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4 Current and Power  
 
The Ideal Current Source 
 
An ideal current source is shown in Fig. 4-1 below: 
 

Figure 4-1

 
 
It implies a current at a specified value that is unaffected by any value of resistance.  The following Fig. 
4-2 gives a 3 mA current source into a variable resistor that may vary from 0 to 10 kΩ.   
 

RL3 mA 10 k  

Fig. 4-2

 
 
The current source is a guaranteed 3 mA no matter what the value of RL.  The wiper could be at the top 
and RL = 0 or at the bottom and RL = 10 kΩ.  The current source doesn’t change based on the load.  This 
is referred to as an ideal current source.  While most current sources are only ideal on paper, a current 
source may approach an ideal source depending on the circuit. 
 
With the wiper at the top: 
     V = RLI = 0 x 0.003 = 0 
 
With the wiper at the middle: 
 
     V = RLI = 5,000 x 0.003 = 15.0 V 
 
With the wiper at the bottom: 
 
     V = RLI = 10,000 x 0.003 = 30.0 V 
 
The V found is the voltage across the resistor which is also the voltage across the current supply.  
Therefore, the voltage must change across the current supply to almost any voltage to guarantee the 
current’s value.  Many times, the current source can only be built using electronic components such as a 
transistor. 
 
Current sources, like voltage sources, can be either a dependent source or an independent source.  To 
be dependent, the value of the current source may depend on a referenced current or voltage from 
another circuit.  An example will show how a dependent source works.   
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The following circuit shows how to build a current source from a voltage supply.  The current can only 
change a small amount from 100 µA regardless of the position of the wiper.  All the way up on the wiper 
gives RL = 0 and current I = 100 µA.   With the wiper all the way down and RL = 100 kΩ, I = 99 µA.    
 
The calculation of I with the wiper at the top of the resistor gives: 
 

I =
VTH

RTH
=  

1000

10(106)
= 100 µA  

 

I Fig. 4-3  
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Load voltage is:   V = RLI = 0 x 100 µA = 0 V 

The calculation of I with the wiper at the bottom of the resistor gives: 
 

I =
VTH

RTH +  RL
=  

1000

10.1(106)
= 99 µA 

 
Load voltage is:       

     V = RLI = 100(103) x 99(106) = 9.9V 
 

For this circuit, the load voltage moves from 0 to 9.9 V while load current moves a very small amount 
from 100 µA to 99 µA.  The circuit gives a good example of a circuit in which current changes very little 
over a range of variable resistance.  We accomplish this relative constant current by placing a very large 
resistance at RTH and a relative small resistance at RL.  This guarantees the current will not change much 
over a variable range of RL. 
 
The next two examples identify current sources that are independent and dependent.  Fig. 4-4a has an 
independent current source that will not vary.  Fig. 4-4b has a dependent current source that varies with 
the value of I in the left portion of the circuit.  For Fig. 4-4a, the current source is constant at 2 mA.  The 
value of current in the left part of the circuit has no effect on the 2 mA.  In Fig. 4-4b, the current in the 
right portion of the circuit is 100 x I in the left portion of the circuit.  The only question really to ask is 
what kind of circuit would give this result and the answer is a transistor.  This circuit is a model of a 
bipolar junction transistor.  We will not further discuss this circuit in this text but leave it for the study of 
bjt’s.   
 
The values of the voltage across RL can be found for these two circuits.  Those solutions are below: 
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+
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Figure 4-4  Dependent and Independent Current Sources

 
 
For Fig. 4-4a, the 2 mA of the circuit at the right produces the following voltage across RL: 
 

VL = RLI = 1000 x 0.002 = 2 V 
 
For Fig. 4-4b, first find the current I from the left loop: 
 

I =  
V

R
=  

0.2

5000
= 0.04 mA = 40 µA 

 
Then, find the current in the right circuit: 
 
        100I = 100 x 0.04 mA = 4 mA 
 
Finally, find the voltage across RL: 
 
    VL = RL x 100I = 1000 x 0.004 = 4 V 
 

How to Treat Current Sources in Thevenin, Norton and Superposition Problems 

To find RTH, we short all voltage supplies.  We now need to discuss how we treat current supplies in this 

process.  We reduce the current supply to 0 by opening the connection.   

Figure 4-5(a)
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+
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4 
 

In Fig. 4-5 above, the Thevenin circuit is found by first finding the voltage from A to B.  We observe that 
the current can only flow through the 3 kΩ resistor between A and B giving the voltage for VTH.   
 

VTH = 3000 x 0.001 = 3 V 
 
To find RTH, walk the circuit starting at A and ending at B.  Notice that in Fig. 4-5c, the current source is 
open not allowing the 6 kΩ resistor to be considered.  Only the 3 kΩ resistance is used.  The 
reconstructed Thevenin circuit is shown in Fig. 4-5d. 
 
A second circuit with current supply and attached RL yields similar results: 
 

Figure 4-6(a)

1 k  5 mA

B

3 k  A

(b)

(c)

1 k  

B

3 k  
A

(d)
B
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+
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--

RL 1 k  5 mA

B

3 k  
A

  
 
In Fig. 4-6 above, the Thevenin circuit is found by first finding the voltage from A to B.  We observe that 
the current can only flow through the 1 kΩ resistor between A and B giving the voltage for VTH.   
 

VTH = 1000 x 0.005 = 5 V 
 
To find RTH, walk the circuit starting at A and ending at B.  Notice that in Fig. 4-6c, the current source is 
open and the 3 kΩ and 1 kΩ resistance are used in series.  The reconstructed Thevenin circuit is shown in 
Fig. 4-6d. 

 
The following example uses superposition to find the thevenin circuit.  The first circuit is shown in Fig. 4-
7b.  Use voltage divider 3 kΩ to find VAB (VTH) for the voltage circuit.   
 

V1 =  
4000

8000
10 = 5 V 

 
For the current source, the 2 mA splits evenly through the two 4 kΩ resistors leaving 1 mA through 4 kΩ 
or 

V2 = 4000 x 0.001 = 4 V 
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To find VTH, find the sum of V1 and V2: 
 
    VTH = V1 + V2 = 5 + 4 = 9 V 
  

For RTH, use Fig. 4-7d to get:  
 

RTH = 4 kΩ ǁ 4 kΩ = 2 kΩ 
 
 

4 k  

4 k  

+

10 V

--

A

B

(a)

2 mA

4 k  

4 k  
+
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--

A

B

(b)

4 k  

4 k  

A

B

(c)

2 mA

4 k  

4 k  

A

B

(d)

2 k  
A

B

+

9 V

--

(e)

Figure 4-7

 
 
Norton 
 
Norton’s Theorem is the current equivalent of Thevenin’s Theorem.  It is pictured in Fig. 4-8 below.  
With it we can find voltage and current across a load equal to the Thevenin Circuits of last chapter. 
 

Curcuit with 

sources and linear 

resistances

A

B

A

RTH

B

RL

ISL RL

(a)

(b)

Original circuit

A

B

ISL

(c)

Figure 4-8  Norton s Theorem
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Norton’s Circuit moves the RTH parallel to the current source and substitutes the voltage source VTH with 
a current source, ISL.  The value of the current source is: 
 

ISL =  
VTH

RTH
 

 
In the example below, we find the Thevenin equivalent circuit and then find the Norton Equivalent 
circuit from which we can find the voltage and current across the A-B terminals similar to the Thevenin 
Circuits of last chapter. 
 

Figure 4-9   Applying Norton s Theorem
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In Fig. 4-9a, we determine the A-B terminals and remove the 2-kΩ resistor right of A-B.  Next, use the 
rules of Thevenin to find VTH and RTH.  RTH is 2 kΩ.  VTH is 4 V. 
 
To find ISL, we have two methods.  One is the equation VTH = ISL· RTH.  The other is to short the A-B 
terminals and determine ISL by observation or the equation below: 
 

ISL =  
V

R
=  

12

6000
= 2 mA 

 
Fig. 4-9e shows the Norton Equivalent Circuit reattached ready to find the current through the 2-kΩ  
resistor. 
 
The next Fig. 4-10 shows the same problem but worked first by finding VTH and then ISL.   
 

VTH =  
R2

R
V =  

3000

6000
12 = 4 V 

 
and 
     RTH = 6000 ǁ 3000 = 2 kΩ 
 



 

7 
 

The following Fig. 4-10 with the results: 
 

A

B

+

4 V

--

(a)

2 k  

+

4 V

--

(b)
B

ISL

(c)

2 k  2 mA

2 k  A
A

B

Figure 4-10  Converting Thevenin to Norton

 
 
Now apply Norton’s theorem to Fig. 4-10a.  With a short across the load terminals, Fig. 4-10b gives 
 

ISL =  
4

2000
= 2 mA 

 
We can see from the above that Norton is to complement Thevenin.  Since we usually have voltage, 
Thevenin is the preferred method.  Sometimes, current is the lead and Norton may be used instead.  
Both work! 
 
We now find a circuit that is a Norton circuit, Convert the Norton circuit to a Thevenin and find that 
either will produce the same result.   
 

VTH =  5000 x 0.003 = 15 V 
 
Fig. 4-11a introduces a Norton circuit.  Fig. 4-11b shows the Thevenin equivalent.  Fig. 4-11c,d show the 
same circuits with a 5 kΩ resistor added at the A-B terminals.  The current through the attached 5 kΩ is 
the same for both circuits.  These circuits are the same!  I = 1.5 mA in both and VAB is 7.5 in both! 
 

I

(a)

5 k  3 mA

A

B

A

B

+

15 V

--

(b)

5 k  

(c)

5 k  3 mA

A

B

A

B

+

15 V

--

(d)

5 k  

5 k  

I

5 k  

Figure 4-11  Applying Thevenin s 
theorem
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Electrical Power 
 
Power can be defined as work divided by time. The formula for Power is: 
 
       

P =  
W

t
 

With  P  =  power 
 W =  work 
 t    =  time 
 
In electrical circuits, work is defined in joules and time in seconds.  If 5 J of energy are released in 2 s, 
then power is:  
  

P =  
5 J

2 s
 

 
Power can also be related to voltage and current.  In terms of V and I, power is given as: 
    
      P = V·I 
when  P = power 
 V = voltage 
 I  = current 
 
For V = 10 V and I =  5 A , power equals: 
 
     P = 10 x 5 = 50 W 
 
Units of power are watts (W).  Alternate methods of expressing the power across a resistance are: 
  

P = V ∙ I = I2 ∙ R =
V2

R
 

 

Matched-Load Power 

We have used Thevenin circuits in a number of examples and now we ask how to get the most power 
from one.  The answer is very useful in that we always want to find how to get the best output from a 
device whether electrical or otherwise.  How do we maximize the thing!  To do this, we use the 
matched-load power theorem which, believe it or not, says to match RL with RTH and we get the most 
bang for the buck.  Figure 4-12a shows a black box driving an adjustable load resistance.   
 
The circuit of Fig. 4-12a shows an unknown circuit with unknown VTH and RTH.  First, find VTH and RTH and 
set RL = RTH and the maximum power is realized from this circuit across the output terminals.  It is given 
that we can’t change the black box, but wish to realize the most power output from it.  If we were able 
to change the parameters in the box, perhaps there would be more power that could be output.  We do 
not consider this, only the parameter that RTH and VTH are fixed.  The max value of power is realized 
when RL is set to RTH as seen in Fig. 4-12b. 



 

9 
 

+

V

--

Circuit with 

sources and linear 

resistances

+

V

--
Vth

RthI I

RL

(a) (b) Figure 4-12   Matched Load
 

 
 
The theorem will not be proven but rather shown by example.  We start with the example of Fig. 4-13. 
 
In the example of Fig. 4-13, if we match RL to 4 kΩ, we get the maximum power.  The power can be 
calculated by finding VL which is 6 V.  For this value of V, we can calculate I and finally P: 
 

+

V

--

I

RL

Figure 4-13

+

12 V

--

4 k  

   
 
 
Load current: 
 

I =  
12

4000 + 4000
= 1.5 mA 

 
Max Power out (Matched-load power) = 
 
    P = V·I = 6(0.0015) = 0.009 W = 9 mW  
 
Now change RL either a little up or down from 4 kΩ and observe the new value of I and P.  It is a little 
less than 9 mW which we now are more likely to believe to be the maximum power out from this circuit. 
 
Again, we are only looking at circuits with a fixed value of VTH and RTH.  Fig. 4-14a shows a circuit that 
modifies RTH and not RL.  This is not going to give maximum power out at RL.  The same can be said for 
Fig. 4-14b.  This circuit does not fit the matched-load power output theorem either. 
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Fixed
RL

+

VTH

--

RTH

R = 0

Figure 4-14  Variable 
Thevenin resistance

+

VTH

--

Fixed
RL

(a) (b)  
 
Applications of Matched-Load Power Theorem 
 
It is more important to match the output resistance to RTH when the signal is weak as in a TV antenna.  
This is a good example of the need to match the antenna resistance closely.   
 
The quality of a TV picture depends on the power to the TV receiver.  In Fig. 4-15b the receiver has a 
resistance of RL; this is the load resistance connected to the antenna. 
 
Time-varying signals also apply to the maximum load power theorem.  At t = 0, VTH equals 1 V.  We find 

RTH equals 50 Ω.  Find the maximum load power at t = 0 in Fig. 4-15 below: 

 

(a)

Signal generator

RTH

vTHRL
RL

50   

1 v 50   

(b)

Figure 4-15 Thevenin 
circuit of signal 

generator

 
 
 
For max load power, set RL = 50 Ω.  For this resistance, VL is:  
 

VL =  
VTH

2
=

1

2
= 0.5 V 

 
Load power equals: 
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P =  
V2

RL
=

0.52

50
= 0.005 W = 5 mW 

 
The following example shows by example the maximum load-power theorem actually finds the max 
power out: 
 
First, set RL = 1 Ω: 
 

VL =  
VTH

2
=

2

2
= 1 V 

 
Load current I =: 

IL =  
VL

RL
=

1

1
= 1 A 

 

1  

+

 2V

--

1   

+

2 V

--
1   

RL

(a)

RL+
V
--

(a)
1   

+

2 V

--
2   

RL+
V
--

(c)

1   

+

2 V

--
0.5   

RL+
V
--

(d)

Figure 4-16

 
and: 
     P = V · I = 1 x 1 = 1 W 
 
Moving the wiper to 2 Ω gives:  
 

VL =  
2

3
2 = 1.33 V 

Load current I =: 
 

IL =  
VL

RL
=

1.33

2
= 0.667 A 

and: 
 

P = V · I = 1.33 x 0.667 = 0.887 W 
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Moving the wiper to RL = 0.5 Ω gives: 
 

VL =  
0.5

1.5
2 = 0.667 V 

Load current IL =: 
 

IL =  
VL

RL
=

0.667

0.5
= 1.33 A 

The load power is 
 

P = V · I = 0.667(1.33) = 0.887 W 
 
Each example moving away from 1 Ω gives a value of P less than 1 W, which we surmise is the maximum 
load power for the given circuit.  Again we feel more comfortable that we have found the method for 
finding the maximum power output from a given Thevenin equivalent circuit. 
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Problems 
4.1 Find the voltage of the 10-kΩ resistor of Fig. 4-17a. 
 

(a)

10 k  2 mA RL

(b)

3 mA

10 k  

A

B

+

2000 V

--

(c)

100 M  

Figure 4-17

 
 

4.2 In Fig. 4-17b the resistor is a 10 kΩ pot.  When the wiper is at the top, what is the voltage across 
RL, when the wiper is at bottom? When the wiper is at the middle position? 

4.3 If you were to have in your hand a number of resistors in the range of 10 Ω to 1 MΩ, what would 
be the max value across the A-B terminals of Fig. 4-17c if only one resistor was attached at a 
time?  What would be the min value across the A-B terminals?  Max current?  Min current? 

4.4 For Fig. 4-18a, find the Thevenin equivalent circuit. 
4.5 Find the Thevenin equivalent circuit left of A-B in Fig. 4-18b. 
4.6 Find the Thevenin equivalent circuit left of A-B in Fig. 4-18c. 
4.7 Find the Thevenin equivalent circuit left of C-D in Fig. 4-18d.  Then find the Thevenin equivalent 

circuit left of A-B in Fig. 4-18d. 
4.8 Find the Thevenin equivalent circuit left of A-B in Fig. 4-18e when ICBO  = 1 µA. 
4.9 Find the Norton equivalent circuit left of A-B in Fig. 4-19a. 
4.10 Find the Norton equivalent circuit left of A-B in Fig. 4-19b. 
4.11 Find the Norton equivalent circuit left of A-B in Fig. 4-19c.  Then find the Thevenin equivalent 

circuit. 
4.12 Find the Norton equivalent circuit left of A-B in Fig. 4-19d. 
4.12 A boat battery dissipates 24,000 J in a 10 s time period.  Find the kilowatts. 
4.13 A battery outputs 9 V.  If the measured current equals 10 mA, what is the power dissipated? 
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(a)

20 k  2 mA

A

B

(c)

6 k  2 mA

B

3 k  

(b)

6 k  3 mA

A

B

3 k  3 k  

(d)

1 k  9 mA

2 k  

6 k  

A

B

A

B

+

10 V

--

(e)

1 M  

ICBO

A

B

+

20 V

--

(a)

4 k  3 k  

6 k  

+

27 V

--

A

B

6 k  

3 k  
+

9 V

--

A

B

(b)

1 k  

(c)

3 k  

A

B

6 k  

(d)

12 mA

C

D

Figure 4-19

Figure 4-18

 
 
4.14 Find the power dissipated in the 5-kΩ resistor of Fig. 4-20a.  In the 15-kΩ resistor.  In the total 

RL. 
4.15 Find the power dissipated in each resistor in Fig. 4-20b.  In the total RL. 
4.16 Find the power dissipated in each resistor in Fig. 4-20c.  In the total RL. 
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(a)

+

20 V

--

+

24 V

--
3 k  

5 k  

15 k  
4 k  6 k  

1 k  

(b)

+

12 V

--
3 k  6 k  

Figure 4-20

(c)  
 
4.17 With the power supply of Fig. 4-21a, assume RTH = 0.  Find the power dissipated if the voltage is 

set to 10 V, 30 V. 
4.18 Rate the fuse in Fig. 4-21b when the following occur: 

a. There is a short between A and B 
 b. There is a 2- Ω resistor between A and B 
 c. There is a 75- Ω resistor between A and B 

4.19 For Fig. 4-21c, find the max load power. 
4.20 For an antenna VTH = 100 µV and RTH =  50 Ω.  Find the max load power. 
4.21 In Fig. 4-21d, adjust RTH to get the max load power to the 10-kΩ resistor.  Find the max load 

power at this value. 
4.22 Next, adjust RTH to 10-k Ω resistor in Fig. 4-21d.  Find the max load power. 
4.23 A black box has VTH = 10 V and RTH = 600 Ω.  Find the max load power. 
4.24 Fig. 4-21e gives the black box having VTH =  10 V and RTH = 50 Ω.  Show through calculations at 

the following values of RL that max power occurs at RL = 50 Ω.  Graph max load power across the 
range (except e). 

 
 a. RL = 0 
 b. RL = 25 Ω 

c. RL = 50 Ω 
 d. RL = 100 Ω 
 e. RL  = open circuit 
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Power supply

B

100   
+

V
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A

+
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1 k  
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(a) (b)

+
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+
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+
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Figure 4-21
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