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8 Complex Numbers and Sinusoidal Steady State 
 
If I needed to describe the distance between Toledo, Ohio and Cincinnati, I would just answer 200 
miles.  The direction is straight south and I have driven it a number of times.  If you, however, would 
ask the distance to Indianapolis, Indiana, I would have to ask you whether you were driving down I-75 
and then turning right at Dayton or if you were driving to Fort Wayne ad then down I-69.  You would 
need to provide both direction and mileage for the description to Indianapolis.  I need more 
information than just a scalar number of miles.  I need direction or some other description indicating 
direction as well as number of miles. 
 
When we deal with scalar numbers, life is simple.  However, when we begin to delve into numbers 
with a direction component, we begin to look at mathematical concepts with more depth.  With a 
circuit containing a battery, we just add the numbers around a loop and solve an equation.  With a 
sinusoidal waveform, the quantities may be simple or complex, depending on the devices in the 
circuit.  We need to learn to deal with complex numbers when dealing with AC circuits if the circuit 
contains multiple waveforms that may be out of phase with each other or if inductors or capacitors 
are involved.  Whew, I said it!  No longer in Kansas, Dorothy! 
 
A complex number is a single mathematical quantity that conveys dimensions of amplitude and phase 
shift. 
 
Complex numbers are easy to grasp graphically. A line with length and angle can represent a complex 
number.  Several examples are shown in the figure below:  

 

Magnitude =10
Direction = 0o

Magnitude =10
Direction = 180o

Magnitude = 6
Direction = 50o

Magnitude =5
Direction = -40o

 
A vector has both magnitude and direction. 

 
 
The reference for these vectors is a Cartesian plane similar to the following ‘vector compass’.  
Magnitude is measured in vector length and angle is measured counterclockwise from the positive 
direction.  
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The vector compass 

 
AC Phase 

 
Below is a picture of sine waves that are out of phase with each other.  The A wave leads the B wave 
by a phase angle that is measureable.  We can see this on an oscilloscope.  The two waves have the 
same amplitude and frequency but are out of phase with each other. 

 

 
Out of phase waveforms  

 
If the phase shift were 90o, we could draw the phasor diagram of the A and B phasors as follows: 
 

A

B

 
 
If the phase shift were 135o, we would see a phasor similar to the following:  

A

B
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Various voltage phase shifts can be observed in the following figures: 
 

 
Wave A leads wave B by 45o  

 
Various phase shifts are shown below: 
 

 

A

B

A

B

A B

A
B

A 90o leading B

B 90o leading A

A 180o leading B or B 180o leading A (you pick)

A and B in phase

 
Examples of phase shifts.  

 
Remember that the waveforms are at the same frequency.  This is implied in all the phasor diagrams.  
The reference is where you want to place it.  There is no absolute reference.   
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We veer a little off course with the following examples but they may help you to see that phasors are 
nothing more than a dog and a rabbit running around a circular track with the rabbit always in the 
lead by a certain amount. 
 

Various Dogs Rabbit

 
We could say the dogs and rabbit are out of phase.  This would be true since the dogs always ‘lag’ the 
rabbit by a certain amount (in degrees). 
 

The figure of phasors turning at equal frequencies 
moving counterclockwise are shown at left.  The 
picture of the dogs chasing the rabbit are the 
same.  They never catch the rabbit and are running 
in a circle in an order that for now at least is fixed.  
These phasors (or vectors) have a magnitude and 
angle.

rabbit

Dog 1

Dog 2

 

You could also see phasors as a cat with the hands moving backward 
(counter-clockwise).  The eyes move, the tail moves and the hands 
move backwards (only for those who see the minute and hour hands as 
phasors).

While dogs on a track and cats wagging their tail may seem strange, the 
idea is to get one to think of phasors as both a stationary vector and a 
moving arrow with length and angular velocity (just like a dog or a cat).
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Rectangular Form of a Complex Number 
 
Vectors have amplitude and magnitude.  The following waveforms demonstrate the variable nature of 
sine waves and their vector representation.  Notice that each of the waveforms are assumed to be at 
zero reference point.  Amplitude correlates to relative length of the vector. 

 

 
Length of Vector represents Signal Amplitude  

 
Simple Vector Addition 

 
Remember that vectors are mathematical objects with magnitude and direction.  How would you 
evaluate the sum of the two voltages below in the figure? 
 

6V/0o

10V/60o

+

6V

--

+

10V

--

(a) (b)

(c)

(d)

6.0 10.0

6.0

10.0
14.0

38o

 
  

 
While in-phase sinusoidal waves add the same as dc voltage supplies, if the phase is shifted, the 
numbers add as complex numbers.  Calculate voltage across the sum of two vectors, not a linear sum. 
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This leads us to the subject of Complex Vector Addition 

 
From the example above, to add the two vectors, we simply add the ‘x’ components of each and the ‘y’ 
components of each and find the resultant vector.  For the 6/0o vector, there is only an ‘x’ component of 
6.  For the 10/60o vector, the ‘x’ component is 5.0 and the ‘y’ component is 8.66.  Adding, we get the 
total ‘x’ as 6 + 5 = 11 and for the ‘y’, we get 8.66.  Now, find the resultant vector.  It is 14/38.21o. 
  
We use Polar Notation for complex numbers to find the sum of these vectors.   

 
In order to work with complex numbers without drawing vectors, we first need some kind of standard 
mathematical notation. There are two basic forms of complex number  
 
Polar Form of a Complex Number 
 
We represent sine waves in polar form in order to add them.  
 
We will find that in ac circuits, most of the dc rules still apply, just with complex numbers. 
 
The equation of a sinusoidal wave is: 
 
   y = M sin (θ + φ)  
 
For current, the equation is: 
 

i = IP sin (θ + φ)  
 
The value at the peak is IP and the value of phase shift is φ (Greek phi). 
 
For voltage, the equation is: 
 

v = VP sin (θ + φ)  
 
The value at the peak is VP and the value of phase shift is φ (Greek phi).  The value θ represents the time-
varying signal and can be seen as 2𝜋𝑓𝑡 where f is the frequency and t is time.   
 
The waveform for the current signal is shown in the figure at left while the phasor form is shown at 
right.  The phasor current is the rms value.  The relationship between IP and IRMS is IRMS = .707 IP. 

φ

IP

2πf = θ

t

φ
I

(a) (b)

=.707IP
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With rectangular form, we can more easily add or subtract vectors.  We simply add the ‘x’ 
components and the ‘y’ components and re-combine the result.  In general, we try to add and 
subtract using rectangular form while we multiply and divide using polar form.  Some examples of 
rectangular form of vectors follow: 

 

Length = 5

Length = 4

Length = 3Angle = 
36.87 Rectangular 

Format:
4 + j3

Rectangular 
Format:
 j4

Length = 4

Rectangular 
Format:
 4 + j0

Length = 4

Rectangular 
Format:
 -4 + j0

Length = 4

Rectangular 
Format:
 -4 – j3

Length = 4

Length = 3

Length = 5

Rectangular 
Format:
 -4 – j3
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The ‘x’ component is the real component and the ‘y’ component is the imaginary component.  The 
complex plane is shown below with both real and imaginary axes. 

 

 
Complex Plane 

 
 
Converting from Polar Form to Rectangular Form 
 
Using a calculator with either R->P or P->R will give the conversion from one form to the other.  It is 
advised for the student to sit down with a calculator and find these functions or a similar method to 
convert since this will be required for some time in this chapter and the next.  Practice… 

 

Length = 5

Length = 4

Length = 3Angle = 
36.87 Rectangular 

Format:
4 + j3

 
 
The above vector may be entered either in rectangular or polar format.  It is shown in rectangular 
format: 
 

4 + j3 
 
To find the polar equivalent, use a calculator to convert: 

 
Enter: 4, R->P, 3, = 

Result: 5 
 

Key in x<->y to get: 
36.869 

 
This is written: 4 + j3 = 5/36.869  (rectangular to polar) 
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Complex Number Arithmetic 

 
We will be adding complex numbers and it is advised to find a calculator with this capability. 
 
For addition and subtraction of complex numbers, use rectangular form. 

 
2 + j5  

          +  4 – j3 
6 + j2 

 
 
For subtraction, use the same method: 
 

2 + j5  
          -  (4 – j3) 

                      -2 + j8 
 

For multiplication and division, polar is preferred.  For multiplication, multiply magnitudes and add 
phase angles.  For division, divide the magnitudes and subtract the denominator’s phase angle from 
the numerator’s phase angle. 
 

(35/65o) (10/-10o) = 350/55o 
 

Division of polar-form complex numbers: 
 

35/65𝑜

10/−10𝑜
= 3.5/75𝑜 

 
AC “polarity” 

 
If we were to measure the following circuits, we would see the results from the DMM’s display.  In 
other words, if we reference the red lead as plus and measure the plus side of the voltage using this 
lead, we would read +6.0 V.  If the leads were reversed, however, the display would show -6.0 V.   
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Does the same happen when we test an ac circuit?  The answer is that it may if the sources are in 
phase.   However, per our example above, a phase shift will make our calculation use complex 
numbers and the answer will not be a simple addition but rather a vector addition.  If we switch the 
leads from plus to minus, our answer will be 180o phase shifted which would be what we would 
expect.  This change, however, cannot be read with a volt meter or simple DMM but only on an 
oscilloscope. 
 
What does the following graph represent?  Of course, we see the picture at right and see that it is a 
graph of torque by cylinder of a V8 engine and the sum of the eight cylinders firing torque curve. 
 

 
 

From this, we can see that the sum of various signals (in this case, torque from 8 different cylinders) can 

add to give an output torque curve for the entire engine.  These signals are added together to give the 

resultant dashed ‘total’ line. 

 
 
Some Examples with AC Circuits 

 
The following examples show multiple ac sources added together to form one source.  Using 
rectangular addition, we can find the resultant waveform and magnitude of the output read on the 
DMM. 
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15 0

22 -64o

B

C

12 35o

D
 

 
To add the three sources, we need to add the three vectors together.  KVL holds: 
 

Vtotal = V1 + V2 + V3 
 

12 35o22 -64o 15 0++V =  
 
These vectors add graphically as follows: 
 

 
 

The sum of these vectors is a vector shown below: 
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We can build the sum by adding the rectangular components of the three vectors: 
 
    15 /0o  = 15       +   j0 V 

 
12 /35o = 9.829 +  j6.882 V 
 
22 /-64o = 9.644 – j19.773 V 
 
Add the three together: 
  
 34.474   - j12.890 -> 36.805 /-20.501o 

 

 

15 0

22 -64o

A

B

C

-12 35o

D

What if we flip the leads on this supply.  We 
change the sign from + to - or change the 

degrees from 35o to 215o.  Either is 
acceptable.

-12 35o
12 225o=
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The three supplies now resemble: 

 
 
And the resultant vector is: 

 

 
Resultant Vector 

 
Add the three together: 
 

15 /0o     = 15       +   j0 V 
 
112 /35o = -9.829 -  j6.882 V 
 
22 /-64o  = 9.644  -   j19.773 V 

Summed to equal:   
14.8143 – j26.6564 V or 30.4964 V ∠ -60.9368o 
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Problems regarding Rectangular to Polar Conversion and Vectors 
 
8-1 Convert each of the following rectangular numbers to polar form: 

a. 2 + j5 
b. -3 + j6 
c. -4 – j4 
d. 5 – j2 

 
8-2 Convert each of the following rectangular numbers to polar form: 

a. 150 + j300 
b. -200 + j350 
c. -375 – j250 
d. 465 – j750 

 
8-3 Convert the following polar numbers to rectangular form 

a. 4 ∟60 o 
b. 7 ∟130 o 
c. 5 ∟250 o 
d. 8 ∟330 o 

 
8-4 Draw the vector in polar and rectangular form for the numbers in 8-1, 8-2 and 8-3. 
 
8-5 Add the second number to the first, then subtract, then multiply, then divide: 

a. (2 + j5) + (-3 + J6) 
b. (-4 – j4) + (5 – j2) 
c. (-3 + j6) + (-4 – j4) 
d. (5 – j2) + (3 + j8) 

 
8-6 Add the second number to the first, then subtract, then multiply, then divide: 

a. (3 – j2) + (5 + j7) 
b. (4 – j5) + (-6 + j8) 
c. (-5 + j3) + (3 – j6) 
d. (-7 + j2) + (-3 – j9) 

 
8-7 Add, subtract, multiply and divide the second number to the first below: 

a. 5 ∟30 o, 3 ∟45 o 
b. 7 ∟120 o, 4 ∟90 o 
c. 3 ∟65 o, 8 ∟-36 o 
d. 5 ∟-35 o, 6 ∟ − 30 o 

 

8-8 For the following, evaluate the expression and find the result in polar format: 

7+j12

42-j12  

7

2-j3

35o
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Problems using Phasors in Electrical Circuits 
 
8-9 A sine wave has the following equation: i = 20 sin (θ + 350).  Find the phasor current. 
 
8-10 Write the sin equation and find the phasor for Fig. 8-1a and b. 
 
8-11 Write the sin equation and draw the sin graph for Fig. 8-1c. 
 

55o

8 V

40 ms

t

20 mA

15 ms

t

-80o

40o
.2 A

-25o
5 V

(a) (b)

(c)

Fig. 8-1

 
8-12 Use the following values of a and b for Va to find the sin equation for Va  and then find 

the power consumed by R1:  
 

a = 18, b = 48 ms, R1 = 120 Ω 
 

a

b

R1 

Va

Va
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8-13 Use the three voltage sources below to find a single voltage source from A-D.  Then invert the 25 

V source and find the new total voltage. 

15 0

12 -34o

A

B

C

25 35o

D
 

8.14 Who are these guys? 
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“Permittivity is concerned with electric fields and is the "ability of a material to polarize in response to 

the (electric) field", while permeability is concerned with magnetic fields and is "the degree of 

magnetization of a material in response to a magnetic field" 

Permittivity of free space: ϵ0= 8.8541878176E-12 F/m 

Permeability of free space: µ0= 4(pi)E-7 H/m 

Interestingly: c=1/ sqrt(μ0ϵ0), where c is the speed of light 

 

Let’s start by writing Maxwell’s equations for the vacuum and without charges and currents: 

∇⋅E=0∇⋅E=0 
 
∇×E=−∂B∂t∇×E=−∂B∂t 
 
∇⋅B=0∇⋅B=0 
 
∇×B=μ0ϵ0∂E∂t∇×B=μ0ϵ0∂E∂t 

 

 

Taking the curl of the second equation we have 

∇×(∇×E)=−∇×(∂B∂t)∇×(∇×E)=−∇×(∂B∂t) 
 

Using a known identity (curl = grad div −∇2), and interchanging second order derivatives, we have 

 

∇(∇⋅E)−∇2E=−∂∂t(∇×B).∇(∇⋅E)−∇2E=−∂∂t(∇×B) 
 

div E is zero (first equation), and curl B can be replaced from fourth equation: 

∇2E=1/c2∂E∂t2, ∇2E=1/c2∂E∂t2 
 

where 

1/c2=μ0ϵ0 
 

This is the wave equation for (transversal) waves propagating at velocity c. 

 

The laws of Electromagnetism predict that should be (electromagnetic) waves moving at speed c. Some of 

them (those with wavelengths between roughly 0.4 and 0.8μ m) are called light, and therefore c is called 

the speed of light. 

 

Introduction to Maxwell's Equations 

Maxwell's Equations are a set of 4 complicated equations that describe the world of electromagnetics. 

These equations describe how electric and magnetic fields propagate, interact, and how they are 

influenced by objects.  



20 
 

James Clerk Maxwell [1831-1879] was an Einstein/Newton-level genius who took a set of known 

experimental laws (Faraday's Law, Ampere's Law) and unified them into a symmetric coherent set of 

Equations known as Maxwell's Equations. Maxwell was one of the first to determine the speed of 

propagation of electromagnetic (EM) waves was the same as the speed of light - and hence to conclude 

that EM waves and visible light were really the same thing.  

Maxwell's Equations are critical in understanding Antennas and Electromagnetics. They are formidable to 

look at - so complicated that most electrical engineers and physicists don't even really know what they 

mean. Shrouded in complex math (which is likely so "intellectual" people can feel superior in discussing 

them), true understanding of these equations is hard to come by.  

This leads to the reason for this website - an intuitive tutorial of Maxwell's Equations. I will avoid if at all 

possible the mathematical difficulties that arise, and instead describe what the equations mean. And don't 

be afraid - the math is so complicated that those who do understand complex vector calculus still cannot 

apply Maxwell's Equations in anything but the simplest scenarios. For this reason, intuitive knowledge of 

Maxwell's Equations is far superior than mathematical manipulation-based knowledge. To understand the 

world, you must understand what equations mean, and not just know mathematical constructs. I believe 

the accepted methods of teaching electromagnetics and Maxwell's Equations do not produce 

understanding. And with that, let's say something about these equations.  

Maxwell's Equations are laws - just like the law of gravity. These equations are rules the universe uses to 

govern the behavior of electric and magnetic fields. A flow of electric current will produce a magnetic 

field. If the current flow varies with time (as in any wave or periodic signal), the magnetic field will also 

give rise to an electric field. Maxwell's Equations shows that separated charge (positive and negative) 

gives rise to an electric field - and if this is varying in time as well will give rise to a propagating electric 

field, further giving rise to a propgating magnetic field.  

To understand Maxwell's Equations at a more intuitive level than most Ph.Ds in Engineering or Physics, 

click through the links and definitions above. You'll find that the complicated math masks an inner 

elegance to these equations - and you'll learn how the universe operates the Electromagnetic Machine.  

 

Here is a tutorial video explaining Maxwell's Equations intuitively:” 

 

Top: Maxwell's Equations 

 

https://www.feynmanlectures.caltech.edu/II_18.html 
 

 
This work is licensed under a Creative Commons Attribution 4.0 International License. 

http://www.antenna-theory.com/
http://www.maxwells-equations.com/
https://www.maxwells-equations.com/index.php
https://creativecommons.org/licenses/by/4.0/

