
 Ch 12 Handling Data  1 

 

Chapter 12 HANDLING DATA 
 

 

 

Introduction 
 

 

In this chapter are found a number of output commands that handle data.  These are instructions 

that tend to be accepted with most PLC manufacturers as a core of instructions that accomplish a 

simple task and provide a useful function to the larger program. 

 

These instructions include boolean instructions, instructions for handling simple math 

conversions, file manipulation instructions, queuing instructions, and instructions for bit shifting. 

 

Many of these instructions were created after earlier PLCs reported some functions being 

performed again and again at the cost of a great amount of PLC code.  For instance, the queuing 

operations of FIFO or LIFO could be created in PLC code using a number of other instructions.  

This became too confusing to the PLC programmer and the FIFO or LIFO instruction was 

provided as a result.   

 

Some of the instructions came about as the result of the PLC emulating the microprocessor 

instruction set.  Word-length boolean instructions such as AND and moving operations such as bit 

shifting were copied and installed in the PLC instruction set from similar microprocessor 

instructions. 

 

The most important point of the chapter is that most instructions are given with an example from 

industry.  Each of these examples has been programmed by many different programmers using 

techniques similar to the examples shown.  Instructions such as these have been used to provide 

control of automation for a wide variety of industry and solve many complex problems.   
  



 Ch 12 Handling Data  2 

 

Siemens Word Logic and Shift/Rotate Instructions 
 
Instructions from Siemens are given first.  They are word logic operations and shift/rotate 

instructions.  The instructions are shown in the groups below and their operations are explained 

in the following pages. 

  

 
 

 
These instructions are covered in the following with the instruction definition given followed 
by, in many cases, an example. The instructions may be further described by using the ‘help’ 
menu while in the programming menu on the TIA portal. 
 
AND 
 
“You can use the AND logic operation instruction to combine the value at the IN1 input and the 

value at the IN2 input bit-by-bit by AND logic and query the result at the OUT output.  When the 

instruction is executed, bit 0 of the value at the IN1 input and bit 0 of the value at the IN2 input 

are logically ANDed.  The result is stored in bit 0 of the OUT output.  The same logic operation is 

executed for all other bits of the specified values.” 

 

 

 

The following table shows how the instruction works using specific operand values: 

Fig. 12-1  Siemens Word 

Logic, Shift/Rotate 

Instructions 

Fig. 12-2  Siemens AND 

Instruction  



 Ch 12 Handling Data  3 

 

Parameters Operand Value 
IN1 Tag_Value1 0101 0101 0101 0101 

IN2 Tag_Value2 0000 0000 0000 1111 

OUT Tag_Result 0000 0000 0000 0101 

 

OR 
 
“You can use the OR logic operation instruction to combine the value at the IN1 input and the 

value at the IN2 input bit-by-bit by OR logic and query the result at the OUT output.  When the 

instruction is executed, bit 0 of the value at the IN1 input and bit 0 of the value at the IN2 input are 

logically ORed.  The result is stored in bit 0 of the OUT output.  The same logic operation is 

executed for all bits of the specified tags.” 

 

The following example shows how the instruction works: 

 

 
 

XOR 
 
“You can use the EXCLUSIVE OR logic operation to combine the value at the IN1 input and the 

value at the IN2 input bit-by-bit by EXCLUSIVE OR logic and query the result at the OUT output.” 

 

The following example shows how the instruction works:.  

 

 
 

INV 
 
“You can use the Create ones complement instruction to invert the signal state of the bits at the 

IN input.  When the instruction is processed, the value at the IN input and a hexadecimal template 

(W#16#FFFF for 16-bit numbers or DW#16#FFFF FFFF for 32-bit numbers) are logically EXCLUSIVELY 

ORed.  As a result, the signal state of the individual bits is inverted and sent to the OUT output.   

The instruction is only executed if the signal state is 1 at the EN enable input.  In this case, the 

ENO output also has the signal state 1.” 

 

The following example shows how the instruction works:.  

Fig. 12-3  Siemens OR 

Instruction  

Fig. 12-4  Siemens 

XOR Instruction  



 Ch 12 Handling Data  4 

 

 

DECO 
 
“You can use the Decode instruction to set a bit in the output value specified by the input value.  

The Decode instruction reads the value at the IN input and sets the bit in the output value whose 

bit position corresponds to the read value.  The other bits in the output value will be overwritten 

with zeroes.  When the value at the IN input is greater than 31, a modulo-32 instruction is 

executed.” 

 

The following example shows how the instruction works: 

 

 
 

The following figure shows how the instruction works using specific operand values: 

 

 
 

ENCO 
 
“You can use the Encode instruction to read the bit number of the least significant bit in the input 

value and to send it to the OUT output.  The Encode instruction selects the least significant bit of 

the value at the IN input and writes its bit number to the tag in the OUT output.”  

 

The following example shows how the instruction works: 

 

 
 

The following figure shows how the instruction works using specific operand values: 

 

Fig. 12-5  Siemens 

INVERT Instruction  

Fig. 12-6  Siemens 

DECODE Instruction  

Fig. 12-7  Siemens 

ENCODE Instruction  



 Ch 12 Handling Data  5 

 

 
 
SEL 
 
“Depending on a switch (G input), the Select instruction selects one of the IN0 or IN1 inputs and 

copies its content to the OUT output. When the G input has the signal state 0, the value at the IN0 

input is moved. When the G input has the signal state 1, the value at the IN1 input is copied to the 

OUT output.” 

 

The following example shows how the instruction works: 

 

 
 

The following table shows how the instruction works using specific operand values: 

 

Parameters Operand Value 
G TagIn_G 0 1 

IN0 TagIn_Value0 W#16#0000 W#16#4C 

IN1 TagIn_Value1 W#16#FFFF W#16#5E 

OUT TagOut_Value W#16#0000 W#16#5E 

 

MUX 
 
“You can use the Multiplex instruction to copy the content of a selected input to the OUT output.  

The number of selectable inputs of the instruction box can be expanded.  The inputs are 

automatically numbered in the box.  Numbering starts at IN0 and continues consecutively with 

each new input.  You use the K parameter to define the input whose content is to be copied to the 

OUT output.  If the value of the K parameter is greater than the number of available inputs, the 

content of the ELSE parameter is copied to the OUT output and the ENO enable output is assigned 

the signal state 0.” 

 

 

Fig. 12-8  Siemens 

SELECT Instruction  



 Ch 12 Handling Data  6 

 

 
The following table shows how the instruction works using specific operand values: 

 

Parameters Operand Value 
K Tag_Number 1 

IN0 Tag_Value_0 DW#16#00000000 

IN1 Tag_Value_1 DW#16#3E4A7D 

ELSE Tag_Value_2 DW#16#FFFF0000 

OUT Tag_Result DW#16#3E4A7D 

 

 
DEMUX 
 
“You can use the Demultiplex instruction to copy the content of the IN input to a selected output.  

The number of selectable outputs can be expanded in the instruction box.  The outputs are 

automatically numbered in the box.  Numbering starts at OUT0 and continues consecutively with 

each new input.  You use the K parameter to define the output to which the content of the IN input 

is to be copied.  The other outputs are not changed.  If the value of the K parameter is greater than 

the number of available outputs, then the content of the IN input will be copied to the ELSE 

parameter and the signal state 0 is assigned to the ENO enable output.” 

 

The following example shows how the instruction works. 

 
 

The following table shows how the instruction works using specific operand values: 

 

Input values of the Demultiplex instruction before network execution: 

 

Parameters Operand Values 
K Tag_Number 1 4 

IN Tag_Value DW#16#FFFFFFFF DW#16#3E4A7D 

 

Fig. 12-9  Siemens 

MUX Instruction  

Fig. 12-10  Siemens 

DEMUX Instruction  



 Ch 12 Handling Data  7 

 

Output values of the Demultiplex instruction after network execution: 

 

Parameters Operand Values 
OUT0 Tag_Output_0 Unchanged Unchanged 

OUT1 Tag_Output_1 DW#16#FFFFFFFF Unchanged 

ELSE Tag_Output_2 Unchanged DW#16#3E4A7D 

 

SHR 
 
“You can use the Shift right instruction to shift the content of the operand at the IN input bit-by-bit 

to the right and query the result at the OUT output.  You use the N parameter to specify the 

number of bit positions by which the specified value is to be shifted." 

  

The following figure show how the content of an operand of integer data type is shifted four bit 

positions to the right: 

 

 
 

The following example shows how the instruction works: 

 

 

The following table shows how the instruction works using specific operand values: 

Parameters Operand Value 
IN TagIn_Value 0011 1111 1010 1111 

N Tag_Number 3 

OUT TagOut_Value 0000 0111 1111 0101 

Fig. 12-11  Siemens 

SHIFT RT Instruction  



 Ch 12 Handling Data  8 

 

SHL 
 
“You can use the Shift left instruction to shift the content of the operand at the IN input bit-by-bit 

to the left and query the result at the OUT output.  You use the N parameter to specify the number 

of bit positions by which the specified value is to be shifted.  When the value at the N parameter 

is 0, the value at the IN input is copied to the operand at the OUT output.” 

 

following figure shows how the content of an operand of WORD data type is shifted six bit 

positions to the left: 

 

 
 

The following example shows how the instruction works: 

 

 

 

The following table shows how the instruction works using specific operand values: 

 

Parameters Operand Value 
IN TagIn_Value 0011 1111 1010 1111 

N Tag_Number 4 

OUT TagOut_Value 1111 1010 1111 0000 

 

 

  

Fig. 12-12  Siemens 

SHIFT LT Instruction  



 Ch 12 Handling Data  9 

 

ROR 
 
“The Rotate right instruction rotates the content of the operand at the IN input bit-by-bit to the 

right and queries the result at the OUT output.  You use the N parameter to specify the number of 

bit positions by which the specified value is to be rotated.  The bit positions freed by rotating are 

filled with the bit positions that are pushed out.” 

 

The following figure shows how the content of an operand of DWORD data type is rotated three 

positions to the right: 

 

 
 

The following example shows how the instruction works: 

 

 
 

The following table shows how the instruction works using specific operand values: 

 

Parameters Operand Value 
IN TagIn_Value 0011 1111 1001 0101 

N Tag_Number 5 

OUT TagOut_Value 1010 1000 0111 1100 

 

ROL 

“The Rotate left instruction rotates the content of the operand at the IN input bit-by-bit to the left 

and queries the result at the OUT output.  You use the N parameter to specify the number of bit 

Fig. 12-13  Siemens 

ROTATE RT Instruction  



 Ch 12 Handling Data  10 

 

positions by which the specified value is to be rotated.  The bit positions freed by rotating are 

filled with the bit positions that are pushed out.” 

The following figure shows how the content of an operand of DWORD data type is rotated three 

positions to the left: 

 
The following example shows how the instruction works: 

 

 
 

The following table shows how the instruction works using specific operand values: 

 

Parameters Operand Value 
IN TagIn_Value 1010 1000 1111 0110 

N Tag_Number 5 

OUT TagOut_Value 0001 1110 1101 0101 

 

 

Allen-Bradley Logical Instructions 

AND
 

Fig. 12-14  Siemens 

ROTATE LT Instruction  



 Ch 12 Handling Data  11 

 

When enabled, the AND instruction performs a bitwise AND operation on SourceA and SourceB and 

places the result in Dest. 

 

 

OR 

When enabled, the OR instruction performs a bitwise OR operation on SourceA and SourceB and 

places the result in dest. 

 

XOR 

When enabled, the XOR instruction performs a bitwise XOR operation on SourceA and SourceB and 

places the result in the destination tag. 

Fig. 12-15  A-B AND Instruction  

Fig. 12-16  A-B OR Instruction  



 Ch 12 Handling Data  12 

 

 

 

NOT 

When enabled, the NOT instruction performs a bitwise NOT operation on value_1 and places the 

result in value_result_not. 

 

 
 

 
Swap Byte – SWPB 
 
The three SWPB instructions each reorder the bytes of DINT_1 according to a different order 

mode.  The display style is ASCII, and each character represents one byte.  Each instruction 

places the bytes, in the new order, in a different Destination. 

 

Fig. 12-17  A-B XOR Instruction  

Fig. 12-18  A-B NOT Instruction  



 Ch 12 Handling Data  13 

 

 
 

   Fig. 12-19   A-B Swap Byte Instructions 

 

Clear – CLR 
 
Clear all the bits of value to 0. 

 
 

Bit Field Distribute (BTD) 
 
“When enabled, the BTD instruction copies a group of bits from the Source to the Destination.  

The group of bits is identified by the Source bit (lowest bit number of the group) and the Length 

(number of bits to copy).  The Destination bit identifies the lowest bit number bit to start with in 

the Destination.  The Source remains unchanged.” 

 

 

Fig. 12-21  A-B CLR Instruction  

Fig. 12-22a  A-B Bit Field 

Distribution (BTD) Instruction  



 Ch 12 Handling Data  14 

 

 

 
 

When enabled, the BTD instruction moves 10 bits from value_1 to value_2. 

 
 

The shaded boxes show the bits that changed in value_2. 

 

 
 
Allen-Bradley Array/Shift Instructions 
 

 
 
Bit Shift Left (BSL) 
 
“The BSL instruction shifts the specified bits within the Array one position left.” 

 

 

Fig. 12-22b  A-B Bit Field 

Distribution (BTD) Instruction 

Fig. 12-23  A-B Bit Shift Left 

(BSL) Instruction  



 Ch 12 Handling Data  15 

 

 
 

 

Bit Shift Right (BSR) 
 
“The BSR instruction shifts the specified bits within the Array one position right.” 

 

 
 

 

 
 

  

Fig. 12-24a  A-B Bit Shift 

Right (BSR) Instruction  

Fig. 12-24b  A-B Bit Shift 

Right (BSR) Instruction  



 Ch 12 Handling Data  16 

 

FIFO Load (FFL) 
 
 

 
 
FIFO Unload (FFU) 
 
“The FFU instruction unloads the value from position 0 (first position) of the FIFO and stores that 

value in the Destination.  The remaining data in the FIFO shifts down one position.” 

 

 

Fig. 12-25  A-B This FFL 

instruction copies the Source 

value to the FIFO. 

 

Fig. 12-26  A-B An Example 

of the Fifo Unload Instruction 



 Ch 12 Handling Data  17 

 

LIFO Load (LFL) 
 

“The LFL instruction copies the Source value to the LIFO.” 

 

 
 

 
 
 
LIFO Unload (LFU) 
 

“The LFL instruction unloads the value at .POS of the LIFO and stores 0 in that location.” 

 

 

Fig. 12-27  A-B An Example 

of the Lifo Load Instruction 

Fig. 12-28  A-B An Example 

of the Lifo Unload Instruction 



 Ch 12 Handling Data  18 

 

 
 

 
Queueing Operations 
 

If a queueing operation is needed in a process, consider using the FIFO or LIFO instructions.  

FIFO is short for First in, First out.  LIFO is short for Last in, First out.  Both refer to queueing of 

a part or entity for use in a stage of a machine.  For instance, consider the following batching 

system using the FIFO instruction: 
 

Start with the Mix System empty and all Process Tanks A-F full: 

 

Tank A  Tank B Tank C Tank D Tank E Tank F

Mix Tank

 
   Fig. 12-29a  Mix System Requiring Queueing 

 

The system above consists of 6 processes that are filled separately with a liquid made in the Mix 

System tank.  Tanks A-F call for a new batch of liquid when down to ¼ full.  If the Mix System 

is in the process of making a batch for a particular tank, the tank that just fell less than ¼ full 

must wait for its batch to be made.  Since batches are unique for each Tank A-F, the system must 

completely drain, go through a flush cycle, and then start mixing for the next tank.  Multiple 

tanks may call for a batch but no tank may call more than once.   



 Ch 12 Handling Data  19 

 

After some time passes, the tank levels lower due to the demand from the processes needing the 

liquids.  The first one to fall to its low level switch calls for a new batch to be made.  That tank’s 

request is entered into the FIFO stack and immediately taken from the FIFO stack to the recipe 

program since the Mix System tank is not active. 

 

 

 

Tank A  Tank B Tank C Tank D Tank E Tank F

Mix Tank

 
 

  Fig. 12-29b  Mix System – One Tank Low – Request to Stack 

 

 

Stack
Tank F

Stack

An Empty Mix 

Tank=>

Starts Mix for Tank 

F in Mix Tank -

Stack goes empty

    
 

Tank F requests a batch be made.  Tank F’s request enters the FIFO stack.  Since the batching 

program is not running, Tank F’s request is immediately acted on by the batching program and a 

new batch starts in the Mix System for Tank F.  The stack is emptied. 

 

A mix is being made for Tank F.  Other tanks continue to drop but no tanks have called for a new 

mix.  The Stack continues to remain empty. 
 



 Ch 12 Handling Data  20 

 

Tank A  Tank B Tank C Tank D Tank E Tank F

Mix Tank 

making mix 

for Tank F

 
 

 Fig. 12-29c  Mix System – Mix for Tank F Starts 

Stack

(empty)

 
 

 

While the batch is being mixed for F, two other tanks reach their low tank limit and enter the 

stack.  They enter in the order that they reached their low limit.  The following shows the stack 

with Tank B and Tank D in the same order as the tanks went low. 

 

 

Tank A  Tank B Tank C Tank D Tank E Tank F

Mix Tank 

making mix 

for Tank F

 
 

   Fig. 12-29d  Mix System – Tanks B and D to Stack 

 



 Ch 12 Handling Data  21 

 

Stack
(first)Tank B

Tank D (second)

 
 

 

As soon as the batch for Tank F is made and emptied, the request for Tank B is taken using the 

FIFO unload and the mix system starts making a batch for Tank B. Tank D moves to the top of 

the stack. 

 

 

Tank A  Tank B Tank C Tank D Tank E Tank F

Mix Tank 

making mix 

for Tank F

 
 

  Fig. 12-29e  Mix System – Tank F Completes, B Starts, D Moves Up Stack 

 

 

Stack

Tank F Mix completes =>

Tank B Mix Starts

Tank D moves up stack

(first)Tank D

 
 

 

While the process continues supplying mix to each tank as needed, the FIFO stack will continue 

to control the queueing operation.  The FIFO controls the operation. 



 Ch 12 Handling Data  22 

 

An Aside on Simulation 
 

The various scenarios on queuing can be planned and implemented and the process not run at all 

as planned.  It cannot always be predicted when a bottleneck will appear so care must be taken 

before the tanks are designed and the process is built to predict whether the various processes 

will work as advertised.  It is not acceptable to build the process only to tear it out and add 

equipment in a few months based on observed bottlenecks.  Computer simulation may be a 

necessary component of the design of a process.  It may be required to size equipment and 

predict flows in order to maximize the manufacturer’s investment. 

 

With a good software simulation package, the user can adequately predict flow rates and 

equipment throughput efficiently enough to size the equipment for the process.  Not all processes 

must be simulated but those with queues in them are more apt to need a good simulation than 

other types of processes.   

 

The simulation becomes an experiment in which as much as is known about the process is 

introduced and the various parts are combined to run a model of the process.  The model is 

constructed of elements that act the role of machine parts and the final product is assumed to 

contain all elements of the process involved.  Statistics play a role in the successful simulation.  

If a rate is not known, a random variable may be substituted.  If a rate is known, it is used in the 

simulation.  Better than a predictable rate is a rate and a statistical distribution of the rate.  With 

this information, a process may be seen to not fail under most circumstances but if a number of 

entities in the model have statistically long manufacturing times or high fail rates, the process 

may react differently than at the average.  If this is the case, bottlenecks may spoil the overall 

throughput and cause the engineer to re-think the design.   

 

The use of sophisticated simulation software with its statistical prediction algorithms will predict 

bottlenecks not necessarily predicted by a simpler analysis. 

 

Using common sense is also a tool to be used.  For example, if the loading rate of a part can be 

determined, the operator should not be allowed to make more of that product per unit of time 

than can be off-loaded from a manufacturing line.  If rules such as this are not demanded in the 

control strategy, chaos is as predictable as snow in Toledo in January.  So, the best plan of a 

designed queuing strategy may fall apart if the process is not adequately designed and perhaps a 

software simulation tried to predict failure and future bottlenecks.  After-the-fact programming 

on the PLC cannot compensate for a design failure in this area.  Do not be surprised if you are 

asked to try, however, when this happens.  

 

Books on the theory of queuing may also be explored but, unless the process is very simple, the 

process is better served with a simulation.   

 

 

 

 



 Ch 12 Handling Data  23 

 

Application Specific Instructions 
 

The other instruction type is BSL and BSR.  These instructions will be reviewed here.  Although 

similar to other Data Handling Instructions, they are used for a specific type of application. 

 

BSL and BSR instructions are used primarily as shift register functions, tracking parts down 

conveyors.   

 

Definition of BSL and BSR (from the Reference Manual): 

 

 
Instruction 
Mnemonic     Name   Purpose  

BSL Bit Shift Left 
Loads a bit of data into a bit array, shifts the pattern of 
data through the array, and unloads the last bit of data 
in the array.  BSL shifts data to the left. 

BSR Bit Shift Right 
Loads a bit of data into a bit array, shifts the pattern of 
data through the array, and unloads the last bit of data 
in the array.  BSR shifts the data to the right. 

 

 

An Application using BSL or BSR: 

 

If a conveyor is installed in a system, the BSL or BSR is used to track pieces on the conveyor (if 

the piece does not slide or scoot on the conveyor).   

 

Tracking Boxes Down Conveyor

Use BSR to track boxes down conveyor

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 00 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Use BSR to track boxes down shift register
 

 

To move the bits through the shift register requires an input pulse signal.  Bits are shifted with 

each leading edge of the BSR or BSL.  For example, if an input watched the sprocket of a 

conveyor as the conveyor turned, the input would pulse on and off as the conveyor’s sprocket 

rotated.  Proximity switches work well for this application.  Bits in the shift register move each 

time the input from the proximity switch activates the BSR or BSL instruction. 

 

Fig. 12-30  A-B An Example 

of the BSL Instruction 



 Ch 12 Handling Data  24 

 

Spoked 

Wheel
Prox Switch

 
 

   Fig. 12-31  Movement Sensor for Shift Register 

 

With each new leading edge of the proximity switch signal, the bits shift one place in the shift 

register.   

 

Each type of product needing to be tracked needs a separate shift register.  In the example above, 

in order to track yellow boxes separately from pink boxes, the bit present in one shift register 

must represent yellow boxes.  Same position bits in a second shift register must represent pink 

boxes.   

 

Input into the shift register of 1’s come from the Bit Address.  Usually this address is an input 

address but it may represent the result of logic as well.  For instance, a photo-eye is usually the 

device used to see a box prior to introduction onto a conveyor.  If the box is bar-coded, entrance 

into a shift register requires the successful read of a bar code and the photo-eye seeing the 

product.  Both must be present to turn on the input to the Bit Address. 

 

The shift register works equally well with paint applications.  Moving parts down a conveyor to 

paint poses the requirement that no sensor can be placed immediately in the paint area since paint 

can cover and make inoperable most types of presence sensors.  Parts must be tracked to the 

paint area and painted with various colors based on the process requirement.  For instance, pink 

parts are painted at station A and yellow parts at station B.  If a part is to be painted pink, it is 

entered in the pink shift register.  If the part is to be painted yellow, it is entered in the yellow 

shift register.   

 

Pink Part Shift Register 

 

Movement of bits  Bit moves from bit 0 of word 0 to bit 15 of word 1. 

 
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Yellow Part Shift Register 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

 



 Ch 12 Handling Data  25 

 

Paint Application: 

 

Parts on Chain: 

Movement of parts 

 

Pink

Spray

Yellow

Spray

 
 

 Fig. 12-32  Multiple Types of Parts Tracked through Spray Booth     

 

 

   Pink Spray Shift Register 
 

B3:4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

B3:5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B3:6 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 

B3:7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

   Yellow Spray Shift Register 

 
B3:8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B3:9 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 

B3:10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

B3:11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

    

 



 Ch 12 Handling Data  26 

 

Logic for Shift Registers 

 
 

     I: 

 

 Move bits with pulse 

 

 

 

 

 

     I:     B3:4/15 

 

Introduce pink part to shift 

register 

 

 

 

     I:     B3:8/15 

 

Introduce yellow part to shift 

register 

 

 

    B3:6/8  

 

Spray Pink (may include multiple 

bits) 

 

 

    B3:10/2     

 

Spray Yellow (may include 

multiple bits) 

 

Logic shown in the above rungs is used to control the output of the shift register and control 

down-stream operations in a tracking application. 

 

While the shift right (or left) instruction is chosen for tracking applications, it should be 

considered for only the simplest applications.  For more involved applications, an algorithmic 

approach including a FIFO table of leading edges with a counter to index through a zone should 

be used.  The approach should include a pointer to a recipe of choices in which the recipe 

includes specific control bits to turn on or off an output when the parts’ leading edge passes an 

action point.  Since shift instructions take significant time to execute, the algorithm must be 

considered where multiple zones are involved and multiple parts are included in any specific 

zone.  Pulse tachometers can be used that are significantly faster than the scan of the PLC with 

no loss of motion with the more advanced algorithm.  The shift instruction depends on   

BSR 



 Ch 12 Handling Data  27 

 

SCL 
 

With a number of different applications being presented, it is appropriate to ask the question as 

to which language to use.  The programming languages of A-B and Siemens commonly referred 

to as SCL or Sequential Logic is a procedural langage instead of object-oriented. The two 

languages discussed so far (LAD and FBD) are object-oriented.  The language introduced below 

is a procedural language and looks very much like “C” or Visual Basic.  The languages are 

useful in looping or iterative applications and may be useful as well in a number of other control 

schemes.   

 

The examples below are from Siemens but the A-B equivalent language is very similar and 

supports many of the same procedural operations. 

 

Siemens SCL Language 
 

The instructions shown here are part of the SCL or procedural language from Siemens’ S7-1200. 

 

 

  
 

Fig. 12-33 Siemens SCL Move  

and Conversion Operations 



 Ch 12 Handling Data  28 

 

 
 

 
 
Explanations of some of the more important SCL instructions with examples are given below.  

These are found in the instruction explanations in the SCL language in the TIA portal helps: 

 
“IF: Run conditionally 
 

Description  

The instruction "Run conditionally" branches the program flow depending on a condition. The 

condition is an expression with Boolean value ((TRUE or FALSE). Logical expression or 

comparative expressions can be stated as conditions. 

When the instruction is executed, the stated expressions are evaluated. If the value of an 

expression is TRUE, the condition is fulfilled; if the value is FALSE, it is not fulfilled. 

Syntax 

Depending on the type of branch, you can program the following forms of the instruction: 

 Branch through IF: 

IF <Condition> THEN <Instructions> 

Fig. 12-34 Siemens SCL Program 

Control Operations 



 Ch 12 Handling Data  29 

 

END_IF 

If the condition is satisfied, the instructions programmed after the THEN are executed. If the 

condition is not satisfied, the execution of the program continues with the next instruction after 

the END_IF. 

 Branch through IF and ELSE: 

 

IF <Condition> THEN <Instructions1> 

ELSE <Instructions0>; 

END_IF 

If the condition is satisfied, the instructions programmed after the THEN are executed. If the 

condition is not satisfied, the instructions programmed after the ELSE are executed. Then the 

execution of the program continues with the next instruction after the END_IF. 

 Branch through IF, ELSIF and ELSE: 

 

IF <Condition1> THEN <Instructions1> 

ELSIF <Condition2> THEN <Instruction2> 

ELSE <Instructions0>; 

END_IF; 

Example 

The following example shows how the instruction works: 

IF "Tag_1" = 1 THEN "Tag_Value" := 10; 

ELSIF "Tag_2" = 1 THEN "Tag_Value" := 20; 

ELSIF "Tag_3" = 1 THEN "Tag_Value" := 30; 

ELSE "Tag_Value" := 0; 

END_IF; “ 

  



 Ch 12 Handling Data  30 

 

Example of Procedural Tracking (Similar to Shift Register) 
 
The use of a shift register to track parts on a conveyor is a very good visual way to track items.   

However, it may not be efficient and capable of more sophisticated tracking problems.   

If there are a number of different parts being tracked and there are a number of parts in an area, 

then consider using a table similar to the one below and track the part and its position in a table.  

If the part has an action that is configured for a position in the table, the program can ask whether 

the part is to have the particular action take place or not.  The sophistication of tracking multiple 

parts and keeping close track of each part lends itself to advanced tracking more sophisticated to 

either state diagram tracking or shift register tracking and with a small amount of computer code 

that can be very efficiently executed. 

 

 

Part one’s Pattern Part one’s Position

Part two’s PositionPart two’s Pattern

Part 1
Part 2

flow

Action 

Position

empty empty

empty empty

empty empty

Fig. 12-35 Part 

Tracking with 

Procedural Language

 
 

The tracking program of the parts above is more sophisticated than the tracking using shift 

registers described earlier.  Either may be chosen and the programmer must decide which is best 

in a specific case. 

 

There are several choices and they improve with the S7-1500 processor.  The following 

languages are available for use in the FB.  SCL is a ‘C’ like language. With the choice SCL, the 

following C language is avaiable.  SCL is also available in the Siemens 1500’s.  Also available 

in the 1500’s is CEM, a cause-and-effect matrix language. 



 Ch 12 Handling Data  31 

 

 

 

This sets the following language as the language of choice: C 

 

 

There are a number of websites and free books teaching programming in C.  One of the best is 

from the originators of C – Kernighan and Ritchie: 

C Programming by Kernighan and Ritchie – 2nd Ed. – Free PDF  

https://www.engr.colostate.edu/ECE251/References/The%20C%20Programming%20Language.pdf 



 Ch 12 Handling Data  32 

 

Considerations for Tracking 
 

There are many considerations when determining whether to use tracking or not. If multiple 

conveyors are used to track parts, then the part must be tracked from conveyor to conveyor.  

When overlapping two conveyors, does one use the pulse from the first or the second.  Also, the 

part may slip or not move with the pulse train causing an inaccuracy. Or the piece may break.  

But, with tracking, keeping track of parts is superior to other methods such as state diagrams.  If 

a bar code or a rfid tag can be placed on the part, tracking is not needed.  But with these devices, 

more programming must be included reading the tag.  All these facts must be considered when 

determining the best method of controlling pieces on a line. 

 
 
 
 
Summary 
 

This chapter explains a number of data handling instructions and provides applications for their 

use in factory automation.  Instructions are provided for a number of operations that would 

otherwise have required a significant programming effort to provide.  Included are the queuing 

operations using FIFO instructions.  Other interesting instructions in data handling include the 

bit-shift instructions.  These instructions are used for shift register part tracking.  Instructions 

used in data manipulation were shown with examples included for each type of instruction.   

 

Examples of different tracking options are discussed and the methods of programming are 

examined. 

 

 
  



 Ch 12 Handling Data  33 

 

Exercises: 
 

1. Discuss alternative methods of writing tracking programs other than the shift register.  Which 

would you prefer?  Under what conditions would you prefer the alternative?  What 

advantages/disadvantages does the shift register approach have? 

 

1. Why would an instruction called “SEL” or select be useful in a PLC?  How else could the 

programmer execute this operation if the instruction were not  present? 

 

2. In Chapter 6, we first presented this problem.  However, the problem would have a better 

outcome if a FIFO was installed to answer the question as to which tank to fill next.   

 

Write the logic in Ladder to satisfy the following control problem:  

High Level L3

Low Level L2

High Level L5

Low Level L4

Conv C1
High Level L1

Low Level L0

Screw Conv SC1

Conv C2 Left Conv C2 Right

Storage Bin 1

Bin 1 Bin 2

High Level L7

Low Level L6

High Level L9

Low Level L8

Bin 3 Bin 4

Conv C3 Left Conv C4 LeftConv C3 Right Conv C4 Right

 
The process depends on a level switch in the four bins at the bottom (Bin 1-4).  For any bin to 

fill, it must be at a low level.  Then the conveyor C2 will turn on as well as either C3 or C4 to fill 

the appropriate bin.  The direction of C2, C3 and C4 must be correct as well (forward or reverse).  

Also, Storage Bin 1 has a high and low level switch and will be filled from above by conveyor 

C1 as needed.   
 

 

Fill in Definition of Inputs: 
      

Sensor Function/State Signal Assignment 

   

   

   



 Ch 12 Handling Data  34 

 

   

   

   

   

   

   

   

 
 
Fill in Definition of Outputs: 

    
 

Next, write the ladder logic to fill any bin that falls below the low level in the order that a request 

is made. 

 

 

 

  

Actuator Function/State Signal Assignment 

   

   

   

   

   

   

   

   

   



 Ch 12 Handling Data  35 

 

Lab 12.1  

Set up the Shift Register for tracking two different parts similar to the example explained  in the 

chapter.  Use inputs for introducing the two different boxes into two different shift registers and 

the prox switch.  You can also use a timer to introduce pulses for a simulated prox switch.  Make 

a variable distance that can be inserted at a location to vary the point of extraction.  Turn on an 

output to signal an extractor solenoid turning on. 
 

Tracking Boxes Down Conveyor

Use BSR to track boxes down conveyor

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 00 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Use BSR to track boxes down shift register
 

Spoked 

Wheel
Prox Switch

 

  



 Ch 12 Handling Data  36 

 

Lab 12.2 

Set up the shift register for tracking multiple parts on a conveyor using SCL similar to the 

application described in Fig. 12-35. 

 

Part 1
Part 2

flow

Action 

Position
 

 

Lab 12.3 

Set up the queuing operation similar to the mix tank example in the chapter.  Demonstrate a tank 

level switch going low and the subsequent operation of the mix tank to make a mix, drain it to 

the appropriate tank and continue with the next queued operation. 

 

Tank A  Tank B Tank C Tank D Tank E Tank F

Mix Tank

 

 

 

  



 Ch 12 Handling Data  37 

 

Appendix A 

Languages: 
 

Siemens 

 

 
 

 

 



 Ch 12 Handling Data  38 

 

 
 

 
 

 



 Ch 12 Handling Data  39 

 

 



 Ch 12 Handling Data  40 

 

 

 
 

 



 Ch 12 Handling Data  41 

 

 

 

 
 



 Ch 12 Handling Data  42 

 

 
 

 
 

 



 Ch 12 Handling Data  43 

 

 

 

 
 

 



 Ch 12 Handling Data  44 

 

 

 
 

 



 Ch 12 Handling Data  45 

 

 

 

 



 Ch 12 Handling Data  46 

 

 
 

 

 

CEM 

https://www.youtube.com/watch?v=FaR9rVXUkJo 

 

 

 

 

 

 

 
This work is licensed under a Creative Commons Attribution 4.0 International License. 

https://www.youtube.com/watch?v=FaR9rVXUkJo
https://creativecommons.org/licenses/by/4.0/

