

 Ch. 11 Use of State Diagrams 1

Chapter 11 USE OF STATE DIAGRAMS

State Diagrams

The question is “What did Delaware. She wore a brand New Jersey, What did Missi sip? She

sipped a Minne sota. Where has Oregon, boy? If you wan Al-ask-a. She went to pay her Texas.”

Wait a minute. We are confusing this poor PLC student. Wrong ‘state’.

This chapter introduces the subject of state diagrams and how they play a part in PLC

programming. Many of the more complicated problems in control involve state diagrams. This

chapter will discuss some examples of state diagrams and their use in control. In Chapters 12

and 13, additional examples of state diagrams will be discussed as well as the programming

choices accompanying those problems.

The process below is used to fill the wagon at lower right. An operator starts the silo emptying

by pushing the start button. The conveyor starts and the slider gate opens. If the operator stops

the system by pushing the stop button, the slider closes followed by a time delay of 30 seconds

or enough time for the belt to empty of material. Then the conveyor stops running. If the E-stop

or emergency stop button is pushed, the slider closes and the conveyor stops running

immediately.

Several conditions that may cause a problem with the filling station including the prox switch

which monitors the conveyor belt. If the prox switch does not change state while the conveyor is

running, this signifies a broken belt or tripped motor starter for M1, the conveyor motor. Failure

will cause the conveyor belt to turn off and the system to stop.

M2

Slider
open

Slider
closed

M1 Prox
Switch

Silo

Conveyor Belt

Operator
Panel

Start Stop
E-

Stop

Fig. 11-1a

Filling Station Process

 Ch. 11 Use of State Diagrams 2

Failure of the slider to open or close after directing the slider in the appropriate direction is also

to be detected. If this occurs, the operator is to be notified via an alarm and the conveyor belt is

to continue running if failed open but stop if failed closed.

The system needs an initial state usually referenced as “home”. The home position of this

system is conveyor belt off and slider closed.

Using a State Diagram (or State Graph), the filling station may be defined as below:

3

4

56

71

2

Home

Position

Start

Belt

Open

Slider

Filling

Close

SliderBelt

Empty/

Stop

Error

 Fig. 11-1b Filling Station State Diagram

The home position requires certain conditions be met before advancing to a next step. This step

implies a switch or switches be added to place the machine in this state. Usually, these

additional switches are added to a screen on an HMI (human-machine-interface).

A number of conditions exist that cause errors. These include slider open and slider closed at the

same time. This condition cannot occur and one of the two sensors is reporting a bad signal. An

error state also occurs if the conveyor is running and the prox signal doesn’t change state over a

period of time. An error would also occur if the slider was directed to open and the open sensor

does not change to on in a reasonable time. A similar error would occur if the slider was directed

to close and the closed sensor was not energized.

In some systems, the error state is divided into multiple error states if the action resulting is

different and the state following the error is different. In this system, an error shuts down the

conveyor and closes the slider. The system is then expected to be homed and started normally.

An I/O table must be generated to complete the definition of the system before programming

commences. The I/O Assignment Table would be similar to the following:

 Ch. 11 Use of State Diagrams 3

Input Assignments:

Sensor Function/State Signal I/O

Start Button Starting

Stop Button Stopping

Prox Switch On-off

Slider open ls Slider is open

Slider closed ls Slider is closed

E-stop Button Emergency stopping

Output Assignments:

Actuator Function/State Signal I/O

M1 run Conveyor motor

M2 open Open slider

M2 close Close slider

The conveyor and filling station is not a good example of a program needing a state diagram. It

is not necessary many times to create a state diagram and then implement a control program. In

control programs such as the one to control this process, a state diagram may be used to help

develop a program but may be not be of enough use to help. Not all processes require a state

diagram.

The Pneumatic Cylinder and State Diagrams:

State diagrams are useful in applications using movement especially with pneumatic cylinders

and processes requiring movement. A pneumatic cylinder is shown below.

Fig. 11-2

Pneumatic

Cylinder

 Ch. 11 Use of State Diagrams 4

How an air cylinder works is shown in the diagrams below. An air cylinder moves one of two

ways, by single acting or double acting cylinder and air. Looking inside the single acting

cylinder we find a spring pushing the cylinder to the left and air pushing the cylinder to the right.

Single Acting Air Cylinder

Air enters port and Spring begins to compress

Spring compresses and Cylinder moves

Cylinder in Extended Position

Fig. 11-3

Single Acting

A double acting cylinder is pictured on the next page. The left to right movement and right to

left movement is shown with air movement. Air is controlled through valves. There is no

spring.

 Ch. 11 Use of State Diagrams 5

Double Acting Cylinder

Air enters left port and Cylinder begins to move right

Cylinder moves right to end stop

Air enters right port and Cylinder begins to move left

Cylinder moves left to end stop

Fig. 11-4

Double Acting

The position of the cylinder is verified in both the closed and open position by reading the metal

cylinder with proximity switches. Movement continues in both cases until there is a physical

stop the cylinder encounters. There are only two valid positions and both are at end of travel.

 Ch. 11 Use of State Diagrams 6

Proximity Switch Reads Position at Left

Proximity Switch Reads Position at Right

Fig. 11-5

Sensing End of Travel

Both cylinders have similar state diagrams with states shown below. The state diagram below

represents the cylinder and its movements very well.

Cylinder moving Left

Cylinder Resting at Right
Cylinder Resting at Left

Cylinder moving Right

State Diagram of

Cylinders above

Fig11-6

Cylinder State

Diagram.

 Ch. 11 Use of State Diagrams 7

Many systems need a home or initial state from which to start. After switching into a mode on

the HMI to send the system to a homed position, the home position of the machine must be

achieved for proper action. If a slide gate is open, it must be closed. This can also be done via

an auto/manual switch on the HMI. In manual, individual devices can be turned on or off or

gates moved to a desired position without interference from an automated sequence. For

example, in a manual mode, the slide gate referenced above can be opened or closed with an

open and close pushbutton from the HMI. These buttons should be added to the sensor table and

assigned internal bit addresses.

The programming language type must be selected. While some prefer a language similar to the

State Diagram, most prefer the PLC’s LAD (Ladder) or FBD (Function Block Diagram)

language.

In the state diagram below, the error step may be jumped to from various steps and then a move

is allowed to an initial state of 1 or a home state. The rules for error or the logic causing the

jump to step 7 are usually included in the box and may be stated in a number of different

formats. It is best to include a written description of the logic to jump from state to state.

71
Home

Position

Error Various

Steps

Rules for

move

Operator

reset

 Fig. 11-7 Filling Station Error Recovery

Finding 2’s Complement - A Simple State Diagram

The logic for converting a number to the 2’s complement is shown below. This logic can be

explained by a simple State Diagram. In this example, state 1 = M0.0 off and state 2 = M0.0 on.

The word being examined is M2, M3 and the result resides in M4, M5.

21

Initial State:
Transfer Bit

Transfer
Inverse of Bit

Receive a
1 Bit

0 0

0 0

1 1

0

0

1

0 1

1 0

1 0

0 1

1 0

M2.x M4.x M2.x M4.x

M4.0

M4.1

M4.2

M4.3

M4.4

M4.5

M4.6

M4.7

Fig. 11-8a

Two s

Complement

Rules
Change

with new
state

 Ch. 11 Use of State Diagrams 8

The algorithm can be viewed above but the program is found here. In it, the ‘twoscomp’ bit is

set to ‘0’ and the program begins. When the first ‘1’ is found in the original number, that bit is

transferred to the twos complement word but the state is changed by setting the ‘twoscomp’ bit.

The state is now set to flip the original bit and place the flipped bit in the twos complement

number. This algorithm depends on this simple flip bit from our state diagram to work.

 Fig. 11-8b Code for Two’s Complement

 Ch. 11 Use of State Diagrams 9

Conveyor Two State System – A Simple State Diagram

State table analysis of the Conveyor Program below shows two states: #1 (loading) or #2 (off-

loading).

21

Count = 4

Count = 0Loading Conveyor Off-loading Conveyor

always a Loading Conveyor may be either Loading or Off-loading Off-loading Conveyor with respect to
previous conveyor

PE
1

PE
2

Reset Line
Count Button

Fig. 11-9a

Conveyor Delivery

State Diagram

Boxes fill one at a time on the short conveyor at left, accumulate on the middle conveyor until 4

boxes are in place. Then the middle conveyor turns on automatically to off-load the boxes to the

third conveyor.

The middle conveyor is programmed to switch from an accumulating or loading conveyor to an

off-loading conveyor. Logic for this switch is developed in the network below. The memory bit

‘Offload’ energizes when the count is done (‘QU’ turns on). Internal logic acts in a manner similar

to a switch controlled by a human. The state changes to off-loading and the middle conveyor

turns on to transport boxes off the conveyor and then change back to an accumulating conveyor,

switching from state 1 to 2 and back to 1 again.

Fig. 9b

Program for

Load/Offload

Conveyor System

 Ch. 11 Use of State Diagrams 10

Another consideration when programming moving lines with boxes is “What happens if a person

accidentally removes a box from the conveyor at the wrong time or moves his hand or foot in

front of the photo-eye incrementing the counter accidentally (or not accidentally)?” What if a

bird or big bee flies in front of the sensor giving a false count of the number of boxes? Counters

must have a mechanism to reset the state affecting the overall operation of the conveyor. Reset

buttons must be strategically placed so as not to be overused but to provide a means of resetting

the line if the line is cleared of boxes.

The reset button should only be used by an operator if normal operation of the line has been

interrupted and the line is not responding properly. Then the operator resets the counters and

seal circuits. In coordination with reset of logic, boxes must also be removed from the

conveyors. This may prove to be a cumbersome task. This is signified in the state diagram by

moving to an initial state or a reset state.

When control of a process requires internal switching logic, the programmer must build switches

through the use of memory logic. The logic is described as sequential logic in that the logic

moves sequentially from one section to another section. If logic is developed remembering the

sequential nature of the process, then a more organized program can be achieved.

State Table Analysis of ‘Simon Says’ Sequential Game

A later chapter will discuss the implementation of a number of sequential games including

“Simon Says” and “WhackaMole”. The Simon game is the same game played years ago by your

parents or possibly your grandparents. A state diagram of the Simon game could be represented

as follows:

21

Not Playing

3

Playing/
Showing
Lights

Playing/
Pushing
Buttons

Error

Success

4

Won

Flash
Lights

Fig. 11-10

Simon Says

State Diagram

The Simon game will be further discussed and programmed in a later chapter.

In general, while the number of states doesn’t need to match the number of coils used in a

program, the minimum number of coils used matches the number of flip-flop’s in a state table.

For instance, if there are 2 states, 1 coil is necessary (either on or off). For three or four states, 2

coils are necessary (off-off, off-on, on-off, on-on). For five to eight states, 3 coils are required.

For 9 to 16 states, 4 coils are required, etc. Use of a minimum number of coils for representation

 Ch. 11 Use of State Diagrams 11

of states may not prove to be the most effective programming style. A number of different

programming techniques will be discussed in this chapter and next and will give the programmer

various ideas as to how best implement a state diagram from a sequential process.

Sets and Venn Diagrams

Use of sets and Venn diagrams may help the programmer visualize a sequential program. For

example, the sets of “Simon Says” are found below. They are Not Game Being Played and

Game Being Played. Subsets of Game Being Played are Show Lights and Push Buttons. A final

state is shown at right if the player wins – Flash Lights. To begin a program by designing a

Venn diagram is usually not required. However, as the program is written, the programmer may

find the use of Venn diagrams a good tool in describing the logic or in visualizing the various

states present in the process.

Sets of the program Simon Says:

Not Playing Game

Showing Lights

Playing Game

Pushing Buttons

Fig. 11-11 Venn Diagram of Simon-Says Game

Flash

Lights to

show a

win

Sequential Function Charts

An alternative to state diagrams using ladder logic is the programming language referred to as

Sequential Function Charts (SFC). SFC is a graphical approach to state development and

program organization. Steps, actions and transitions are the three primary components of a

typical SFC. Each step is similar to a state or unit of logic organized to accomplish a particular

control task. An action defines an aspect of the task and a transition provides the means to move

from task to task. Logic internal to each step, transition or action is programmed in Ladder logic

or other programming language. SFC's graphical layout offers the program developer an

overview for creating small islands (states) of logic and linking them together with transitions.

 Ch. 11 Use of State Diagrams 12

Two primary types of flows are allowed in the SFC diagram, sequential and parallel. With

sequential flow, the program executes step 1 repeatedly until all conditions are satisfied for the

transition to take place to move to step 2. Each step is evaluated until satisfied and then flow

moves on. In a parallel configuration, branches may be configured as simultaneous or selection.

In a selection branch, only one branch is executed at a time. The active branch is determined by

the transition. With a simultaneous branch, all branches may be executed simultaneously.

Transition occurs in a simultaneous branch when one of the active steps satisfies conditions to

continue. The following figure shows a selection branch. Step one is executed until completion.

Then step two executes. Only one step is allowed to execute at a time. Other steps are missed

this time.

Step One

Step Two

Sequential

Function Chart

Selection

Branch

When done at step 2,

moves to next step

Step 1 done moves to one

of the three in Step Two

Fig. 11-12 SFC with

Selection Branch

As mentioned before, with a simultaneous branch, all branches may be executed simultaneously.

Transition occurs in a simultaneous branch when one of the active steps satisfies conditions to

continue. The figure below shows a simultaneous branch with step one occurring and then one

or more of the steps of step two turning on. Any of these steps in step two can cause a transition

to later logic.

Step One

Step Two

Sequential

Function Chart

Simultaneous

Branch

When any done at step

2, moves to next step

Step 1 done moves to all of

the three in Step Two

Fig. 11-13 SFC with

Simultaneous Branch

 Ch. 11 Use of State Diagrams 13

Logic that is active is highlighted so a programmer can visually confirm the program step or

steps being executed. Steps may be sub-divided into actions with a number of actions occurring

sequentially during the step.

Step 1

Step 1

Step 1

Action 1

Action 2

 Fig. 11-14 Steps Subdivided into Actions

Showing logic that is active in highlighted form is a very powerful method to show the flow of

logic in a sequential process. Sequential Function Charts may be useful in developing sequential

logic especially when advantages such as highlighting are considered. Remember that each box

in the Sequential Function Chart may be reduced to a number of rungs of ladder logic or other

language. SFC overall is a very powerful organizing tool.

State diagrams and Sequential Function Charts are two of many different tools used by

programmers to control a sequential process. A number of other tools have been discussed as

well. Scientists, especially mathematicians, have used a variety of very sophisticated tools to

generalize sequential problems. While it is not the purpose of this text to thoroughly explain

these tools, it is appropriate to mention two different tools used to discuss sequential processes.

First is Finite State Machines or FSM. FSM may be defined as “model of behavior composed of

states, transitions and actions.” Transitions and actions may be defined:

“A transition indicates a state change and is described by a condition that would need to

be fulfilled to enable the transition. An action is a description of an activity that is to be

performed at a given moment.”

FSM may be used in “linguistics, computer science, philosophy, biology, mathematics, and

logic.” Of course, the PLC programmer is interested in using FSM for logic in developing a

program.

 Ch. 11 Use of State Diagrams 14

Another tool for solving of sophisticated sequential problems is the Petri net. The Petri net may

be described as:

“A Petri net (also known as a place/transition net or P/T net) is one of several mathematical

representations of discrete distributed systems.” Petri nets were first introduced by Carl Adam

Petry in 1962 from his PhD dissertation. An example of a Petry net diagram follows:

Back to Reality - Combinational Modes

External switches many times determine the mode of the machine and establish the need for

states. These form a class of devices referred to as combinational modes. Combinational modes

include switches such as:

STOP START

RAISE STOP
LOWER

HAND AUTO
SEMI-AUTO

TYPICAL SWITCHES

Fig. 11-16

Various

Selector

Switches

Stop-Start

Forward-Reverse

Open-Close

On-Off

Raise-Lower

Up-Down

Fast-Slow-Stop

Forward-Reverse-Stop

Open-Close-Stop

Raise-Lower-Stop

Up-Down-Stop-Off-On

Hand-Auto

Hand-Step-Auto

Hand-SemiAuto-Auto

Manual-Auto

Manual-SemiAuto-Auto

High-Low

Summer-Winter

Summer-Off-Winter

High-Off-Low

This list could be continued for many pages. This is but a sampling of the types of mode

switches used for control of machines.

Fig. 11-15 Petri Net Example

 Ch. 11 Use of State Diagrams 15

One of the most commonly used mode switches is: Auxiliary-Off-Run-Start

If you don’t recognize this switch, think about what happens next time you start your car.

Typical switches that are two-position are wired to only one of the two positions.

PLC Input

Fig. 11-17a Generic Selector Switch

If one mode is chosen, then the normally open contact is used. If the other mode is chosen, then

the normally closed contact is used. For instance, if the switch above was used with the switch

labeled High-Low, then High would refer to the input on and Low would refer to the input off.

PLC Input

Fig. 11-17b Selector Switch with Tag

HIGH LOW

To summarize this section about switches, if a switch is needed but there is no switch planned for

the panel or HMI screen, the program will need a memory circuit and probably a state diagram to

replace the switch.

When switches are available, state definitions are not necessary, or at least not for the decisions

made in coordination with the switches. On the other hand, if a switch is needed and none is

available, one must determine if a state is necessary (and if coil conditions are required) that are

derived from a state diagram.

It is possible to develop a number of state diagram programs without ever realizing that a state

diagram is at the core of the program. The idea that a switch may be used instead of a state

diagram may seem an oversimplification but the idea of using the idea of a potential switch to

define the states of a system and then plan a method to automatically generate those states is a

powerful method to plan a state diagram and write the ensuing program.

Scan-Dependent Code used in State Diagrams

Many times a state diagram can be programmed using a simple programming technique that uses

scan-dependent code. Not all PLC logic can be replicated with relays since the PLC is sequential

in nature and follows a scan from top to bottom of a program.

Rungs are solved sequentially starting at rung 0 and proceeding through the entire program

 Ch. 11 Use of State Diagrams 16

finishing with the end statement. As the rungs are solved, outputs are written from the coil or

other output function to the appropriate table. The output is written from the program to the

output as the rung is executed. The output is written to the card usually at the end of the scan.

(Some processors write outputs asynchronously to the scan and therefore are not as predictable

as to exactly when the output will be written to the output device. Both procedures of writing an

output at the end of a scan and writing to the output asynchronously are valid procedures.

Use of scan-dependent code is necessary at times to accomplish a function or step from state in a

program. To save a variable in a particular mode so that the variable may be used when the

mode is turned off is a useful tool and is used in many programs.

Addressing States by Using Scan-Dependent Code - Climbing the Ladder

The following is a program to turn on three conveyors either automatically or manually. This

program is used to demonstrate a common scan-dependent programming technique referenced

here as "climb-the-ladder”.

In this problem, a system of conveyors is to be programmed with each conveyor running

independently. No integration of the conveyors into a state diagram is to be considered. Each

conveyor has various start and stop conditions. The start conditions can be found parallel to the

seal contact and the stop conditions can be found in series with the start logic. Logic for one of

three motors is shown below (typical for all three):

 Fig. 11-18 Original Conveyor Circuit before Modifications

As long as all that is necessary to run the process is the independent start and stop contacts, all is

well. However, what if the request is made that the emergency stop (let’s say I:1/15 is the e-

stop) shuts down all three or any that were running. Then in addition, a circuit is to be added to

restart those motors previously running. To do this easily requires programming that is

commonly referred to as climbing the ladder, an application of scan-dependent code and the state

diagram shown below. A new state ‘Off, Ready to Start’ is added to the state diagram and a new

set of seal circuits is added to the logic. This is done during the scan that the emergency stop

shuts down the output rungs with the new logic located just prior the output rungs. They are

shown as follows:

Devices that turn off the conveyor

Devices that turn on the conveyor

Seal contact

 Ch. 11 Use of State Diagrams 17

Fig. 11-19 State Diagram for Program Above

Logic setting State
3 for each of the
three conveyors

Now we can turn off the
conveyor with the emergency

stop switch

3

2

Off

1

Off,

Ready to

restart

On

Push

Start

Push

Stop Push

Restart Push

Estop

Notice that the three rungs added are not yet compiled since the stop or contact that turns the

rung off is not yet known. Do not worry about not defining these contacts since there is time to

add them later. The three coils B3:2/0, 2/1, and 2/2 are turned on the scan that the emergency

stop is first turned on. These three coils remember the status of the three motors and save their

status prior to the emergency stop turning the motors off. An annotation would read “Motor 1

Running Prior to E-Stop Shutdown”. Next, at an operator’s request, the system is to start back

up with the motors that were previously running turning back on. Notice how this is done.

 Ch. 11 Use of State Diagrams 18

Fig. 11-20 Completed Program

Rungs 000-002 contain logic to turn on the motors previously on before the emergency stop was

pushed. With the reset I:1/14, logic is developed to turn on the motor that was remembered in

B3:2/0 through B3:2/2. The internal coil B3:3/0 turns on if B3:2/0 was energized, turns off the

seal circuit containing B3:2/0 and then restarts the motor seal circuit with B3:2/0 in the start

portion of the circuit.

For instance, if the emergency button is pushed while O:2/0 is on alone, B3:2/0 turns on and

seals just prior to O:2/0 turning off. Since B3:2/0 is now on, when I:1/14 is pushed signaling a

restart of the conveyors that were on when the emergency stop was pushed, B3:3/0 turns on and

turns off the seal circuit B3:2/0. B3:3/0 then turns on the seal circuit for O:2/0. Even though

B3:3/0 is on for only one scan, it can be counted on to turn off B3:2/0 and turn on O:2/0. The

following diagram shows a sequence in which the E-Stop button is energized sending the

conveyor to the “off” state (state 3) instead of the state 1 “off” state. When a reset button is

pushed, the state diagram signals a restart of the conveyor(s) that had previously been turned off

 Ch. 11 Use of State Diagrams 19

due to the e-stop but not if stopped from other commands.

3

2

Off

1

Off,
Ready to
restart

Push
Start

Push
Stop Push

Restart

3

2

Off

1

Off,
Ready to
restart

Push
Start

Push
Stop Push

Restart

Fig. 11-21 State

Diagrams for

Completed Program

The example shows a scan-dependent program used to set and reset coils that are set by events to

do specific tasks. This is an example of a simple state diagram being used to define a set of

conditions and a programming technique that has been used with PLC programs extensively to

simplify relay logic and perform state logic.

Revisit Three Conveyors to Bin

The problem of control of a number of conveyors usually involves interlocking of the conveyors

so that a problem of back-up of product does not occur. If speed switches are introduced, they

should be programmed to turn off the conveyor attached to the zero- speed switch if the switch is

not active when the motor is told to turn on. The project below uses level switches to turn on

and off the prior conveyor if high level is achieved with each of three hoppers.

 Ch. 11 Use of State Diagrams 20

High Level L1

Low Level L2

Conv C1

Bin 1

Conv C2

Conv C3

High Level L3

High Level L4

21

Init -

System

off

3 4

Bin 1 below
low level L2

Run

Cnvr C3

C1, C2 Off Hopper L4
not high

Run

Cnvr C2, C3

C1 off
Hopper L3
not high

Run Cnvr

C1, C2, C3

Bin 1 above
high level L1

Hopper L4 high
or C2 Fails

Hopper L4 high
or C2 Fails

Hopper L3 high
or C1 Fails

C1 Fails

Fig. 11-22

State Diagram

of Multiple

Conveyors

Picture the conveyors conveying coal over a long distance. State diagrams may help here to

describe this process. The design may be accomplished without the designer ever considering

state diagrams but they help the description of what is really going on with the system.

Conv C1

Bin 1

Conv C2

Conv C3

High Level L3

High Level L4

Fig. 11-23 Conveyor

Feed System

 Ch. 11 Use of State Diagrams 21

The Electronic Safe – Definitely a State Diagram

Fig. 11-24

Electronic Safe

Operator Panel

6 23
Display for Code Num

Operator Panel

1 2 3

4 5 6

7 8 9

0

Keyboard

close

open

next

Door Locking Cylinder

Description of the locking mechanism of the electronic safe:

• There must be typed in 3 code numbers, each consisting of 3 digits;

• A digit typed in at the keyboard arises at the least significant place in the display; the

other digits already present on the display are shifted left

• Numbers to be compared to the three code numbers are stored in storage locations in PLC

• Each code number must be confirmed by pushing the ‘next’ button

• After pushing the ‘open’ button, the three numbers are compared with the code numbers

stored in the storage locations.

• If the code numbers are equal, then the door is opened. Otherwise, the opening algorithm

is blocked for 10 minutes.

• Pushing ‘close’ resets the display to 000, clears all input numbers and restarts the

algorithm and locks the door.

This design is very dependent on a good state diagram to complete. The conveyor system did

not require a state diagram for most experienced programmers to understand or build. The safe,

on the other hand, does. The state diagram on the next page, if followed, will lead the

programmer through the steps necessary to implement a program for unlocking and re-locking

the safe successfully. With no state diagram, the experienced programmer may succeed in

implementing the program but not as easily and the subsequent maintenance of the program will

be more difficult without it. Saving the document of the state diagram is necessary since it is not

carried along with the PLC program as part of the documentation. Its inclusion in a project

 Ch. 11 Use of State Diagrams 22

document is strongly recommended.

Fig. 11-25

Electronic Safe

State Diagram

3 4 5

1

2
Home

Position
Cylinder off,

Numbers
reset to 000

7 8 96

11 12 1310

14

Enter
First Digit

Enter
Second

Digit

Enter
Third
Digit

Enter
 Next

Push
 Open

Test if all 3
code

numbers
agree

15

Open
Cylinder

Push
 Close

16Close
Cylinder

Verify
Closed

Success

Fail

Init

 Ch. 11 Use of State Diagrams 23

Component Parts Feed Mechanism – High Need for State Diagram

Fig. 11-26

Component Parts

Feed Mechanism

General Description:

A magazine is housing cylindrical parts (disks). A slide (separator) pushes out one disk to a

“pick up position” where a gripper picks up the disk and places the disk to the “deposit position”.

The component feeder is running as long as disks are available.

Operating modes

Either the Software HMI or discrete switches are used to run the feeder in different operating

modes. Switch S1 is used for changing the operating modes:

 1 - Manual

 2 - Homing

 3 – Automatic

Homing cycle:

Before starting any automatic cycle, the feeder must be set up in its initial or homing position

(Switch S1 to “Home” and press button “Start”). The homing cycle ends if the feeder has

reached its homing position. The homing cycle stops after finishing the ongoing step if:

 1 – “Stop” – pressed or if “Start” is pressed again

 2 – If “Single Step” is activated by a selector switch. The feeder then steps

 forward one step in homing cycle each time the “Start” button is pressed.

The homing cycle resets if switch S1 is turned on. The ongoing operation then stops

immediately.

Below are the three state diagrams for the cylinders in the machine. The state diagrams are not

linked but information from one is used in other diagrams. Notice the linkage.

 Ch. 11 Use of State Diagrams 24

Separator moving Left

Separator resting in right

retracted position
Cylinder Resting at Left –

part extracted

Cylinder moving Right to home position

State Diagram of

Separator

 X Cylinder moving Left

 X Cylinder Resting

at Right
 X Cylinder Resting

at Left

 X Cylinder moving Right

State Diagram of X

Cylinder

 Y Cylinder moving Up

 Y Cylinder Down –

Suction on if X at Left

Suction off if X at

Right

 Y Resting in Up

Position

 Y Cylinder moving Down

State Diagram of Y

Cylinder

Fig. 11-27 Three Cylinder State Diagrams

 Ch. 11 Use of State Diagrams 25

Manual Mode

In Manual mode, every actuator should be activated by pressing the appropriate button. The

manual mode position of S1 shall also serve to allow filling up the magazine with cylindrical

parts. Filling up the magazine should not be registered if the button is not switched to manual

mode when the magazine is being filled.

The actuator is locked in case of a wrong operation (e.g. the gripper can’t be moved from left to

right if the gripper is not in its UP position. All manual operations must be reset, if switch S1 is

switched over to any other operating mode.

Automatic Mode

By setting switch S1 to “Automatic” and pressing “Start”, the automatic cycle is started. A start

may only occur if the feeder is in its homed position. The automatic cycle ends in home position

if the magazine is empty.

The automatic cycle stops after the actual step if:

 1 – “Stop” button is pressed; automatic cycle resumes if “Start” is pressed again.

 2 – If “Single Step” is activated. Feeder steps forward one step in automatic cycle

 every time “Start” is pressed again.

The automatic cycle resets immediately if S1 is moved to any other operating mode. The

ongoing operation then stops immediately. Starting automatic cycle again is only possible after

the feeder has been brought into its homing position (either in manual mode or with the help of

homing operation mode).

Interlocking Conditions which must be implemented first for security reasons:

Separator forth: no part must be below gripper and NOT (x-axis in pick up position and

gripper is not up)

Gripper down: separator is back and x-axis in one of its end positions

X-Axis move left: gripper is up and NOT (“x-axis move right” activated)

X-Axis move right: gripper is up and NOT (“x-axis move left” activated)

Suction on: --

A new programming language SFC (Sequential Function Chart) is used to combine the three

state diagrams above in one continuous program. The state diagrams could be combined as well

but for now, we will use the SFC diagram as a substitute.

 Ch. 11 Use of State Diagrams 26

Fig. 11-28 SFC for Component Feeder

The Sequential Function Chart above shows the steps and gives the sequence of flow of logic. If

one were to rely on this program, there is a reason to worry about the logic in that the logic

performed in steps not currently active are not accessed or executed except in the step currently

active. If there were a condition about which safety is a concern, then this logic must be

replicated in each step, thus multiplying the complexity of the logic. Also, if this logic is

changed, then it would need to change in all locations, not just one.

Thus, logic that is common to all steps must be located outside the step logic. This adds a level

of complexity in that one must now determine whether to include logic that is only involved in

the step or common to all steps. Most logic will probably end up being placed in the common

logic area, in effect, negating the original concept of Sequential Function Chart or SFC logic.

Shown on the next page are the state graphs or state diagram for the component feeder. The first

is somewhat simpler diagram that does not take into account an event that may drop down parts

while in the homing mode. The second diagram answers this problem and prevents parts from

dropping down while in homing mode.

 Ch. 11 Use of State Diagrams 27

 Fig. 11-29 State Diagrams for Various Parts of Component Feeder

 Ch. 11 Use of State Diagrams 28

State Diagrams Defined

State Diagrams have its origin in computer science. There are many advantages to State

Diagrams although they are not established in a national or international standard. They are

similar to Sequential Function Charts in that it describes a technical process or a functional

element of a machine tool in terms of states and transitions. The following figure shows a

typical state diagram with transition arrows and rules for traversing from state to state:

Fig. 11-30 State Diagram

At any time in a State Diagram, just one state can be active. State Diagrams may have branches

and loops and allow alternate ways of stepping through the graph. To go from one state to

another, there must be a transition between the two states; the original state must be active and

the transition must be fulfilled.

The next figure shows a Functional Element (a rivet device) and gives a functional description of

the control task with the help of a flow chart. There are two ways to construct a State Diagram.

We can just model the functioning according to the task description or we can build a real model

of all functional elements and combine them.

Fig. 11-31 - Riviter

 Ch. 11 Use of State Diagrams 29

Fig. 11-32 Model of a Rivet Device (a) according to task description (b) according to the

physical device

The cylinder should press the rivet for 2 sec. in the down position. Which of the two models best

describes the physical process? Since the down position is time-dependent only, it is usually not

considered a state. It is up to the user which state diagram is preferred but usually time-

dependent only states are not necessary and may be combined in other states.

If there were two cylinders used in an operation, we could use either the task description or the

physical device description to describe the state diagram for the process. The task is to look at

the cylinder state graphs separately and then together to determine an optimal description of the

process. If this can be done, a program can be written from the combined state diagram of the

two independent cylinder state diagrams. The two cylinders below are described separately. The

clamping cylinder can be described in the following State Diagram:

Fig. 11-33 First of Two Cylinder State Diagrams

 Ch. 11 Use of State Diagrams 30

The feed cylinder can be described in the following State Diagram:

Fig. 11-34 Second of Two Cylinder State Diagrams

Or we can start with a combined State Diagram combining the two:

Fig. 11-35 Combined Two Cylinder State Diagrams

 Ch. 11 Use of State Diagrams 31

Run off Graphs consist of separate State Diagrams that are combined to show process actions in

several areas at once:

 Fig. 11-36 - State Diagram for Juice Condenser discussed in earlier chapter

Introduction to Sequencers

Sequencers and sequential circuits are the result of the digital circuit state diagram. A machine

or a process may be identified as a sequential circuit that indexes from step to step usually only

in the forward direction. Decrementing back through the order of the steps is not tolerated in

the design of most sequencers. If steps are identifiable and inputs can be defined allowing the

process to advance from step to step and outputs change state from step to step, then a sequencer

is advised.

Sequencers are divided into three general categories in the PLC. They may be relay-based,

counter-based or sequencers using the SQx instruction set. Each will be discussed and examples

given.

Sequencers may also be linked together giving a combined control scheme in which various

sequencers hand off control between sequencers. Each sequencer is responsible for its actions

and interfaces with other sequencers when a product or part is handed between the sequencers.

Multiple sequencers may also save programming code if various sequential programs are similar

but not identical. This involves a type of subroutine control that uses a variety of step numbers

to allow some programs to act during each step.

 Ch. 11 Use of State Diagrams 32

Relay-based sequencers are preferred since they are easier to read and understand by the

maintenance electrician. With an increase in complexity, the counter-based sequencer is

preferred. Counter-based sequencers are more easily changed and tolerate a greater number of

steps than relay-based sequencers. If a large number of inputs and outputs are required in the

sequencer, the choice leans more toward the SQx instructions. Timers may be used to add a time

delay between steps. Examples of the use of timers in the sequencer are given.

Example of Sequencer - Simple Robot

A robotic arm that uses pneumatic solenoids is a candidate for sequential programming. The

example below shows the steps in a sequence to successfully move a product from one position

to another using a simple robotic arm.

Down

UP

Side

View

Top

View

Limit Sw Not Activated

Limit Sw Activated

Robot down,

clockwise

 Robot in home position:

Down

UP

Robot

Raised

Down

UP
Robot rotated

counter-

clockwise

 Fig. 11-37a Simple Robotic Sequencer

 Ch. 11 Use of State Diagrams 33

Down

UP

Robot grabs

part

Down

UP

Robot rotated

clockwise

with part

Down

UP

Robot lowered

with part

Down

UP

Robot releases

part

Fig. 11-37b Simple Robotic Sequencer (cont)

The operation of the robot can be summarized in the following table:

Step Position Required to Proceed Solenoid to Proceed

1 Down, rotated cw Start cycle pb Raise

2 Up, rotated cw Up l/s Rotate cw

3 Up, rotated ccw Ccw l/s Grabber in

4 Up, rotated ccw Part present Rotate cw

5 Up, rotated cw Cw l/s Lower

6 Down, rotated cw Cw l/s Grabber out

7 Down, rotated cw Done

 Next, an assignment of inputs and outputs for the functions is generated:

 Ch. 11 Use of State Diagrams 34

 Address Function

I:0/0 Start cycle push button

I:0/1 Robot down l/s

I:0/2 Robot up limit switch

I:0/3 Robot CW limit switch

I:0/4 Robot CCW limit switch

I:0/5 Part present limit switch

O:0/0 Raise robot solenoid

O:0/1 Rotate ccw solenoid

O:0/2 Rotate cw solenoid

O:0/3 Release part

O:0/4 Grab part

 Home position is used for initialization of the program. It is:

 Address Function State

I:0/1 Robot down limit switch On

I:0/2 Robot up limit switch Off

I:0/3 Robot CW limit switch On

I:0/4 Robot CCW limit switch Off

I:0/5 Part present limit switch Off

Homing is a separate program from the sequence program that attempts to move the machine to

the state of “home”. This is the position that the sequential program is looking for to move from

state 0 to state 1. The homing program and sequence program share the same output rungs

turning on and off outputs to control movement to accomplish their various tasks. The task of

the homing program is to satisfy the states of all permissive contacts in rung 0 of the program.

The state diagram is on the next page. It follows the one-way flow of the sequential program

allowing only flow in one direction. The progression follows step-by-step with an easy decision

at the end of each step allowing the program to move to a set next step.

In most instances, only one input must be satisfied to move to a next step with a short time delay

at the end of the step to allow the robot a short amount of time to settle before moving on.

 Ch. 11 Use of State Diagrams 35

3

2

Grip

Part

1

4

5
6

7

Init

Robot at Home
Position

Not Moving

Moving Up

Button Pushed
Initial Conditions

Satisfied

Rotating
Counterclockwise

Up LS Satisfied

CCW Limit
Satisfied

Rotating Clockwise

Part

Secured

Moving Down
CW Limit
Satisfied

Down LS
Satisfied

Release

Part

Gripper Empty

Fig. 11-37c State Diagram for Simple Robot

In the riveter example, if a machine is not resting in a position, the position is not classified as a

step. The program shown below uses only one rung of logic for each step and it seems clearer

for each step to correlate to a rung of logic.

Homing may be necessary as a separate state diagram. The homing portion may include a

number of state diagrams depending on what state the machine is in at the time a homing request

is made.

Ladder Program for Robot Sequencer

To program the sequencer using relay ladder logic, start with an initialization rung and then

program rungs that depend on the prior rung plus an output to set the next rung.

 Ch. 11 Use of State Diagrams 36

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Fig. 11-38 Simple Robotic Sequencer in Ladder with Coil Logic

 Ch. 11 Use of State Diagrams 37

In the program, the initialization rung is rung 0. This rung checks all limit switches to verify the

robot is in its home position. Each appropriate limit switch is checked. For instance, both the

limit switch for end of travel in one direction and the limit switch for end of travel in the

opposite direction are checked for each set of limit switches. The initialization button then turns

on the first internal B relay coil – B3:0/0. In the PLC, it is easy and requires no additional wiring

to include both end-of-travel limits. With cost no problem, the addition of both sets of contacts

provide additional safety if a contact were to fail.

Rung 0 turns on starting the shift register. Then the shift register waits to proceed. Succeeding

steps are entered below:

Move from step 1 to step 2: I:0/2 on, I:0/1 off Go to step 2 (rung 1)

Move from step 2 to step 3: I:0/4 on, I:0/3 off Go to step 3 (rung 2)

Move from step 3 to step 4: I:0/5 on Go to step 4 (rung 3)

Move from step 4 to step 5: I:0/3 on, I:0/4 off Go to step 5 (rung 4)

Move from step 5 to step 6: I:0/1 on, I:0/2 off Go to step 6 (rung 5)

Stop I:0/5 off Done, End

Output List:

 Step 1- Outputs change to go from step 1 to step 2

 O:0/0 on Raise robot

 Step 2- Outputs change to go from step 2 to step 3

 O:0/1 on Arm moves CCW

Step 3- Outputs change to go from step 3 to step 4

 O:0/4 on Grab part

Step 4- Outputs change to go from step 4 to step 5

 O:0/2 on Arm moves CW

Step 5- Outputs change to go from step 5 to step 6

 O:0/0 off Robot lowers

Step 6- Outputs change to go from step 6 to step 7

 O:0/3 on Release part

The output list is not developed in the same section of rungs as the logic of the sequencer since

outputs may be on or off across multiple steps. Output logic is developed after the sequencer is

in place and combines the states of the sequencer for which the output is on or off.

As the sequencer moves from step to step, the sequencer using coils successively turns on the

next coil set in the sequence. When the last step is being executed, all the coils in the string are

 Ch. 11 Use of State Diagrams 38

observed on. When the last step completes, the coils are turned off. This characteristic of the

sequencer allows the maintenance person to quickly observe the last coil on in the string and

surmise that the sequence is hung at the next step. This gives the maintenance person a handy

method of troubleshooting the sequencer using relays. Care must be taken to not allow the next

sequence to start while the sequencer is finishing the present sequence. Logic should account for

not allowing a new starting pulse while the last sequence is still being executed.

While this type of sequencer seems to be cumbersome, it is used a great deal as long as the

sequencer length is not long and the steps are well defined. If the steps are not well defined, a

second method using a counter should be employed. Using a counter allows additional steps to

be inserted more easily than with relays. Both methods of using coils or a counter provide a

memory of where the sequence has been and where it next is expected to move. In general, coils

and counters are equal. Counters can be a bit more flexible, however, when adding a number of

steps quickly.

Using Counters to Control Sequencers

As sequencers become more complicated, the need for a more robust sequencer programming

technique becomes necessary. As a second approach, it is suggested that a number in an N7

location be used to identify the present state of the sequencer. Usually a step number is

employed. If the number is 0, the sequencer is not active. If it is positive, then the sequencer is

active and the sequencer is in the state of the number. As the number is incremented, the

sequencer moves to the next step.

Very large sequencers may be built in this way. If the sequencer is in a particular state, the EQU

block allows logic to be performed exclusively in that state. The rung below shows an

initialization step using a number for the step counter.

Fig. 11-39a Simple Robotic Sequencer in Ladder using Numbers for Steps

Using the logic from the original sequencer, initialization moves a 1 into the sequence counter

located in N7:1. While it is not required that one-shot logic be used, it is usually recommended.

Example using Counters to Increment Sequencer:

 Ch. 11 Use of State Diagrams 39

Fig. 11-39b Simple Robotic Sequencer in Ladder using Numbers for Steps

As each state is satisfied, the sequencer moves to the next state based on logic similar to the

relay-based sequencer. An advantage of using a number to drive the sequencer is that several

steps may be jumped over and then filled in at a later date. For instance, if it is known that a

sequencer is going to be complicated and that several steps are not fully known, plan the

program to skip some steps and then go back and fill them in as necessary. Skipping steps or

changing steps is much easier with a number than with the sequencer using only coils and seal

circuits.

Any of a number of other methods using bits or numbers can be used for sequencer control. For

instance, a sequencer may be programmed using a word with a bit initially placed in the least

significant bit and rotated one bit to the left for each step. This approach is as valid as either of

the approaches listed above.

Adding Time between Steps

Each of the sequencer types potentially needs a time delay between the end of the prior step and

the beginning of the next step. With the original relay circuit sequencer, the fix is easy. It

requires only that a timer be placed between each step. This may be accomplished by

programming the following:

 Ch. 11 Use of State Diagrams 40

Fig. 11-40a Adding Timer Delay Between Steps using Coils

To program a time delay between steps of a sequencer using counters, sense the change of step,

delay a time period and step to the next step using a one-shot. See below for an example of the

time delayed counter sequencer.

 Fig. 11-40b Adding Timer Delay Between Steps using Numbers

Using the SQx Instructions

A third approach uses the sequencer instruction to direct step number and output state. The

instructions SQO, SQL, and SQC of RSLogix 500 or SQI, SQO and SQL of RSLogix 5000 are

three instructions used to define and operate a sequencer. Several Sequencers may be combined

to coordinate large sequencer blocks.

Why is it not advisable to use these instructions as compared to the methods used above? The

sequencer instruction set is quite complicated but once set up tends to work very well. The

reason that sequencers are built without incorporating the SQx instruction set is that sequencers

programmed with the SQx instructions tend to be very difficult to troubleshoot by others. This

may lead to difficulty in keeping a process running. The original programmer may understand

the concept from layout to implementation but as documentation is lost or not available and an

electrician or other technical person is brought in to troubleshoot the sequencer, the difficulty of

finding broken equipment interacting with the sequencer is great. The SQC instruction moves a

 Ch. 11 Use of State Diagrams 41

step each time it receives a off-to-on transition. It moves sequentially through the programmed

sequencer file. It compares data through a mask to a source word or file to check for equality.

The Mask is a hexadecimal code or the address of a mask word or file. If the mask is designated

as a file, its length is equal to the sequencer file’s length.

The Source is the address of the input word or file for which a SQC instruction obtains data for

comparison to the sequencer’s file.

Sequencers are built by setting up tables in files which then are executed with the SQx

instructions. A table is built for each portion of the SQO and SQC instruction. The Output

Table for a 10-step sequence controlling up to 16 outputs is shown below.

Output Table:

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Mask allows bit in output word to be set either 1 or 0 when mask bit set.

Mask

yields:

Output

 Ch. 11 Use of State Diagrams 42

Using Sequential Logic in State Diagrams with Runoff

Combinations of sequential logic may be combined using Runoff State Diagrams. An example

from industry will be used. The exact application will be somewhat obscured to protect the

company’s proprietary information. The application moves steel billets through a reheat process.

The billets are staged on a conveyor and then positioned to transfer to a second table prior to

entry to a re-heat furnace.

First, a billet is laid on a table with rolling collars capable of moving the billet in the direction

noted. The billets proceed to the transfer table (second table) as shown. When two billets are on

the transfer table, then they are ready to transfer as more billets are laid on the first table.

Billet laid

on table

Billet

moving

Second

Billet laid

on table

Billet

moving

First Billet

in position

to transfer

BothBillets

in position

to transfer

Another

Billet laid

on table

Billet

moving

Fig. 11-41a Physical Layout of Billets Moving on Table in Steel Plant

 Ch. 11 Use of State Diagrams 43

Once the billets are in position to transfer, the second table sends a “ready” signal to the Charge

Table and waits for a “clear” signal to begin transfer of billets onto the Charge Table.

BothBillets

in position

to transfer

Billet

stopped

Charge Table must

be free of billets

Both Billets begin

to transfer

Billet

stopped

Charge Table must

be free of billets

Billet

moving

Charge Table Accepts Billets, ready

to charge to furnace

Billet laid

on table

Re-heat

Furnace

Fig. 11-41b Physical Layout of Billets Moving between Tables in Steel Plant

Now, billets are in place on the Charge Table ready to charge into the furnace while other billets

are being positioned and ready to come onto the Charge Table when it is clear again.

 Ch. 11 Use of State Diagrams 44

A state diagram of the operation is shown below. Notice that the tables are linked in the state

diagram. Notice that the third sequencer is used to take billets out of the back end of the furnace.

This action must be coordinated with the charging of the furnace in order to keep the charge and

removing of the billets in sync.

Start Billet
Transfer State

Step 1
Receive Billet

Step 2
Move to Charge

Step 3
Move 2 to Chrge

Step 4
Wait for Synq

Step 5
Mv 2 Billets Off

Step 6
Billets Clear

Start Charge
Table Xfer State

Step 1
Xfer Table Clear

Step 2
Accept Billets

Step 3
Billets in Position

Step 4
Wait for Synq

Step 5
Charge Furnace

Step 6
Charge Done

Start Furn
Discharge State

Step 1
Ready to Accept

Step 2
Accept Billets

Step 3
Discharge Ready

Step 4
Discharge #1

no

Step 5
Discharge #2

Step 6
Discharge #3

Step 7
Discharge #4

yes

Fig. 11-41c Billet State Diagram

 Ch. 11 Use of State Diagrams 45

Here the furnace is shown with billets filling the furnace from charge end to discharge end. The

billets must be able to move into the furnace but only when there is room after a discharge takes

place. The charge end state table must not act until room is available after discharge happens.

This corresponds to step 3 of the second state table attached to state 3 of the third state table.

The charge occurs at this time. Discharge occurs at another step in the process.

Charge Table Accepts Billets, ready

to charge to furnace

Re-heat

Furnace

Billet

moving

Fig. 11-41d Billet State Diagram

 Ch. 11 Use of State Diagrams 46

Multiple Sequencers Using Same Program

If an operation is similar to another operation except for the movement of a part or some other

common occurrence, a state diagram may be used with the same program and multiple steps

input to common logic. For example, the following state diagram may use a common program

for step 1, step 11 and step 21 if the same action is done in each. A program such as this would

be equivalent to a looping program in which the same operations are done in common for a

number of different steps.

Billet moving

Logic from Step 1

Billet moving

Logic from Step 11

Billet moving

Logic from Step 1

Billet moving

Logic from Step 11

Billet moving

Logic from Step 21

Fig. 11-41e Billets

Moving From Furnace

Start Seq

Step 21

Step 22

Step 23

Step 24

Step 25

End Seq

Step 15

Step 14

Step 1

Step 2

Step 3

Step 4

Step 5

Step 11

Step 12

Step 13

 Ch. 11 Use of State Diagrams 47

The following logic could be used to control multiple steps using common logic:

State diagrams using numbers can use the logic above to combine the logic of multiple steps

simply by using the program structure above.

Systems of State Tables

State tables can be ganged together similar to the furnace state table described above in large

systems. For example, the emptying of a parking lot of cars may resemble the following

sequence:

E D C B

F E D C

A

G F E D

B

Fig. 11-42

Step

= 1

Step

= 11

Step

= 21

Logic common to

steps 1, 11, 21

Fig. 11-41f

 Ch. 11 Use of State Diagrams 48

Each car moves from station to station and then waits for the next station to empty before

moving forward. Each station may be a state diagram in a manufacturing setting. At each

station, an action is done to the part. One station for instance can add a component and the next

station can weld the component to the main body of the part. Each action depends on the prior

action successfully completing and then proceeding. Without the first car moving forward, the

succeeding cars are stuck but with its movement, then the next car moves forward followed by

the next, etc. Each operation at each station is important to the overall fabrication of the part and

each station’s activity is a state diagram (possibly a sequential state diagram). The outcome is a

complicated process that can be broken down into several small operations with the interlinking

of states one to another.

Each process in the figure below starts with a step 1 followed by 2, 3, 4, 5, etc. At each juncture,

there is a hand-off to a subsequent process. The hand-off occurs at a prescribed step in the

sequence of steps. Each hand-off must be coordinated between two separate state tables.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1

Step 2

Step 3

Step 4

Step 5

ABCDEF

BCDEF

G

BCDEF

CDEF

EF D C B

B

EF

F

D C B

E D C B

F E D C B

 Ch. 11 Use of State Diagrams 49

When a sequence such as this is being planned, the last part (at the furthest downstream station)

is moved off the table and then the next part is moved into the last station and each part upstream

can move downstream one station. Their motion is similar to the cars moving up a station in the

figure of the previous page.

While we use cars to show the sequence, the item may be a single piece of glass or anything

requiring a position where only one can fit in the next station. If there is no limit to the number

of parts that can fit in a waiting line for the next station, there does not need to be the linking

between sequencers as shown above. An example of this would be pallets in a machining

operation in which a pallet is free to move to the next station no matter what the state of the

downstream operation is. In this circumstance, there would be no need to tie state diagrams

together. Each operation would have a state diagram independent (for the most part) from the

preceding operation’s state diagram.

PalletPalletPalletPallet PalletPallet Pallet

Vertical Mill

Welding Machine

Machine Flow

More intricate state diagrams are defined in future chapters such as Ch. 13 which is interested

with batching operations. The state diagram defines entire portions of the programming process

and serves as a discussion point to define the program prior to actually committing to a design.

The state diagram is useful in the very simple diagrams at the beginning of the chapter or with

those at the end of this chapter or in future chapters in this text. The state diagrams of the

exercises at the end of this chapter in many cases are as difficult to design as the actual program

that follows the state diagram and actually controls the process.

Timing of Steps

In many processes, there are bottle-necks which the PLC programmer may be requested to

remove. Timing of movement between stations is an area of concern in many applications. If

the pallet or part is not present at the station before the step is to be accomplished, then the time

to travel may be the bottle-neck. If possible, the programmer should look for ways to avoid this.

One method is to move a piece half-way between two stations which effectively cuts down travel

time by half. If the program will not allow this type of control, other ways such as tracking of

parts and knowing exact position may be used. In any event, while the PLC programmer may

not be thought of as a time-study expert, he/she should consider the time taken to travel between

stations as dead time and minimize it.

Troubleshooting Hint

A troubleshooting hint for one-shots is to program a counter or adder (pseudo-counter) to record

the one-shot event. Either counter or adder works well to trap the event that usually is not seen

 Ch. 11 Use of State Diagrams 50

on the computer screen. I0.0 is seen but |P| of I0.0 is not. If a program contains several contacts

such as |P| of I0.0, then use the circuit shown below to trap or show instances of the one-shot

occurring in logic:

Fig. 11-43

Revisit “Last Coil Wins”

In previous chapters, it was stressed that since the last coil wins, coils should never be double

programmed. However, if a coil is being used with logic from several different sources, it is

possible to use a coil more than once with prior occurrences carrying forward to later

occurrences. This type of programming can become a logistical nightmare and should be

avoided. It does show the scan-dependent nature of programming and the ability to program

ladder logic that would not work the same if re-arranged.

A xB C

x xD E

x xF G

is equal to:

A xB GC D E F

 Fig. 11-44 Accepted Multiple Use of Output Coil

 Ch. 11 Use of State Diagrams 51

Care must be taken to keep rungs of logic programmed in this way close together. If the output x

is programmed as the rungs above and the rungs are not close together, other rungs using x may

be on when the actual state of x is off. The opposite may also be true. This is something that

might be a useful tool in a program. In that case, ignore the previous warning of “last coil wins”

and use the programming technique.

We may have drifted a bit from the original subject of the chapter with a discussion of state

diagrams. The topics discussed are of importance in developing good programs and should be

considered in the scope of the state diagram. The importance of understanding when the

programmer has need of state diagrams is extremely important and should be discussed in

tandem with the subject of how to program a state diagram program.

Planning For Problems at End of Chapter

The problems at the end of the chapter are good practice problems for you to try your skill at

developing a state diagram. Some are quite difficult. Others will be able to be done in a few

minutes. The longer, harder problems can be split into a number of smaller state diagrams that

are joined together.

For instance, the problems involving stacking or moving of material each have three modes:

• Manual

• Homing

• Automatic

The elevator problem has two modes:

• Regular operating

• Irregular operating

A good first step would be to look for the modes if defined and build a state diagram for the

mode. The mode might involve a number of simple state diagrams within the over-all diagram.

For instance, most manual modes allow the operator to move independently an axis or part of the

machine from a jog control as long as the movement does not bind or hurt another part of the

machine. Some programs don’t care and allow the user to do what they want in this mode with

the realization that if a crash or crunch occurs, the user will be the one to suffer. Sometimes this

is best since the machine may need to be moved or jostled a little to free it from a bind or

abnormal position. The programmer is usually the one to decide the safety limits and the

programmer may decide to include the safety logic or not, especially in the manual mode.

Homing includes a number of moves the machine must make to restore it to a proper start

position. Home is the position the machine expects to start its automatic operation from.

Automatic is the mode most used. It should include time delays between steps sufficiently long

to allow for proper movement but short enough to allow the proper amount of parts to be

manufactured to satisfy the operation.

 Ch. 11 Use of State Diagrams 52

If a problem does not define the mode, the programmer has the discretion to include certain

attributes of the program in the mode or not. Usually the operator will help with defining the

mode so that this person can most easily understand the operation of the machine and diagnose

simple problems without the aid of the electrician or engineering programmer. Your best

defense is to please the operator. Then please everyone else to the best of your ability. The

machine tender or operator and the electrician are your best friend. Cultivate a positive

atmosphere with each of them and your job will be easier by far.

The following common device has similar characteristics to the sequencers built above. The

device is used to turn on and off household lights with the programming of the timer by pushing

in the indented buttons around the 24-hour clock.

Fig. 11-45 Sequencer Simplified

 Ch. 11 Use of State Diagrams 53

Summary

This chapter is about state diagrams and their little cousin, the sequencer. Both of these tools are

useful in programming difficult machine operations and allow the programmer to walk away

after an installation with the satisfaction that the operation of the machine has been developed

logically and the maintenance of the machine will be easier than if developed otherwise.

A common statement from many end users who depend on others to program their processes is

that they don’t want “spaghetti code”. This is a metaphor for difficult-to-diagnose code. We

have all seen others’ code that we would term spaghetti code and wonder who would have ever

created such a mess. We should remember that we need to look at the end product from the

customer’s point of view and give the best effort to create a program that both works and is

maintainable.

A systems engineer once looked at my efforts and asked if I knew the KISS method. I did and I

got it. The last letter of the KISS method is one that you or I do not ever want as part of our

label.

Whether you are strongly convinced that state diagrams are a good way to see how to start a

program or not, consider that one of the first programs you will probably be asked to produce is

one similar to the one with the small robot moving the egg seen in this chapter. The ‘boss’ will

try you out on something considered quite simple and in most cases developed in a few hours as

opposed to days or weeks or months. It is a test. So, if you are to pass this initial test, you

should be able to see the problem as a simple sequence and develop the program appropriately.

This is a strong motivator for you to understand the concepts, at least to a point, for how to

develop a sequential program (or state diagram program). Hopefully you will be able to move

quickly through this initial test and onto more meaningful programs down the road.

 Ch. 11 Use of State Diagrams 54

Exercises

1. Elevator Problem – Provide a set of State Diagrams for the Elevator

2. Provide State Diagram(s) for the following:

Low Level L0

Bucket El BE1

Screw Conv SC1

Pump P1

Pump P2

Agitator A1

High Level L4

Bin 1

Screw Conv SC2

Level L1

Level L2

Level L3

 Ch. 11 Use of State Diagrams 55

The main tank will fill with conveyor SC1 and bucket elevator BE1 as well as liquid from pumps

P1 and P2. To make a batch, fill to a level L1 with the ingredient from the bucket elevator.

Then fill to a second level L2 with the ingredient from Pump P1. Then turn on the agitator and

fill to a final level P3 with the ingredient from Pump P2. When done, agitate for a time and

dump using SC2.

3. Provide State Diagrams for the following machine:

 Ch. 11 Use of State Diagrams 56

4. Provide State Diagrams for the following machine:

5. The following Simon Says State Diagram has various labels associated with the circles

(bubbles). Label each bubble according to the attached list:

a. Not Playing

b. Flash Lights

c. Playing/Pushing Buttons

d. Playing/Showing Lights

21 3

Error

Success

4

Won

 Ch. 11 Use of State Diagrams 57

6. From the following two figures below, first fill in the table of inputs and outputs:

 Ch. 11 Use of State Diagrams 58

Fill in Definition of Inputs:

Sensor Function/State Signal Assignment

Fill in Definition of Outputs:

Then write logic to perform the automatic operation of the feeder.

7. The problem below moves a part left to right and into a sanding station. The sander only

turns on after PE 2 sees the part. When the part reaches PE 3, the sander turns off and the

part returns to the left to PE 1.

Draw a state diagram and then write a program in Ladder to control the action described

when the start button is pushed and the system automatically repeats the travel right, then left

five times. Include a short time delay at each end of travel.

Actuator Function/State Signal Assignment

 Ch. 11 Use of State Diagrams 59

Start Button PB1

Part Travels Down
Machine

Part is sanded

Part Travels Back

Part Stops, is Removed
after 5 passes

PE3

PE2
PE3

PE3

PE3PE1

 Ch. 11 Use of State Diagrams 60

Lab 11.1 Three Pumps

Three pumps are arranged as follows to provide cooling water for a manufacturing plant. For

cooling to occur, at least one of the pumps must be on at all times but if no cooling is required,

all pumps are to be turned off. For more cooling, a second pump is requested to turn on,

followed by a third pump if sufficient cooling is still not received. To protect each from wearing

out prematurely, a plan has been devised to allow each pump to turn on and off by using logic to

turn on the next pump in sequence and turn off the pump that has been on the longest. Timers

should not be used to determine the pump on longest but rather logic should be used to determine

which pump should have been on the longest. For example, if pump 2 and 3 are on but 1 is off,

pump 2 is the one that should be turned off since it probably came on before 3 did. If a call for

less cooling is received and all three pumps are on, the pump that was logically on for the longest

time should be turned off. The system starts out with no pumps on and when a call for more

occurs, pump 1 will turn on. Then the system is cyclical rotating through pumps 2, 3, 1, 2, etc.

Pump 1

Pump 2

Pump 3

More

Less

Options:

Lab 11.1 Add auto/manual switches for 1, 2, or 3 pumps. Auto will allow cycling of a

pump normally while manual will allow a pump to be started and stopped with a

push-button.

 .1- P1(A/M), P2(A/M), P3(A/M)

 .2- P1(A/M), P2(A/M), P3(A)

 .3- P1(A/M), P2(A), P3(A/M)

 .4- P1(A), P2(A/M), P3(A/M)

 .5- P1(A/M), P2(A), P3(A)

 .6- P1(A), P2(A/M), P3(A)

 .7- P1(A), P2(A), P3(A/M)

 .8 - add a fourth pump and have all P1-P4 either (A/M)

 Ch. 11 Use of State Diagrams 61

Note: The base program of Lab 11.1 is called a floating master for the pumps. The master is

initialized as pump 1 until pump 2 turns on when it becomes the master. Pumps turn of based on

the principle of leaving the master pump on as long as possible. Therefore, pump 1 would turn

off before pump 2 if both pump 1 and pump 2 are on.

The Pump Demand Program Hints

Notice the position of the logic is extremely important in that the scan is used to do operations in

a sequential order within the scan. This programming technique can aid in solving very difficult

sequential logic such as this problem with minimal difficulty. Use of the scan is a great aid in

programming and sequential programming in particular.

2Off

Rules to

turn on

Pump 1

1 On

Rules to

turn off

Pump 1

Pump 1

Define One Shots for

Increase, Decrease

Establish rules for On,

Off of various pumps

2Off 1 On

2Off 1 On

Pump 2

Pump 3

2

Must also establish

logic for:

1 3
States 1-3 mutually

exclusive (only one

on at a time)

Pump 1

on last

Pump 2

on last
Pump 3

on last

Rules to

turn on

Pump 2

Rules to

turn on

Pump 3

Rules to

turn off

Pump 2

Rules to

turn off

Pump 3

 Ch. 11 Use of State Diagrams 62

Lab 11.2 Four Fans – Repeat of 11.1 except for four fans instead of three pumps

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

