevenin circuit of 

Flashlight

B

Flashlight

battery

A

(b)

B

Flashlight

battery

A

Voltmeter

Reads

1.5V

+

Vth

--

B

Flashlight

battery

A

+

Vth

--

A

ISL

(c)

+

1.5 V

--

1   A

B
(d)

1.5A

+

V

--

+

V

--

R A

B
(f)

(e)
 

 
 
In general, the voltmeter contributes no appreciable resistance to the circuit it measures because the 
impedance of the voltmeter is so high.  The same can be said for the ammeter but in the opposite 
direction.  The ammeter is placed in series with the circuit being measured.  Low resistance is very 
important for an ammeter to not change the circuit.  This is usually the case.  Their inclusion in a circuit 
does effect the circuit and if exact answers are required, their resistances must be included. 
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The circuit of Fig. 3-17 is very complicated.  However, it can be crunched to a very manageable circuit if 
all that is required is the current or voltage at the far right.  Usually, this is the case.  We crunch this 
circuit one window at a time until we reach the Thevenin circuit just left of the A-B terminals.  We then 
insert the load resistance, in this case 3 kΩ, and find the current and voltage across it. 
 

2 k  

2 k  
+

80

--

(a)

2 k  2 k  2 k  

1 k  1 k  1 k  

+

Vth

--

1 k  

+

5

--

A

B

A

B

I
1 k  

+

5

--

A

B

3 k  

RL

(b) (c)

Fig. 3-17   Applying Thevenin s Theorem

 
 
 
Shown in Fig. 3-17c is the final crunched circuit and the calculation of I and V:  

I =
5

1000 + 3000
= 1.25 mA 

 
V = RL ∙ I = 3000 × 0.00125 = 3.75 V 

 
 
The above circuit and the game below have what in common? 

 

 

 

You may not remember this game but your parents would.  Or your grandparents.  Look it up and play it.  

It is much more fun than the problem above but involves the same principle.  
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Multiple Source Circuits 
 
When a circuit is found to have more than one source, the following method may be used to find the 
unknown voltage or current.  Several examples will show the principle of finding these combination 
circuits using the concept of superposition. 
 
We have to believe that multiple source circuits can be broken into simpler circuits and superposition 
allows us to do this. The circuit below in Fig. 3-18 has two sources, a 15 V source at the left and a 30 V 
source at the right.  The unknown is the current in the middle through the 3 kΩ resistor.  If we re-draw 
the circuit with the right source shorted and a second circuit with the left source shorted, we can find 
the current through the 3 kΩ resistor in each circuit.  Then we add the two answers together for the final 
answer.   
 
We refer to the two separate currents as I1 and I2.  We add the two together and find the total current I. 
 

I

6 k  

+

15 V

--
3 k  

(a)

3 k  

+

30 V

--

First 
source

Second 
source

I1

6 k  

+

15 V

--
3 k  

(b)

3 k  6 k  

3 k  

(c)

3 k  

+

30 V

--

Fig. 3-18  Superposition 
Theorem 

(a) Original circuit 
(b) First source circuit 

(c) second-source circuit

I2

 
 
Using the techniques of the past chapter, we find that the voltage across the 3 kΩ resistor of Fig 3-18b 
as 3 V.  Solving for I1, we find I1 equals 1 mA.  We use the same techniques to find the voltage across the 
same 3 kΩ resistor from the 30 V supply equal to 12 V and I2 = 4 mA.  We use the superposition theorem 
to find the total current: 
 

I = I1 + I2 = 1 mA + 4 mA 
  = 5 mA 

 
We have found the answer using Superposition to the original problem of the current through the 3-kΩ 
resistor. 
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Figure 3-19 has two voltage sources.  The unknown current sought is the current through the 4 kΩ 
resistor.   
 

I

2 k  

+

8 V

--

4 k  

(a)

2 k  

+

4 V

--

Figure 3-19  Example of 
Superposition Theorem

 
 
We again turn to the superposition theorem and re-draw the circuit in Fig. 3-19b and c. 
 

I1

2 k  

+

8 V

--

4 k  

(b)

2 k  

I2

2 k  4 k  

(c)

2 k  

+

4 V

--

Figure 3-19  cont
 

 
I1 is the current in the circuit with the 8 V source at left.  I2 is the current in the circuit with the 4 V 
source at the right.  The two currents oppose each other with I1 flowing left to right and I2 flowing right 
to left.  Total current I is the sum of these two currents.  What is it? 
 
The first circuit gives the following current (to the right): 
 

I1 =  
8

8000
= 1 mA 

 
The second circuit gives the following current (to the left):  
 

I2 =  
4

8000
= 0.5 mA 

 
Adding the two and inserting the minus sign for current flowing right to left, we have:  
 

I = 1 mA – 0.5 mA 
  = 0.5 mA 
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Fig. 3-20 is another example of multiple sources flowing through a single resistor.  This example also 
follows the path of re-drawing the circuit twice, once with one of the voltage sources present and the 
other source shorted.  The final answer again is the sum of the two single-source answers. 
 

+

6 V

--
2 k  +

4 V

--

I
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+

6 V

--
2 k  

I1
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4 V

--
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Figure 3-20

 
 
We calculate I1 in Fig. 3-20b as follows: 
 
  

I1 =  
6

2000
= 3 mA 

 

We calculate I2 in Fig. 3-20c as follows: 

I2 =  
4

2000
= 2 mA 

 
Adding the two currents together yields: 
 

I = 3 mA + 2 mA 
  = 5 mA 

 
By observation, we can see that the 4 V and 6 V sources can be replaced by a 10 V source yielding the 
following directly (without using Superposition).  You should always look for ways to combine sources 
and simplify your efforts. 

I =  
10

2000
= 5 mA 
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Superposition is possible with more than two sources.  Each source adds its part: 
 

Figure 3-21
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Figures 3-21 and 3-22 above give a good example of many source circuits being split into a number of 
circuits each with only one source.  We can continue this principle for any number of sources as long as 
the resistances in the circuit are linear and the sources are not dependent, the same as for Thevenin.   
In Eq. 3-10, use the algebraic sum.  This means taking the direction of individual currents into account.  
When an individual current is in the same direction shown for the original current, add the magnitude of 
the individual current.  But when the individual current is opposite the direction shown in the original 
current, subtract its magnitude.  We have used current in the examples to this point.  Voltages can also 
be added in a similar manner. 
 
In Fig. 3-22a we see the original circuit.  Here the current I is pointing down.-32a shows an original 
circuit with current I down.  Figs 3-22b and c show the two currents from separate sources both in the 
same direction (down).  Here currents add: 
 

I = 5 mA + 3 mA = 8 mA 
 
Fig. 3-22d and e show the two currents with opposite direction.  Here the second current is subtracted 
from the first: 

I = 5 mA - 3 mA = 2 mA 
 
Voltages: 
As mentioned before, superposition works equally well for voltages as well as currents.  We can say in 
general for voltages with multiple sources: 
 

V = V1 + V2 + · · · · + Vn 

 
For Fig. 3-22b and c above, we could assign values V1 = 5 V and V2 = 3 V.  Then V = 8 V. 
 
Now We Use All Three – Voltage Divider, Thevenin and Superposition Together.  In the circuit of Fig. 3-
23a, we are asked to find the Thevenin Circuit between terminals A-B.  Fig. 3-23b shows the original 
circuit with the 18 V supply only and Fig. 3-23c shows the circuit with only the 9 V supply. 
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Notice in Fig. 3-23c that the circuit is re-drawn to more easily see the value across A-B with only the 9 V 
source.  Labels for VAB for the 18 V source circuit of Fig. 3-23b is V1 and for the 9 V source of Fig. 3-23c is 
V2. 

 
Using only the first source (18 V), we find: 
 

V1 =  
6000

3000 + 6000
18 = 12 V 

 
Using only the second-source (9 v), we find: 
 

V2 =  
3000

6000 + 3000
9 = 3 V 

 
V1 and V2 are both of polarity + to – from A to B.  Therefore: 
  
 VTH = V1 + V2 = 12 + 3 
        = 15 V 
 
Thus, by using Superposition and Voltage Divider, we have found VTH of the circuit in Fig. 3-23a.   
 

Figure 3-23 
cont

3 k  
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B

6 k  

(d)

+
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--

2 k  
A

B

(e)

+

15

--

 
 

Finding RTH requires no use of Superposition since both sources are shorted leaving (see Fig. 3-23d): 
 
 RTH = 3000 ǁ 6000 
 
Figure 3-23e is the final solution to for this Thevenin Equivalent Circuit. 
 
This example gives a good insight into the three theorems we have introduced in this chapter.  They 
should be used whenever applicable to solve complicated circuit problems. 
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Problems 
 
3-1. In Fig. 3-24a, find Vout when the wiper is at the top, at the bottom, at the middle. 
3-2. In Fig. 3-24b, find Vout at each of the four switch positions. 
3-3. In Fig. 3-24c, find Vout at each of the switch positions A through F? 
3-4. For the circuit in Fig. 3-25a, find VTH? RTH? 
3-5. For the circuit in Fig. 3-25b, find VTH? RTH? 
3-6. For the circuit in Fig. 3-25c, find VTH? RTH? 
3-7. For the circuit in Fig. 3-25d, find VTH? RTH if the wiper is middle point of the 20-kΩ pot. 
3-8. Find the current through a 75-kΩ resistor connected across the A-B terminals of Fig. 3-25a.  

What is the voltage across the resistor? 
3-9. Find the current through a 60-kΩ resistor connected across the A-B terminals of Fig. 3-25b.  

What is the voltage across the resistor?  Will the voltage decrease or increase across the A-B 
terminals when the resistor is added to the circuit? 

 3-10. Find the current through a 12.5-kΩ resistor connected across the A-B terminals of Fig. 3-25c.  
What is the voltage across the resistor? 

 

Fig. 3-24
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3-11. Find the current through a 10-kΩ resistor connected across the A-B terminals of Fig. 3-25d with 

the wiper in the middle position of the wiper. Next, connected to the top of the wiper. What is 
the voltage across the 10-kΩ resistor at each of these positions of the pot. 

3-12. Find VTH and RTH for Fig. 3-25e.  Now, connect a 1-kΩ resistance between A and B and determine 
current and voltage between A and B. 
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3-13. Use the flashlight battery example from the text and the data: VTH = 1.5 V and ISL = 2 A to find RTH 
of the battery. 

3-14. Again, use the flashlight battery example and the data: : VTH = 9.0 V and ISL = 1.25 A to find RTH of 
the battery. 
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Fig. 3-25
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3-15. Given that the voltmeter of Fig. 3-26a has very high resistance and the ammeter of Fig. 3-26b 

has very low resistance, find RTH of the black box if the reading of VAB = 100 mV and ISL = 0.1 mA. 
3-16. Given that the voltmeter of Fig. 3-26 has very high resistance and the ammeter of Fig. 3-26b has 

very low resistance, find RTH of the black box if the reading of VAB = 2 V and ISL = 1 mA.  Now 
connect a 3-kΩ resistor across the A-B terminals (shown in Fig. 3-26c) and calculate the current 
through and voltage across A-B. 

3-17. Fig. 3-26d is a black box with VTH = 10 V and ISL = 2 mA.  Now attach a variable resistance 
between A-B and turn until VAB = 5 V.  What is the resistance of the variable resistor at this 
point?  Next move the variable resistor until load voltage is 7.5 V.  Calculate the new value of the 
variable resistor. 

3-20. VTH  of a black box =  4 V.  Adding a resistor between A-B of 8 kΩ drops VAB to 2 V.  Find ISL.  Next, 
remove the 8 kΩ resistor and calculate the current through a 32-kΩ resistor attached between A 
and B. 
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(a)
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(b)

B
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B

Black box
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3-21. In Fig. 3-27a, find the voltage of the 2-kΩ resistor.  Of the 6 kΩ resistor.  Between A and B. 
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3-22. In Fig. 3-27b, find the voltage across the 1-kΩ resistor.  Next, R = 8 kΩ.  Find the voltage of this 

resistor.  Find the value of R that reduces VAB to zero. 
3-23. Find I in Fig. 3-27c. 
3-24. Find I in Fig. 3-27d.  Assume the ammeter has very low resistance. 
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3-25. For Fig. 3-27a, the 1-kΩ has a tolerance rating +/- 1 percent.  Assume all other resistances are 
their nominal value.  Find the max voltage between terminals A and B. 

3-26. For Fig. 3-27d, assign an internal resistance of 50 Ω for the ammeter.  Then, calculate the 
current through the ammeter.  Does this value for the meter significantly change the current? 

3-27. For Fig. 3-27d find the current between A and B for the following values of resistance between A 
and B: 
a. R = 1 kΩ 
b. R = 2 kΩ 
c. R = 3 kΩ 
d. R = 0 Ω 

3-28. For Fig. 3-28a, find I. 
3-29. For Fig. 3-28b, find I. 
 

 
 

 

 

 

 

 

 

 

 
 
  

 
3-30. For Fig. 3-28c, find I. 
3-31. For Fig. 3-28d, find I. 
3-32. For Fig. 3-28e, find VTH, RTH. 
3-33. For Fig. 3-28f, find VTH, RTH. 
3-34. For Fig. 3-28e, attach a 10-kΩ resistor across A-B and find VAB. 
3-35. For Fig. 3-28f, attach a 12.5 kΩ resistor across A-B and find VAB. 

 
This work is licensed under a Creative Commons Attribution 4.0 International License. 
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