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Inverse Laplace Transform by Partial Fraction Expansion 

from Swarthmore College 

Distinct Real Roots 

Consider first an example with distinct real roots. 

Example: Distinct Real Roots 

See this problem solved with MATLAB 

Find the inverse Laplace Transform of: 

 

Solution: 

We can find the two unknown coefficients using the "cover-up" method. 

 

So 

 

and 

 

(where U(t) is the unit step function) or expressed another way 

 

https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/PFE1Matlab/html/PFE1.html#Example1
https://lpsa.swarthmore.edu/BackGround/PartialFraction/PartialFraction.html#cover-up


 

2 
 

The last two expressions are somewhat cumbersome.  Unless there is confusion about the result, 

we will assume that all of our results are implicitly 0 for t<0, and we will write the result as 

 

Repeated Real Roots 

Consider next an example with repeated real roots (in this case at the origin, s=0). 

Example: Repeated Real Roots 

See this problem solved with MATLAB 

Find the inverse Laplace Transform of the function F(s). 

 

Solution: 

We can find two of the unknown coefficients using the "cover-up" method. 

 

We find the other term using cross-multiplication: 

 

Equating like powers of "s" gives us: 

power of "s" Equation 

s2 
 

s1 
 

https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/PFE1Matlab/html/PFE1.html#Example2
https://lpsa.swarthmore.edu/BackGround/PartialFraction/PartialFraction.html#cover-up
https://lpsa.swarthmore.edu/BackGround/PartialFraction/PartialFraction.html#cross-multiplication
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s0 
 

We could have used these relationships to determine A1, A2, and A3.  But A1 and A3 were easily 

found using the "cover-up" method.  The top relationship tells us that A2=-0.25, so 

 

and 

 

(where, again, it is implicit that f(t)=0 when t<0). 

  

Many texts use a method based upon differentiation of the fraction when there are repeated 

roots.  The technique involves differentiation of ratios of polynomials which is prone to 

errors.  Details are here if you are interested. 

Complex Roots 

Another case that often comes up is that of complex conjugate roots.  Consider the fraction: 

 

The second term in the denominator cannot be factored into real terms.  This leaves us with two 

possibilities - either accept the complex roots, or find a way to include the second order term. 

Example: Complex Conjugate Roots (Method 1) 

Using the complex (first order) roots 

Simplify the function F(s) so that it can be looked up in the Laplace Transform table. 

 

Solution: 

If we use complex roots, we can expand the fraction as we did before.  This is not typically the 

https://lpsa.swarthmore.edu/BackGround/PartialFraction/PartialFraction.html#cover-up
https://lpsa.swarthmore.edu/BackGround/PartialFraction/RootsRepeat.html
https://lpsa.swarthmore.edu/LaplaceZTable/LaplaceZFuncTable.html
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way you want to proceed if you are working by hand, but may be easier for computer solutions 

(where complex numbers are handled as easily as real numbers).  To perform the expansion, 

continue as before. 

 

where 

 

Note that A2 and A3 must be complex conjugates of each other since they are equivalent except 

for the sign on the imaginary part.  Performing the required calculations: 

 

so 

 

The inverse Laplace Transform is given below (Method 1). 

Example: Complex Conjugate Roots (Method 2) 

https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/InvLaplaceXformPFE.html#Comments_on_the_two_methods
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Method 2 - Using the second order polynomial 

  

Simplify the function F(s) so that it can be looked up in the Laplace Transform table. 

 

Solution: 

Another way to expand the fraction without resorting to complex numbers is to perform the 

expansion as follows. 

 

Note that the numerator of the second term is no longer a constant, but is instead a first order 

polynomial.  From above (or using the cover-up method) we know that A=-0.2.  We can find the 

quantities B and C from cross-multiplication. 

 

If we equate like powers of  "s" we get 

order of  

coefficient 

left side 

coefficient 

right side 

coefficient 

2nd (s2) 0 A+B 

1st (s1) 1 4A+5B+C 

0th (s0) 3 5A+5C 

Since we already know that A=-0.2, the first expression (0=A+B) tells us that B=0.2, and the last 

expression (3=5A+5C) tells us that C=0.8. We can use the middle expression (1=4A+5B+C) to 

check our calculations.  Finally, we get 

 

The inverse Laplace Transform is given below (Method 2). 

https://lpsa.swarthmore.edu/LaplaceZTable/LaplaceZFuncTable.html
https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/InvLaplaceXformPFE.html#Method_2
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Some Comments on the two methods for handling complex roots 

The two previous examples have demonstrated two techniques for performing a partial fraction 

expansion of a term with complex roots.  The first technique was a simple extension of the rule 

for dealing with distinct real roots.  It is conceptually simple, but can be difficult when working 

by hand because of the need for using complex numbers; it is easily done by computer.  The 

second technique is easy to do by hand, but is conceptually a bit more difficult.  It is easy to 

show that the two resulting partial fraction representations are equivalent to each other.  Let's 

first examine the result from Method 1 (using two techniques).  

We start with Method 1 with no particular simplifications. 

Method 1 - brute force technique 

 

(The last line used Euler's identity for cosine and sine) 

We now repeat this calculation, but in the process we develop a general technique (that proves to 

be useful when using MATLAB to help with the partial fraction expansion.  We know that F(s) 

can be represented as a partial fraction expansion as shown below: 

Method 1 - a more general technique 

 

We know that A2 and A3 are complex conjugates of each other: 

 

https://lpsa.swarthmore.edu/BackGround/UsefulSeries/index.html#Identities
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Let  

     (Note) 

We can now find the inverse transform of the complex conjugate terms by treating them as 

simple first order terms (with complex roots). 

 

In this expression M=2K.  The frequency (ω) and decay coefficient (σ) are determined from the 

root of the denominator of A2 (in this case the root of the term is at s=-2+j; this is where the term 

is equal to zero).  The frequency is the imaginary part of the root (in this case, ω=1), and the 

decay coefficient is the real part of the root (in this case, σ=-2). 

Using the cover-up method (or, more likely, a computer program) we get 

 

and 
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This yields 

 

It is easy to show that the final result is equivalent to that previously found, i.e., 

 

While this method is somewhat difficult to do by hand, it is very convenient to do by 

computer.  This is the approach used on the page that shows MATLAB techniques. 

 

Finally we present Method 2, a technique that is easier to work with when solving problems for 

hand (for homework or on exams) but is less useful when using MATLAB. 

Method 2 - Completing the square 

Review of procedure for completing the square. 

 

(The last line used the entry "generic decaying oscillatory" from Laplace Transform Table) 

Thus it has been shown that the two methods yield the same result.  Use Method 1 with 

MATLAB and use Method 2 when solving problems with pencil and paper. 

Example - Combining multiple expansion methods 

Find the inverse Laplace Transform of 

 

Solution: 

The fraction shown has a second order term in the denominator that cannot be reduced to first 

order real terms.  As discussed in the page describing partial fraction expansion, we'll use two 

https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/PFE1Matlab/html/PFE1.html
https://lpsa.swarthmore.edu/BackGround/Completing%20the%20Square/CompSquare.html
https://lpsa.swarthmore.edu/LaplaceZTable/LaplaceZFuncTable.html#genDecOsc
https://lpsa.swarthmore.edu/LaplaceZTable/LaplaceZFuncTable.html
https://lpsa.swarthmore.edu/BackGround/PartialFraction/PartialFraction.html#Complex_roots.
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techniques.  The first technique involves expanding the fraction while retaining the second order 

term with complex roots in the denominator.  The second technique entails "Completing the 

Square." 

 

Since we have a repeated root, let's cross-multiply to get 

 

Then equating like powers of s 

Power of s Equation 

s3 0=A1+B 

s2 5=2A1+A2+C 

s1 8=5A1+2A2 

s0 -5=5A2 

Starting at the last equation 

  

So 

  

The last term is not quite in the form that we want it, but by completing the square we get 

  

https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/InvLaplaceXformPFE.html#(Completing_the_square)
https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/InvLaplaceXformPFE.html#(Completing_the_square)
https://lpsa.swarthmore.edu/BackGround/Completing%20the%20Square/CompSquare.html
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Now all of the terms are in forms that are in the Laplace Transform Table (the last term is the 

entry "generic decaying oscillatory"). 

 

Example - Repeat Previous Example, Using Brute Force 

See this problem solved with MATLAB 

We repeat the previous example, but use a brute force technique.   You will see that this is harder 

to do when solving a problem manually, but is the technique used by MATLAB.  It is important 

to be able to interpret the MATLAB solution. 

Find the inverse Laplace Transform of 

  

Solution: 

We can express this as four terms, including two complex terms (with A3=A4*) 

  

Cross-multiplying we get (using the fact that (s+1-2j)(s+1+2j)=(s2+2s+5)) 

  

 

Then equating like powers of s 

Power of s Equation 

s3 0=A1+A3+A4 

s2 5=2A1+A2+(1+2j)A3+(1-2j)A4 

s1 8=5A1+2A2 

s0 -5=5A2 

We could solve by hand, or use MATLAB: 

https://lpsa.swarthmore.edu/LaplaceZTable/LaplaceZFuncTable.html
https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/PFE1Matlab/html/PFE1.html#Example3
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>> A=[1 0 1 1; 2 1 1+2j 1-2j; 5 2 0 0; 0 5 0 0]; 

>> b=[0 5 8 -5]'; 

>> inv(A)*b 

 

ans = 

   2.0000           

  -1.0000           

  -1.0000 - 1.0000i 

  -1.0000 + 1.0000i 

So,  

  

and 

 

We will use the notation derived above (Method 1 - a more general technique).  The root of the 

denominator of the A3 term in the partial fraction expansion is at s=-1+2j (i.e., the denominator 

goes to 0 when s=-1+2j), the magnitude of A3 is √2, and the angle of A3  is 225°.  So, M=2√2, 

φ=225°, ω=2, and σ=-1.  Solving for f(t) we get 

  

This expression is equivalent to the one obtained in the previous example. 

Order of numerator polynomial equals order of denominator 

When the Laplace Domain Function is not strictly proper (i.e., the order of the numerator is 

different than that of the denominator) we can not immediatley apply the techniques described 

above. 

Example: Order of Numerator Equals Order of Denominator 

See this problem solved with MATLAB 

Find the inverse Laplace Transform of the function F(s). 

https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/InvLaplaceXformPFE.html#Method_1general
https://lpsa.swarthmore.edu/LaplaceXform/InvLaplace/PFE1Matlab/html/PFE1.html#Example4
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Solution: 

For the fraction shown below, the order of the numerator polynomial is not less than that of the 

denominator polynomial, therefore we  first perform long division  

 

Now we can express the fraction as a constant plus a strictly proper ratio of polynomials. 

 

Using the cover up method to get A1 and A2 we get 

 

so 

 

Exponentials in the numerator 

The last case we will consider is that of exponentials in the numerator of the function. 

Example: Exponentials in the numerator 

Find the inverse Laplace Transform of the function F(s). 

  

Solution: 

The exponential terms indicate a time delay (see the time delay property).  The first thing we 

need to do is collect terms that have the same time delay. 

https://lpsa.swarthmore.edu/LaplaceXform/FwdLaplace/LaplaceProps.html#Shift


 

13 
 

  

We now perform a partial fraction expansion for each time delay term (in this case we only need 

to perform the expansion for the term with the 1.5 second delay), but in general you must do a 

complete expansion for each term. 

 

Now we can do the inverse Laplace Transform of each term (with the appropriate time delays) 

             (Note) 

 


