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7 Inductance and DC Response to Capacitors and Inductors 
 

We are beginning a new phase of the book, the phase using differential equations.  We will discuss 
things in a simple way but we will use derivatives.  It is up to the student to understand the meaning of 
the equations.  We will not use proofs but describe results and the problems that follow.   
 
First, we will talk about ELI the ICE man.  The ELI concerns inductors (L).  The ELI refers to two different 
ideas.  First: 
 

𝐸 = 𝐿
𝑑𝑖

𝑑𝑡
 

 
E is voltage, L is inductance and i is current. 
 
Also, Voltage (E) leads Current (I) in an inductive circuit. 
 
ICE refers to capacitors.  First: 
 

𝐼 = 𝐶
𝑑𝑒

𝑑𝑡
 

 
I is current, C is capacitance and e is voltage. 
 
Also, Current (I) leads Voltage (V) in an capacitive circuit. 
 
Transformers are an important to electrical discussion.  They allow an ac voltage to be stepped up or 
down for use in another circuit that is isolated from the first.  The voltage induces a magnetic 
waveform in a core which then induces a voltage waveform in a secondary winding.  This second ac 
circuit then can be used to deliver power to a resistor or other device.   

 

Fig. 7-1

 
Transformer “transforms” AC voltage and current. 

Fig. 7-1 shows the basic design of a transformer.  In Fig. 7-2, we see an analogy between transformers 
and a gear ratio.  Fig. 7-2a shows a step-down transformer with the primary voltage high and 
secondary voltage low: 

Fig. 7-2a
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In this example, torque can be compared to voltage and speed to current.  The large gear is compared 
to the side of the transformer with many windings which has relatively high voltage and low current 
when compared to the secondary side. 
 

Fig. 7-2b

 
 

In the example of Fig. 7-2b, the opposite occurs with a small gear transmitting power to a second 
larger gear.  The torque is low at left and high at right.  The speed is high at left and low at right. 
 
Transformers are used to deliver power from the power plant to the customer. This is shown in the 
following figure: 
 

 

Fig. 7-3

 
 

 
With inductors, we have a time-varying flux which Faraday’s law defines as a voltage produced in the 
inductor which may also produce a voltage in a second inductor.  When this occurs, we have a 
transformer.  Only time-varying signals generate a variable flux.  This is defined as: 
 

𝑑𝜙

𝑑𝑡
 

 

v2v1 Figure 7-4
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The number of turns of the coil around a iron core is defined as N.  Voltage is defined as follows for an 
inductor in a transformer: 
 

𝑣 = 𝑁
𝑑𝜙

𝑑𝑡
 

 
The primary of a transformer gives: 

𝑣1 = 𝑁1

𝑑𝜙1

𝑑𝑡
 

 
For an ideal transformer, all flux is transferred to the secondary and: 
 

𝑣2 = 𝑁2

𝑑𝜙2

𝑑𝑡
 

If the transformer is ideal, all the flux from the primary is absorbed by the secondary and: 
 

𝑑𝜙1

𝑑𝑡
=

𝑑𝜙2

𝑑𝑡
 

and    
 

𝑣2

𝑣1
=

𝑁2

𝑁1
 

 
𝑁1

𝑁2
 

         is the turns ratio. 
 
In the following circuit, VS = 10 V giving v1 = 10 V.  The turns ratio is 5:1 giving v2 = 2 V.  Then we find the 
current through a 4 kΩ resistor at .5 mA and the current through the primary at .1 mA. 
 
 

v2v1 4 k  10 V

5:1 i= .5 mA

Figure 7-5

 
 
 
 
 
In the following circuit, VS = 10 V giving v1 = 10 V.  The turns ratio is 1:2 giving v2 = 20 V.  Then we find the 
current through the 1 kΩ resistor at 20 mA.  The primary current is then 40 mA. 
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Figure 7-6

v2v1 1 k  10 V

1:2

 
 
We notice that the ratio i1/ i2 is: 

𝑖1

𝑖2
=

𝑁2

𝑁1
 

 
Notice that the current ratio is opposite the turns ratio.  Remember v1·i1 = v2·i2 for an ideal transformer. 
Various types of transformers 
 

Figure 7-7
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Figure 7-8

 
 
 
The single phase transformer pictured above is ideal.  All the flux generated in the primary 
winding travels around the core and then to the secondary winding.  For this transformer, 
primary power equals secondary power.  Mutual flux carries all the flux with no leakage.  While 
it is not possible for all primary power to be transferred to the secondary, large transformers 
are capable of about 95% efficiency.  Voltage and current may be referenced as v1 and i1 or vp 
and ip for the primary windings.  Voltage and current for the secondary are referenced as v2 and 
i2 or vs and is. 
 
 
 
Problems 
 
7-1 For the following, find VS, IS, and IP. 
 

vsvp 1 k  35 V

1:3 is

ip

Figure 7-9

 
 

7-2 The following 5 kVA, 480-120 V single-phase transformer is connected as in Fig. 7-7.  If 
losses are ignored, find transformer currents and VS(Supply Voltage). 
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Figure 7-10

v2v1 Load

i1 i2

120 V

5 kVA, 480-120 V

 
 
Solution 
Secondary current is: 
 

𝑖2 =
𝑃

𝑣
=

5000

120
= 41.67 𝐴 

 
The windings ratio can be obtained by the ratio of the given windings: 
 

𝑁2

𝑁1
=

𝑉2

𝑉1
=

120

480
=

1

4
 

 
Primary current is: 
 

𝑖1 =
1

4
(41.67) = 10.42 𝐴 

 
Primary voltage is:   
 

𝑣1 = 480 𝑉 

7-3 Use the following values of V1 and R, assuming a primary-to-secondary turns ration of 5:1 to 

find I.  The transformer is ideal. 

 

V1 = 25 V 

R = 1.2 K Ω 

V1 R 

I
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7-4 For the following, find VS, IS, and IP. 

vsvp 1 k  35 V

2:3 is

ip

 

 

7-5 Use the following values of V1 and R, assuming a primary-to-secondary turns ration of 4:1 to 

find I.  The transformer is ideal. 

V1 =  45 V 

R =  1.2 K Ω 

V1 R 

I

  

 

7-6 Use the following values of V1 and R, assuming a primary-to-secondary turns ration of 1:12 

to find I.  The transformer is ideal. 

V1 =  25 V 

R =  1.5 K Ω 

V1 R 

I
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DC Transient R and C Circuits 
 
With DC circuits including a switch and either a capacitor and resistor or inductor and resistor, 
we see a predictable response including an exponential rise or decay response.  The response is 
related to the equations at the beginning of the chapter (remember ELI and ICE).  These 
equations set up a first order differential equation for which the only response is an 
exponential response.  We can observe the response by using charge to explain the circuit.  
When the circuit below closes, current flows until the capacitor is fully charged.  That means, 
fully saturated with charge or electrons.  Then the current stops.  It doesn’t stop immediately 
but gradually stops based on an exponential decay.  Likewise, the voltage increases to the value 
of the battery gradually following an exponential rise.  When the circuit settles, the circuit at 
right shows the final value of current and voltage.  We see the current reduced to zero and the 
capacitor acting as an open circuit. 
 

+

V

--

i

R

C
+

0

--

+

V

--

R

C
+

v

--

i=0+

V

--

+

v

--

V

t

v = V(1 -e-t/RC)

i = (V/R)e-t/RC

t

i Figure 7-11

 
 
We graph the responses as found in the graphs above.  The voltage across the capacitor gradually rises 
to the final value of the battery and the current is reduced to zero.   
 
The equation for the KVL involves a derivative function (ICE).   
 

𝑖 = 𝐶
𝑑𝑣

𝑑𝑡
 

or 

𝑣 =
1

𝐶
∫ 𝑖𝑑𝑡 

 
For the equation around the loop, when the switch closes: 
 

−𝑉 + 𝑖𝑅 +
1

𝐶
∫ 𝑖𝑑𝑡 = 0 

 
from which we get the equations above, v = V(1 -e-t/RC) and i = (V/R)e-t/RC: 
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If the circuit is more complicated, it may be simplified using the Thevenin rules to obtain the circuit at 
right below: 

C= 
10 µF

+

v

--

6 k  
+

12 V

--

i

3 k  

+

VTH

--

RTH

+

v

--

i

C= 
10 µF

Figure 7-12  
The time constant RC is referred to as τ or tau.  The equation is written e-t/RC or e-t/τ. 
 
The capacitor also may appear in a discharge circuit.  The circuits below show a switch that may either in 
the left or right position.  In the left position, the capacitor is being charged as in the circuits above.  
With the switch in the right position, the capacitor discharges and the voltage dissipates through the 
resistor.  The resistor heats a little and the current and voltage result at 0. 
 
The voltage equation through the capacitor in the discharge circuit shown in the figure below.  First 
when the switch is closed to the left, the capacitor charges as before.  When the switch is closed to the 
right, the capacitor discharges with the time constant of the second resistor R2.  Equations and graphic 
representation of voltage through the capacitor are shown as well as the equations for voltage across 
the capacitor are shown below: 

+

V

-- C
+

v

--

R2

v

t

v = V(1 -e-t/R1C)

v = (V)e-t/R2C

v 

+

V

--

R1

C
+

v

--

R2

+

V

--

R1

C
+

v

--

R2

Figure 7-13
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DC Transient R and L Circuits 
 
What happens when a switch closes allowing an inductor to charge?  The following shows the 
circuit following switch closure.  Current begins to flow through the resistor until the inductor 
finally acts as a closed circuit or wire.  
 

+

V

--

i

R

+

V

--

R

i=V/R
+

V

--

i

t

i = (V/R)(1 -e-tR/L)

L L

R

Figure 7-14
 

 
The figure above shows a simple circuit with voltage source, resistor and inductor.  This circuit has a 
switch that closes at t = 0.  The results of voltage and current are shown in the graph of i.  The second 
circuit shows the circuit with the switch just closed while the third shows the circuit after much time has 
passed.  The current of the circuit flows through the inductor as the graph shows.   
 
The equation for the KVL involves a derivative function (ELI).   
 

𝑣 = 𝐿
𝑑𝑖

𝑑𝑡
 

 
For the equation around the loop, when the switch closes: 
 

−𝑉 + 𝑖𝑅 + 𝐿
𝑑𝑖

𝑑𝑡
= 0 

 
from which we get the equation above, i = (V/R)(1 -e-tR/L): 
 

The time constant L/R is referred to as τ or tau.  The equation is written e-tR/L or e-t/τ. 
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If the circuit is more complicated, it may be simplified using the Thevenin rules to obtain the circuit at 
right below: 

L = 10 
mH

6 k  
+

12 V

--

i

3 k  
+

VTH

--

RTH i

L = 10 
mH

Figure 7-15  
 
The inductor also may appear in a discharge circuit.  The circuits below show a switch that may either in 
the left or right position.  In the left position, the inductor is being charged as in the circuits above.  With 
the switch in the right position, the inductor discharges and the current dissipates through the resistor.  
The resistor heats a little and the current and voltage result at 0. 
 
The current equation through the inductor in the charge and discharge circuits are shown in the figure 
below.  First the switch is moved to the left and after a period of time, switched to the right. Current 
charges in the inductor as the charging graph shows.  Then the switch flips to the right and the inductor 
discharges through the resistor at the right. The equation for the discharge of current is shown in the 
graph and equation below the discharge circuit. 
 

+

V

-- L

R2

+

V

--

R1

R2

+

V

--

R1

L L

i = (V/R)e-tR2/L

t

i= V/Ri

t

i = (V/R)(1 -e-tR1/L)

Current through the inductor during 
the charging cycle resembles this graph

Current through the inductor during the 
discharging cycle resembles this graph

Figure 7-16

R2

R1
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Problems 
 
7-7 For the circuit of Fig. 7-17a, assume the capacitor is uncharged before the switch closes.  Write 

the equation of the voltage across this capacitor and sketch the waveform after t = 0.  What is 
the time constant tau?  Also, write the equation for current, i, through the circuit. 

+

10 V

--

500 pF3 k  
+

20 V

--

3 k  

2 k  

40 µF

Figure 7-17

(a) (b)
 

 
7-8 For the circuit of Fig. 7-17b, assume the capacitor is uncharged before the switch closes.  Write 

the equation of the voltage across this capacitor and sketch the waveform after t = 0.  What is 
the time constant tau?  Also, write the equation for current, i, through the capacitor.  Next 
write the equation for the voltage across the capacitor and sketch the waveform after the 
switch re-opens. 

 
7-9  For the circuit of Fig. 7-18a, assume the capacitor is uncharged before the switch closes.  Write 

the equation of the voltage across this capacitor and sketch the waveform after t = 0.  What is 
the time constant tau?  Also, write the equation for current, i, through the capacitor. 

 
  Figure 7-18 

+

30 V

--

15 k  

1 pF

(a)

5 k  

2 k  

1 k  

(b)

2 k  

2 k  

0.05 µF
+

12 V

--

 
 
7-10 For the circuit of Fig. 7-18b, assume the capacitor is uncharged before the switch closes.  Write 

the equation of the voltage across this capacitor and sketch the waveform after t = 0.  What is 
the time constant tau?  Also, write the equation for current, i, through the capacitor. 

 
7-11 For the circuit of Fig. 7-18b, write the equation of the voltage across this capacitor and sketch 

the waveform after the switch opens after fully charging.  What is the time constant tau?  Also, 
write the equation for current, i, through the capacitor. 
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   Figure 7-19 

+

8

--
100 mH

L = 10 mH6 k  
+

12 V

--

i

3 k  

2 k  

1 k  

(b)

2 k  

2 k  

+

16 V

--

3 k  
i

L = 50 mH

(a)

(c)  
 
 
7-12 For the circuit of Fig. 7-19a, write the equation of the current through the inductor and sketch 

the waveform after t = 0.  What is the time constant tau?   
 
7-13 For the circuit of Fig. 7-19b, write the equation of the current through the inductor and sketch 

the waveform after t = 0.  What is the time constant tau?  Then write the equation of the 
current through the inductor and sketch the waveform after the switch re-opens. 

 
7-14 For the circuit of Fig. 7-19b, write the equation of the current through the inductor and sketch 

the waveform after the switch has been closed for a long time and then opens.  What is the time 
constant tau?   

 
7-15 For the circuit of Fig. 7-19c, write the equation of the current through the inductor and sketch 

the waveform after t = 0.  What is the time constant tau. 
 
7-16 For the circuit of Fig. 7-19c, write the equation of the current through the inductor and sketch 

the waveform after the switch has been closed for a long time and then opens.  What is the time 
constant tau?   
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