Chapter 12 HANDLING DATA

Introduction

In this chapter are found a number of output commands that handle data. These are instructions
that tend to be accepted with most PLC manufacturers as a core of instructions that accomplish a
simple task and provide a useful function to the larger program.

These instructions include boolean instructions, instructions for handling simple math
conversions, file manipulation instructions, queuing instructions, and instructions for bit shifting.

Many of these instructions were created after earlier PLCs reported some functions being
performed again and again at the cost of a great amount of PLC code. For instance, the queuing
operations of FIFO or LIFO could be created in PLC code using a number of other instructions.
This became too confusing to the PLC programmer and the FIFO or LIFO instruction was
provided as a result.

Some of the instructions came about as the result of the PLC emulating the microprocessor
instruction set. Word-length boolean instructions such as AND and moving operations such as bit
shifting were copied and installed in the PLC instruction set from similar microprocessor
instructions.

The most important point of the chapter is that most instructions are given with an example from
industry. Each of these examples has been programmed by many different programmers using
techniques similar to the examples shown. Instructions such as these have been used to provide
control of automation for a wide variety of industry and solve many complex problems.

Ch 12 Handling Data 1

Siemens Word Logic and Shift/Rotate Instructions

Instructions from Siemens are given first. They are word logic operations and shift/rotate
instructions. The instructions are shown in the groups below and their operations are explained
in the following pages.

Mame Descripticn
~ =] word logic operations
=N AND AND logic operation
=l oR OR logic operation
=l ®OR EXCLUSIVE OR logic operatior
- Create ones complement
: EEEE E:z:: Fig._12-1 _Siemens Word
Logic, Shift/Rotate
3 SEL Select .
. Instructions
2=l U Multiplex
=l DEMUX Demultiplex
~ &5 shiftand rotate
£l SHR Shift right
=1 SHL Shift left
=l ROR Rotate right
=1 ROL Rotate left

These instructions are covered in the following with the instruction definition given followed
by, in many cases, an example. The instructions may be further described by using the ‘help’
menu while in the programming menu on the TIA portal.

AND

“You can use the AND logic operation instruction to combine the value at the IN1 input and the
value at the IN2 input bit-by-bit by AND logic and query the result at the OUT output. When the
instruction is executed, bit O of the value at the IN1 input and bit 0 of the value at the IN2 input
are logically ANDed. The result is stored in bit 0 of the OUT output. The same logic operation is
executed for all other bits of the specified values.”

AND
| “Tagy In™ WORD “TagOut”
T EN ENOf———(] Fig. 12-2 Siemens AND
| “Tag_Value! “—] I Instruction
“Tag_Valus2*— | hD ouT “Tag_Reswt”

The following table shows how the instruction works using specific operand values:

Ch 12 Handling Data

Parameters Operand Value

IN1 Tag_Valuel 0101 0101 0101 0101
IN2 Tag_Value2 0000 0000 0000 1111
ouT Tag_Result 0000 0000 0000 0101

OR

“You can use the OR logic operation instruction to combine the value at the IN1 input and the
value at the IN2 input bit-by-bit by OR logic and query the result at the OuT output. When the
instruction is executed, bit 0 of the value at the IN1 input and bit 0 of the value at the IN2 input are
logically ORed. The result is stored in bit 0 of the OUT output. The same logic operation is
executed for all bits of the specified tags.”

The following example shows how the instruction works:

OR
"Tagln” LBRD "Tag Out” : .
‘ i EN ENO i Fig. 12-3 Siemens OR
1| EE—)—| .
T, " Instruction
A Walued | ;K
TTag _alled” [nz ouT “Tag_ResLlt”

XOR

“You can use the EXCLUSIVE OR logic operation to combine the value at the IN1 input and the
value at the IN2 input bit-by-bit by EXCLUSIVE OR logic and query the result at the OUT output.”

The following example shows how the instruction works:.

XOR
‘ “Tagln” WORD “TagCut” Fig. 12-4 Siemens
‘ 11 EN ENO ——(—] XOR Instruction
“Tang_Valoe! "— (M
“Tag_Walue2"—}] |p2 OUT ——"Tag_Result*

INV

“You can use the Create ones complement instruction to invert the signal state of the bits at the
IN input. When the instruction is processed, the value at the IN input and a hexadecimal template
(W#16#FFFF for 16-bit numbers or DW#16#FFFF FFFF for 32-bit numbers) are logically EXCLUSIVELY
ORed. As aresult, the signal state of the individual bits is inverted and sent to the OUT output.
The instruction is only executed if the signal state is 1 at the EN enable input. In this case, the
ENO output also has the signal state 1.”

The following example shows how the instruction works:.

Ch 12 Handling Data 3

1§
| “Tagln"™ WORD "Tag Out”
| EN ENO |———¢] Fig. 12-5 Siemens
‘ INVERT Instruction
“Tag In_Walue™ —] IN OUT b— "TagOut_Value®

DECO

“You can use the Decode instruction to set a bit in the output value specified by the input value.
The Decode instruction reads the value at the IN input and sets the bit in the output value whose
bit position corresponds to the read value. The other bits in the output value will be overwritten
with zeroes. When the value at the IN input is greater than 31, a modulo-32 instruction is
executed.”

The following example shows how the instruction works:

DECO
‘ “Tagln™ D oRD Tag ot
| bl EN ENOf——{ 3]

"Tagln_Walus® — |N OUT — "Tag Out_Walue”

Fig. 12-6 Siemens
DECODE Instruction

The following figure shows how the instruction works using specific operand values:

Tagln_value"

i LB 15 3.0
"TagOut_valus” [0000 0000 0000 0000 0000 0000 0000 1000

ENCO

“You can use the Encode instruction to read the bit number of the least significant bit in the input
value and to send it to the OUT output. The Encode instruction selects the least significant bit of
the value at the IN input and writes its bit number to the tag in the OUT output.”

The following example shows how the instruction works:

EMCO
" Dnf O RD w . .
‘ "Tagin Ryt Fig. 12-7 Siemens

H EM ENO { .
| ENCODE Instruction

“Tagn_Value” — |n OUT — "Tag Out_Value”

The following figure shows how the instruction works using specific operand values:

Ch 12 Handling Data 4

3 L1615 . 3.0
“Tagin_Walue™ 00001111 0000 0101 {0000 100 0000 1000]

“TagOut _Value™

SEL

“Depending on a switch (G input), the Select instruction selects one of the INO or IN1 inputs and
copies its content to the OUT output. When the G input has the signal state 0, the value at the INO
input is moved. When the G input has the signal state 1, the value at the IN1 input is copied to the
OUT output.”

The following example shows how the instruction works:

SEL

| Tagln WORD “TagOut”

| bl en Enol— ¢ +—] Fig. 12-8 Siemens
hgin G & ouT L Tagout_vaiuer SELECT Instruction

"Taglh_Walue 0" — IMO

“Tagln_Waluel™ — 1M

The following table shows how the instruction works using specific operand values:

Parameters Operand Value
G Tagin_G 0 1
INO Tagln_ValueO W#16#0000 WH16#4C
IN1 Tagln_Valuel W#16#FFFF WH#16#5E
ouT TagOut_Value W#16#0000 WH16#5E

MUX

“You can use the Multiplex instruction to copy the content of a selected input to the OUT output.
The number of selectable inputs of the instruction box can be expanded. The inputs are
automatically numbered in the box. Numbering starts at INO and continues consecutively with
each new input. You use the K parameter to define the input whose content is to be copied to the
OuT output. If the value of the K parameter is greater than the number of available inputs, the
content of the ELSE parameter is copied to the OUT output and the ENO enable output is assigned
the signal state 0.”

Ch 12 Handling Data 5

“Tag _Input™
|1

“Tag _Murnber” —

“Tag_Walue_0"
“Tag_Walue_1"—
"Tag _Walue_2" —

RALEX

Lot R
EM EMO
k. QT
[MO
[N
ELSE

“Tag_Coutpt ™
L57 |

Fig. 12-9 Siemens

— "Tag_FResult” .
MUX Instruction

The following table shows how the instruction works using specific operand values:

Parameters Operand Value
K Tag_Number 1
INO Tag_Value_0 DW#16#00000000
IN1 Tag_Value_1 DW#16#3E4A7D
ELSE Tag_Value_2 DW#16#FFFFO0O00
ouT Tag_Result DW#16#3E4A7D

DEMUX

“You can use the Demultiplex instruction to copy the content of the IN input to a selected output.
The number of selectable outputs can be expanded in the instruction box. The outputs are
automatically numbered in the box. Numbering starts at OUTO and continues consecutively with
each new input. You use the K parameter to define the output to which the content of the IN input
is to be copied. The other outputs are not changed. If the value of the K parameter is greater than
the number of available outputs, then the content of the IN input will be copied to the ELSE
parameter and the signal state 0 is assigned to the ENO enable output.”

The following example shows how the instruction works.

‘ “Tag_lInput”
| 1§
“Tag_Murmber]

“Tag_Valua"—

DEM LI
DWORD
“Tag_Output™ .) .
EN ENO o (5 EIEnglJi I1OtS|etr_nens
K QUTO |— “Tag _Output_0 nstruction
IN OUTI |— "Tag _Outpat_1*
ELSE | "Tag_COutput_2~

The following table shows how the instruction works using specific operand values:

Input values of the Demultiplex instruction before network execution:

Parameters Operand Values
K Tag_Number 1 4
IN Tag_Value DW#16#FFFFFFFF | DWH16#3E4A7D
Ch 12 Handling Data 6

Output values of the Demultiplex instruction after network execution:

Parameters Operand Values
ouTo Tag_Output_0 Unchanged Unchanged
OuUT1 Tag_Output_1 DWH#16#FFFFFFFF | Unchanged
ELSE Tag_Output_2 Unchanged DW#16#3E4A7D

SHR

“You can use the shift right instruction to shift the content of the operand at the IN input bit-by-bit
to the right and query the result at the OUT output. You use the N parameter to specify the
number of bit positions by which the specified value is to be shifted.”

The following figure show how the content of an operand of integer data type is shifted four bit
positions to the right:

15... B 0

4 places —

ouT |1 1 1 1|1 0 1 o|1 1 1 1)l0 0o 0

The freed bit positions
are filled by the signal status
of the sign bit.

Thesea four bits
are lost.

The following example shows how the instruction works:

SHR

| “TagIn” WORD TagOut”

| | | EN ERNO {57 | Fig. 12-11 Siemens
“Tagln_value” — | aUT b—"Tag Ot _value” SHIFT RT Instruction
“Tag _Mumber” —

The following table shows how the instruction works using specific operand values:

Parameters Operand Value
IN TagIn_Value 0011111110101111
N Tag_Number 3
ouT TagOut_Value 0000 011111110101

Ch 12 Handling Data

SHL

“You can use the shift left instruction to shift the content of the operand at the IN input bit-by-bit
to the left and query the result at the OUT output. You use the N parameter to specify the number
of bit positions by which the specified value is to be shifted. When the value at the N parameter
is 0, the value at the IN input is copied to the operand at the OUT output.”

following figure shows how the content of an operand of WORD data type is shifted six bit
positions to the left:

15.. B T -0
IM o o o o1 1 1 1 o 1 0o 1|0 1 0 1
N -—— b places
ouT Joooo 111 1 0o 1|0 1 0o 1|0 1 0o oflo 0o 0 0O
U
—— —
—
These six bils The freed bit
ara lost. positions are filled by
ZEr0s.

The following example shows how the instruction works:

SHL
WORD
"Tag In” “Tag Out” . .
| i EN ENO e . Fig. 12-12 Siemens
11 =1 | .

| SHIFT LT Instruction

"Tagln_walue” — |py ouUTb—"Tagut Walue™

e _Mumber — 3

The following table shows how the instruction works using specific operand values:

Parameters Operand Value
IN Tagln_Value 0011111110101111
N Tag_Number 4
ouT TagOut_Value 1111 1010 1111 0000

Ch 12 Handling Data

ROR

“The Rotate right instruction rotates the content of the operand at the IN input bit-by-bit to the
right and queries the result at the OUT output. You use the N parameter to specify the number of
bit positions by which the specified value is to be rotated. The bit positions freed by rotating are
filled with the bit positions that are pushed out.”

The following figure shows how the content of an operand of DWORD data type is rotated three
positions to the right:

K3 . A6 15 .0
I 1010(1010)0000 (111100001111]0101[0101
M 3 positiong—-
<Resull> 1011 (0101|0100 | 0001 1110|0001 (11101010 101

|
The signal state of the three
bits that have bean moved will
ba added in the positions

which have bacome frea.

The following example shows how the instruction works:

ROR,
nioRD
“Tag In™ “Tag ot . .
ROTATE RT Instruction
Tanln_Walue” — |py ouThb—"Tag ot _MWalue®
“Tay_Mumber —

The following table shows how the instruction works using specific operand values:

Parameters Operand Value
IN TagIn_Value 0011 111110010101
N Tag_Number 5
ouT TagOut_Value 101010000111 1100

ROL

“The Rotate left instruction rotates the content of the operand at the IN input bit-by-bit to the left
and queries the result at the OUT output. You use the N parameter to specify the number of bit

Ch 12 Handling Data

positions by which the specified value is to be rotated. The bit positions freed by rotating are

filled with the bit positions that are pushed out.”
The following figure shows how the content of an operand of DWORD data type is rotated three

positions to the left:

3. .6 15.. .0
IN 1111(0000 10901010 |0000(1111]|0000[(1111
M -—— 3 places
ouT 111 (1000 (0101|0101 (0000|0111 (100001111111
———

| The signal status of the three
shifted bits are inserted into
the freed places.
The following example shows how the instruction works:

ROL
,, oRD ,, .)
| "Eghn “Tap Ot . Fig. 12-14 Siemens
|| EN ENO {57 | .
| ROTATE LT Instruction
“Tagln_\alue™ 1M QuT “TagCut _\Walue™
"Tag _Mumber” — p

The following table shows how the instruction works using specific operand values:

Parameters Operand Value
IN Tagln_Value 1010 1000 1111 0110
N Tag_Number 5
ouT TagOut_Value 0001 111011010101

Allen-Bradley Logical Instructions

) Hov mon | ano | or | %or | nor [swes| cr | e1o |

B9 o | or | xor | not |eror|emo| sor |exor|enor| orr | uker|sero resol

SWBIBTOT OFF | JKFF | SETD|RESD

AND

Ch 12 Handling Data

10

When enabled, the AND instruction performs a bitwise AND operation on SourceA and SourceB and
places the result in Dest.

soet [T PP PO [T T o L T T T
5:.-.'rr:?l:||u|IZJ[||I:|:IIJ|-.|[]L‘|:I[u ||'|1]1|1||['|' :-]u|-:||J[:|J|I:]|.‘|ll||:['.l|[||
oot [P T T P T [P PP P)

[Ladder Diagram

AR
=LY

— Bitwize AN

Source A walue_1 . .
240000_0000_0000_01071_0101_0101_1111_1171 + Fig. 12-15 A-B AND Instruction

Source B value_2
2#0000_0000_0000_1111_1111_0000_0000_0000

Dest valus_result_and
2H0000_0000_0000_0107_01 01 _0000_0000_0000 +

OR

When enabled, the OR instruction performs a bitwise OR operation on SourceA and SourceB and
places the result in dest.

sowe [P P P P P P P P E P P T LT
swss OO e PP P [T T T T T e oL
.-.a.~:||.]-'-].'.|u|u|-:||:|u|;|[.||.'.[.| ||'|'-|'11|1]||'|u|||::|*||[||||*|:|'.|1|'
1 Ladder Diagram
| BiwiseInclusivaOR
Sounce & value_1
2800000000 _ 00000 o_oidi_moi_111_ 1111+ F|g 12-16 A-B OR Instruction
Source B valus 2
2nu:m 0000_0000_1111_1111_0000_0000_0000 +
vallie_result_or
znm 0000 0000 111_111_010_1111_1111 #

XOR

When enabled, the XOR instruction performs a bitwise XOR operation on SourceA and SourceB and
places the result in the destination tag.

Ch 12 Handling Data 11

ove.t PO P PP oo L o[P F T
wsn: [P LT T T T T TP
e st [P PP PP P [PE T LT T T T TTTTT

B Ladder Diagram

HOR:

—| Eibwize Exclusive OR

Sounce &, value_1 . .
240000_0000_0000_0101_0101_0101_1111_1111 « Fig. 12-17 A-B XOR Instruction

Source B vaiye_2
240000_0000_0000_1111_1111_0000_0000_0000 &

Drest vahm rusl..t Wi
2H0000_0000_0000_1010_1010_0101_1111_T111 %

NOT

When enabled, the NOT instruction performs a bitwise NOT operation on value_1 and places the
result in value_result_not.

wive_l (00

T T T T P [E[TTLI LT
v s [LT T [T [[T T PO TP P e o

i Ladder Diagram

NOT

Bibwize NOT i .

Source value_1 Fig. 12-18 A-B NOT Instruction

Ettmtltl 0000_0000_0107_0_onom_1111_11M &
value_resul_not

2#1111 _N_ 110 1010_1010_0000_0000 «

|

Swap Byte — SWPB

The three swpB instructions each reorder the bytes of DINT_1 according to a different order
mode. The display style is ASCII, and each character represents one byte. Each instruction
places the bytes, in the new order, in a different Destination.

Ch 12 Handling Data

) Ladder Diagram

SWPEB SWFB SWPE
Swap Byte Swap Byte Swap Bute
Sowce DIMT_1 Sowce DINT_1 Source DIMT_1
BBCD" + BAECD' BECD'#
DOrder Mode REVERSE DOider Mode WORD Order Mode HIGH/ALOW
Dest DINT_1_reverze Dest DIMT_1_swap_word Dest DINT_1_swap_high_low
TCBA + CDAR' + '‘BADLC' &

Fig. 12-19 A-B Swap Byte Instructions
Clear - CLR

Clear all the bits of value to 0.

Ladder Diagram

CLR

— Clear) .
Dest value Fig. 12-21 A-B CLR Instruction
999999 €

Bit Field Distribute (BTD)

“When enabled, the BTD instruction copies a group of bits from the Source to the Destination.
The group of bits is identified by the Source bit (lowest bit number of the group) and the Length
(number of bits to copy). The Destination bit identifies the lowest bit number bit to start with in
the Destination. The Source remains unchanged.”

L)) Ladder Diagraim

Example
1 87D
_— Eit Field Distibute "
Qe Wanse_ 1 - - H H
281111_1111_1111_1111_1111_1000_0000_0005 & Fig. 12-22a A-B Bit Field
Source Bit 3 Distribution (BTD) Instruction
Dest valse_1
2ZH1111_1111_1111_1111_1111_1000_0000_0000 ¢
Dest Bit 10
Length B

When enabled, the BTD instruction moves bits within value_1.

destination bit source bit

LE L O AR R O O O (oo]] o]]
hefore BTD instruction

value_1
after BTD instruction

The shaded boxes show the bits that changed invalue_1.

Ch 12 Handling Data 13

Example
2 BETD
——— Bit Field Distribute .
Sowce value 1 Fig. 12-22b A-B Bit Field
2811 'I'.I_'I T11_1111_1111_1111_1000_0000_0000 < Distribution (BTD) Instruction
Sowce Bit 3
Dest value_2
ZHO000_0000_0000_0000_0000_0000_0000_0000 €
Dest Bit 5
Lergth 10

When enabled, the BTD instruction moves 10 bits from value_1 to value_2.

source bit
|
\LLCRENNATATANIANAAAaNAANNAANRAAAAD ﬁ[l 111}
destiinalion
valve_2 EEPRRDPPEOPRERDEEERE PRRREbEELIEl]

before BTD Instruction

value_2
after BTD instruction

The shaded boxes show the bits that changed in value_2.

Allen-Bradley Array/Shift Instructions

ElSLl ESR | FFL | FFU I LFL| LFU|

Bit Shift Left (BSL)

“The BSL instruction shifts the specified bits within the Array one position left.”

BSL:
—— Bit Shift Left —EN .
Luray atay_dint[0] Fig. 12-23 A-B Bit Shift Left
Contral control_1 —CDN3—)
Source Bit input_1 (BSL) Instruction
Length 10

Ch 12 Handling Data 14

98376543 210

array_dint
befare shift

@ these bits shift left III
= = input_1
LIL hit

93 TES543 210

a"a'!'-ﬁ::‘ (hfthbblophlififtoloplol [1f11Jolplofi1f1] jofojofof4]

after s

Bit Shift Right (BSR)

“The BSR instruction shifts the specified bits within the Array one position right.”

BSR
—— Bit Shift Right EN
Comal ool oM~ Fig. 12-24a A-B Bit Shift
Powtal el Right (BSR) Instruction

9ETE543 210
array_dirt — [{if{[t Rl T i Tofofolok Tt Tolofolol [Talt 1o Tofol o]

before shift : : \h
J"ﬂ;.;;e';,-'n; hitignt 0

UL bit
input_1
98 T6ES543 210
array_dint [Ty 1 1 1
atter shift
— Bit Shif R'u l” N .
DR S [T > Fig. 12-24b A-B Bit Shift
Contiol control 1 —(DN>— Right (BSR) Instruction
Source Bit input_1
Length 58
these bits shift left
31 0
array_dint[0] J{3 P 0000 3 iojoofog (3 o0f0jofa@ooon

array_dint[1]

i /‘ """" thesebitsshit

Ch 12 Handling Data

FIFO Load (FFL)

[N Ladder Diagram

FFL-
—— FIFO Load g (y—
Source value_1 —DN3—
FIFO aray_dint[0] |—EM3>—

Fig. 12-25 A-B This FFL
instruction copies the Source

Contral contral_1
Length 10 value to the FIFO.
Puoszition [

array_dint array_dint

hefare FIFC load after FIFC load

control_1.pos control_1.pos

00000
11111
20222
33333
14444

00000
1111
2e222
33333
44444
i

When enabled, the FFL
instruction loads value_1 intothe
next available position in the
FIFC, which is array_dint[a] in
this example.

== T~ = T R o R
=R = T S R .

FIFO Unload (FFU)

“The FFU instruction unloads the value from position O (first position) of the FIFO and stores that
value in the Destination. The remaining data in the FIFO shifts down one position.”

[N Ladder Diagram

FFU Fig. 12-26 A-B An Example

— FIFO Unload u . .
FIFO anay_dint[0)] NS— of the Fifo Unload Instruction
Diest value_2 Mo—
Cantrol cotral_1
Length 10
Position B
array_dint array_dint

before FIFC unload

after FIFO unload

control_1.pos cantrol_1.pos
—® When enabled, the FFU £ :
instruction unloads array_dint0) Frrres
into value_2 and shifts the 3393
remaining bits in array_dint 4444

W0 = O O g @ B == O

Ch 12 Handling Data 16

LIFO Load (LFL)

“The LFL instruction copies the Source value to the LIFO.”

) Ladder Diagram

T | NS Fig. 12-27 A-B An Example
Source value_1 —CDNH>— of the Lifo Load Instruction
LIFD aay_dint0] —<EM—
Cantral contral_1
Length 10
Pazition 5
array_dint array_dint
before LIFO load control_1.p0s after LIFO load control_1.p08
00000 0 00000 0
11111 1 1111 1
22222 2 22202 2
33333 3 33333 3
. inhucton loadevakio_1 lothe bt :
in value_1 into
. next available position in the 2
d FIFO, which is array_dint[5] in 2
? this example. !
g 8
g 9

LIFO Unload (LFU)

“The LFL instruction unloads the value at .POS of the LIFO and stores 0 in that location.”

Ladder Diagram

LFU .))
— 1 LUFO Unlaad L R Fig. 1228 A-B An Example
LIFD aray_dint0] —CDMI— of the Lifo Unload Instruction
Dest value 2 EM—
Comtral cantral_1
Length 10
Pasition g

Ch 12 Handling Data

array_dint array_dint

hefare FIFO unload after FIFO unload

cnnUnLj.pbs control_1.pos

00000
11111
Frerer
33333
44444

00000
1111
Errre
33333
44444

When enahbled, the LFLI
instruction unloads array_dint[9)
intowalue_2.

L= = = I = | A O]
o o =1 g M o L M = O

Queueing Operations

If a queueing operation is needed in a process, consider using the FIFO or LIFO instructions.
FIFO is short for First in, First out. LIFO is short for Last in, First out. Both refer to queueing of
a part or entity for use in a stage of a machine. For instance, consider the following batching
system using the FIFO instruction:

Start with the Mix System empty and all Process Tanks A-F full:

Mix Tank

Tank A Tank B Tank C Tank D Tank E Tank F

Fig. 12-29a Mix System Requiring Queueing

The system above consists of 6 processes that are filled separately with a liquid made in the Mix
System tank. Tanks A-F call for a new batch of liquid when down to % full. If the Mix System
is in the process of making a batch for a particular tank, the tank that just fell less than ¥4 full
must wait for its batch to be made. Since batches are unique for each Tank A-F, the system must
completely drain, go through a flush cycle, and then start mixing for the next tank. Multiple
tanks may call for a batch but no tank may call more than once.

Ch 12 Handling Data 18

After some time passes, the tank levels lower due to the demand from the processes needing the
liquids. The first one to fall to its low level switch calls for a new batch to be made. That tank’s
request is entered into the FIFO stack and immediately taken from the FIFO stack to the recipe
program since the Mix System tank is not active.

Mix Tank

Tank A Tank B Tank C Tank D Tank E Tank F

Fig. 12-29b Mix System — One Tank Low — Request to Stack

Stack Stack
Tank F An Empty Mix

Tank=>

Starts Mix for Tank

F in Mix Tank -

Stack goes empty

Tank F requests a batch be made. Tank F’s request enters the FIFO stack. Since the batching
program is not running, Tank F’s request is immediately acted on by the batching program and a
new batch starts in the Mix System for Tank F. The stack is emptied.

A mix is being made for Tank F. Other tanks continue to drop but no tanks have called for a new
mix. The Stack continues to remain empty.

Ch 12 Handling Data 19

Mix Tank
making mix
for Tank F

Tank A Tank B Tank C Tank D Tank E Tank F

Fig. 12-29c Mix System — Mix for Tank F Starts
Stack

(empty)

While the batch is being mixed for F, two other tanks reach their low tank limit and enter the
stack. They enter in the order that they reached their low limit. The following shows the stack
with Tank B and Tank D in the same order as the tanks went low.

Mix Tank
making mix
for Tank F

Tank A Tank B Tank C Tank D Tank E Tank F

Fig. 12-29d Mix System — Tanks B and D to Stack

Ch 12 Handling Data 20

Stack]
Tank B (first)
Tank D (second)

As soon as the batch for Tank F is made and emptied, the request for Tank B is taken using the

FIFO unload and the mix system starts making a batch for Tank B. Tank D moves to the top of
the stack.

Mix Tank
making mix
for Tank F

Tank A Tank B Tank C Tank D

Tank E Tank F

Fig. 12-29e Mix System — Tank F Completes, B Starts, D Moves Up Stack

Stack]
Tank F Mix completes => Tank D (firsy
Tank B Mix Starts
Tank D moves up stack

While the process continues supplying mix to each tank as needed, the FIFO stack will continue
to control the queueing operation. The FIFO controls the operation.

Ch 12 Handling Data 21

An Aside on Simulation

The various scenarios on queuing can be planned and implemented and the process not run at all
as planned. It cannot always be predicted when a bottleneck will appear so care must be taken
before the tanks are designed and the process is built to predict whether the various processes
will work as advertised. It is not acceptable to build the process only to tear it out and add
equipment in a few months based on observed bottlenecks. Computer simulation may be a
necessary component of the design of a process. It may be required to size equipment and
predict flows in order to maximize the manufacturer’s investment.

With a good software simulation package, the user can adequately predict flow rates and
equipment throughput efficiently enough to size the equipment for the process. Not all processes
must be simulated but those with queues in them are more apt to need a good simulation than
other types of processes.

The simulation becomes an experiment in which as much as is known about the process is
introduced and the various parts are combined to run a model of the process. The model is
constructed of elements that act the role of machine parts and the final product is assumed to
contain all elements of the process involved. Statistics play a role in the successful simulation.
If a rate is not known, a random variable may be substituted. If a rate is known, it is used in the
simulation. Better than a predictable rate is a rate and a statistical distribution of the rate. With
this information, a process may be seen to not fail under most circumstances but if a number of
entities in the model have statistically long manufacturing times or high fail rates, the process
may react differently than at the average. If this is the case, bottlenecks may spoil the overall
throughput and cause the engineer to re-think the design.

The use of sophisticated simulation software with its statistical prediction algorithms will predict
bottlenecks not necessarily predicted by a simpler analysis.

Using common sense is also a tool to be used. For example, if the loading rate of a part can be
determined, the operator should not be allowed to make more of that product per unit of time
than can be off-loaded from a manufacturing line. If rules such as this are not demanded in the
control strategy, chaos is as predictable as snow in Toledo in January. So, the best plan of a
designed queuing strategy may fall apart if the process is not adequately designed and perhaps a
software simulation tried to predict failure and future bottlenecks. After-the-fact programming
on the PLC cannot compensate for a design failure in this area. Do not be surprised if you are
asked to try, however, when this happens.

Books on the theory of queuing may also be explored but, unless the process is very simple, the
process is better served with a simulation.

Ch 12 Handling Data 22

Application Specific Instructions

The other instruction type is BSL and BSR. These instructions will be reviewed here. Although
similar to other Data Handling Instructions, they are used for a specific type of application.

BSL and BSR instructions are used primarily as shift register functions, tracking parts down
conveyors.

Definition of BSL and BSR (from the Reference Manual):

Instruction
Mnemonic Name Purpose
Loads a bit of data into a bit array, shifts the pattern of
BSL Bit Shift Left data through the array, and unloads the last bit of data

in the array. BSL shifts data to the left.

Loads a bit of data into a bit array, shifts the pattern of
BSR Bit Shift Right data through the array, and unloads the last bit of data
in the array. BSR shifts the data to the right.

An Application using BSL or BSR:

If a conveyor is installed in a system, the BSL or BSR is used to track pieces on the conveyor (if
the piece does not slide or scoot on the conveyor).

é

Fig. 12-30 A-B An Example
< > of the BSL Instruction

Tracking Boxes Down Conveyor

Use BSR to track boxes down conveyor

Use BSR to track boxes down shift register

To move the bits through the shift register requires an input pulse signal. Bits are shifted with
each leading edge of the BSR or BSL. For example, if an input watched the sprocket of a
conveyor as the conveyor turned, the input would pulse on and off as the conveyor’s sprocket
rotated. Proximity switches work well for this application. Bits in the shift register move each
time the input from the proximity switch activates the BSR or BSL instruction.

Ch 12 Handling Data 23

[Prox Switch

Fig. 12-31 Movement Sensor for Shift Register

With each new leading edge of the proximity switch signal, the bits shift one place in the shift
register.

Each type of product needing to be tracked needs a separate shift register. In the example above,
in order to track yellow boxes separately from pink boxes, the bit present in one shift register
must represent yellow boxes. Same position bits in a second shift register must represent pink
boxes.

Input into the shift register of 1’s come from the Bit Address. Usually this address is an input
address but it may represent the result of logic as well. For instance, a photo-eye is usually the
device used to see a box prior to introduction onto a conveyor. If the box is bar-coded, entrance
into a shift register requires the successful read of a bar code and the photo-eye seeing the
product. Both must be present to turn on the input to the Bit Address.

The shift register works equally well with paint applications. Moving parts down a conveyor to
paint poses the requirement that no sensor can be placed immediately in the paint area since paint
can cover and make inoperable most types of presence sensors. Parts must be tracked to the
paint area and painted with various colors based on the process requirement. For instance, pink
parts are painted at station A and yellow parts at station B. If a part is to be painted pink, it is
entered in the pink shift register. If the part is to be painted yellow, it is entered in the yellow
shift register.

Pink Part Shift Register

Movement of bits ——» Bit moves from bit O of word 0 to bit 15 of word 1.

0 00O0OOOT 11111000000
0O€O—0 0 0O U 0 0 0 0 0 0O 0O O OO
0 00O0O1111000O0O0O0O0TGO0SO0
0 000OOOGO OO OO OO OO OO OO 0O0O
Yellow Part Shift Register
0 000OOOOOUOUOU OO0 111
100000O0OOOOUOUOUOTU OTU OO
0O 000OOOOO OO OO OO OTO OO OUO0O0O0
0 00O0OOT11111000O0GO0TG 0O

Ch 12 Handling Data 24

Paint Application:

Parts on Chain:
Movement of parts ———»

OﬁOTTﬁ @O

Pink Yellow
Spray Spray

Fig. 12-32 Multiple Types of Parts Tracked through Spray Booth

Pink Spray Shift Register

B3:4/0 0 0 00O O OO OO OO0OO 1 1 1
B3:5/1 1 0 0 0 00O OO OO OO OO 0O
B3:6/0 0 0 0 1 1.1 1.1 0 0 0 0O 0 0 O
B3:7/0 0 0 00O O O0OO0OOOO0OOOO0O
Yellow Spray Shift Register
B3:8 {0 0 0 0O OO O OO O0OUOUOO OO0 O
B3:9 |0 0 0 0001 1 1 1 00 O0O0 0O
B3:10{0 0 0 0 0 0 0 O 0O O O O O 1 1 1
B3:11/1 0 0 0 0 0 0 O OO O O OO OO

Ch 12 Handling Data

Logic for Shift Registers

I:
| |
I BSR Move bits with pulse
I: B3:4/15
II <:> Introduce pink part to shift
register
I: B3:8/15
| |
i <:> Introduce yellow part to shift
register
B3:6/8
|| <:> Spray Pink (may include multiple
bits)
B3:10/2

| |
I (:) Spray Yellow (may include
multiple bits)

Logic shown in the above rungs is used to control the output of the shift register and control
down-stream operations in a tracking application.

While the shift right (or left) instruction is chosen for tracking applications, it should be
considered for only the simplest applications. For more involved applications, an algorithmic
approach including a FIFO table of leading edges with a counter to index through a zone should
be used. The approach should include a pointer to a recipe of choices in which the recipe
includes specific control bits to turn on or off an output when the parts’ leading edge passes an
action point. Since shift instructions take significant time to execute, the algorithm must be
considered where multiple zones are involved and multiple parts are included in any specific
zone. Pulse tachometers can be used that are significantly faster than the scan of the PLC with
no loss of motion with the more advanced algorithm. The shift instruction depends on

Ch 12 Handling Data 26

SCL

With a number of different applications being presented, it is appropriate to ask the question as
to which language to use. The programming languages of A-B and Siemens commonly referred
to as SCL or Sequential Logic is a procedural langage instead of object-oriented. The two
languages discussed so far (LAD and FBD) are object-oriented. The language introduced below
is a procedural language and looks very much like “C” or Visual Basic. The languages are
useful in looping or iterative applications and may be useful as well in a number of other control
schemes.

The examples below are from Siemens but the A-B equivalent language is very similar and
supports many of the same procedural operations.

Siemens SCL Language

The instructions shown here are part of the SCL or procedural language from Siemens’ S7-1200.

Marne

~ || Move operations
=1 MOVE_BLK
=l UMOVE_BLK

1 FILL_BLK
=1 UFILL_ELK Fig. 12-33 Siemens SCL Move

=T cviap and Conversion Operations

3 FOKE

3 FOKE_BOOL

3 PEEK

4 FEEK_BOOL

& FOKE_BLK
~ %3 Conversion operations

=l COMVERT

=1 ROUND

=1 CEIL

1) FLOOR

=1 TRUNC

1) SCALE_X

1) MORM_X

Ch 12 Handling Data 27

MName

= G Program control operation:

sCL |F .. THEM ...

sct IF . THEN _ ELSE Fig. 12-34 Siemens SCL Program
sct IF _ THEN _ ELSIE Control Operations

sCL CASE LLOF ..

5L FOR_.TO DO ..

5L FOR_TO L BY ..DO .
L WHILE DO ..

SCL REPEAT ... UNTIL ..

L COMTIMUE

€L EXIT

S GOTO ..

scL RETURM

48 RE_TRIGR
& TP

2 GET_ERROR
3 GetErroriD

Explanations of some of the more important SCL instructions with examples are given below.
These are found in the instruction explanations in the SCL language in the TIA portal helps:

“IF: Run conditionally

Description

The instruction "Run conditionally™ branches the program flow depending on a condition. The
condition is an expression with Boolean value ((TRUE or FALSE). Logical expression or
comparative expressions can be stated as conditions.

When the instruction is executed, the stated expressions are evaluated. If the value of an
expression is TRUE, the condition is fulfilled; if the value is FALSE, it is not fulfilled.

Syntax
Depending on the type of branch, you can program the following forms of the instruction:

e Branch through IF:

IF <Condition> THEN <Instructions>

Ch 12 Handling Data

28

END IF
If the condition is satisfied, the instructions programmed after the THEN are executed. If the
condition is not satisfied, the execution of the program continues with the next instruction after
the END_IF.

« Branch through IF and ELSE:

IF <Condition> THEN <Instructionsl>

ELSE <InstructionsO0>;

END IF

If the condition is satisfied, the instructions programmed after the THEN are executed. If the
condition is not satisfied, the instructions programmed after the ELSE are executed. Then the

execution of the program continues with the next instruction after the END _IF.

o Branch through IF, ELSIF and ELSE:

IF <Conditionl> THEN <Instructionsl>
ELSIF <Condition2> THEN <Instruction2>
ELSE <Instructions0>;

END IF;

Example

The following example shows how the instruction works:

IF "Tag 1" = 1 THEN "Tag Value" := 10;
ELSIF "Tag 2" = 1 THEN "Tag Value" := 20;
ELSIF "Tag 3" = 1 THEN "Tag Value" := 30;
ELSE "Tag Value" := 0;

END IF;

Ch 12 Handling Data

29

Example of Procedural Tracking (Similar to Shift Register)

The use of a shift register to track parts on a conveyor is a very good visual way to track items.
However, it may not be efficient and capable of more sophisticated tracking problems.

If there are a number of different parts being tracked and there are a number of parts in an area,
then consider using a table similar to the one below and track the part and its position in a table.
If the part has an action that is configured for a position in the table, the program can ask whether
the part is to have the particular action take place or not. The sophistication of tracking multiple
parts and keeping close track of each part lends itself to advanced tracking more sophisticated to
either state diagram tracking or shift register tracking and with a small amount of computer code
that can be very efficiently executed.

Part 2
Part 1

‘)

Action T
Position

Part one’s Pattern Part one’s Position)
Fig. 12-35 Part

Part two’s Pattern Part two’s Position Tracking with
Procedural Language

empty empty

empty empty

empty empty

The tracking program of the parts above is more sophisticated than the tracking using shift
registers described earlier. Either may be chosen and the programmer must decide which is best
in a specific case.

There are several choices and they improve with the S7-1500 processor. The following
languages are available for use in the FB. SCL is a ‘C’ like language. With the choice SCL, the
following C language is avaiable. SCL is also available in the Siemens 1500’s. Also available
in the 1500’s is CEM, a cause-and-effect matrix language.

Ch 12 Handling Data 30

Add new block

MName:

|B|0ck_l

s

Organization
block

="

Function block

Language:

Number:

SCL

LAD

FBD

CEM

STL

GRAPH

PRODIAG (incl. IDB)

|~

Description:

Function blocks are code blocks that store their values permanentlyin instance data blocks,
so that they remain available after the block has been executed.

This sets the following language as the language of choice: C

Project9 » PLC_1[CPU 1518-4 PN/DP] » Program blocks » Block_1 [FB1]

Options

s D b, SE@OGEB =T EEER s Fad

Block_1
Name
1 <@~ Input

2 -

Data type

Default value Retain

@

=]

(<]

L[] |

G,

3

»

Accessible f... | Writa... | ..

WW 0%

>

Favorites

v

Basic instructions

—

—— e

E

IF.

OF... TODO..

i I

CASE... FOR... WHILE..

(*..) REGION

T T e

1

Ln: 1 cl:1 INS |100=&, —

|"

ITERYARTRTRRTN]

3
»
]
»
]
»
]
>
»
»
»

‘_d, Properties ||'3.'. Info i ”ﬂ Diagnostics }

Name

< i

Description
[51] Bit logic operations

[®] Timer operations

[+1] Counter operations

[¢] Comparator operations
[£] Math functions

|~ Move operations

&5 Conversion operations
& Program control operati...
[o8] Word logic operations

5] shiftand rotate

e Legacy

Y

[

There are a number of websites and free books teaching programming in C. One of the best is
from the originators of C — Kernighan and Ritchie:

C Programming by Kernighan and Ritchie — 2" Ed. — Free PDF

https://www.engr.colostate.edu/ECE251/References/The%20C%20Programming%20Language.pdf

Ch 12 Handling Data

31

Considerations for Tracking

There are many considerations when determining whether to use tracking or not. If multiple
conveyors are used to track parts, then the part must be tracked from conveyor to conveyor.
When overlapping two conveyors, does one use the pulse from the first or the second. Also, the
part may slip or not move with the pulse train causing an inaccuracy. Or the piece may break.
But, with tracking, keeping track of parts is superior to other methods such as state diagrams. If
a bar code or a rfid tag can be placed on the part, tracking is not needed. But with these devices,
more programming must be included reading the tag. All these facts must be considered when
determining the best method of controlling pieces on a line.

Summary

This chapter explains a number of data handling instructions and provides applications for their
use in factory automation. Instructions are provided for a number of operations that would
otherwise have required a significant programming effort to provide. Included are the queuing
operations using FIFO instructions. Other interesting instructions in data handling include the
bit-shift instructions. These instructions are used for shift register part tracking. Instructions
used in data manipulation were shown with examples included for each type of instruction.

Examples of different tracking options are discussed and the methods of programming are
examined.

Ch 12 Handling Data 32

Exercises:

1. Discuss alternative methods of writing tracking programs other than the shift register. Which
would you prefer? Under what conditions would you prefer the alternative? What
advantages/disadvantages does the shift register approach have?

1. Why would an instruction called “SEL” or select be useful in a PLC? How else could the
programmer execute this operation if the instruction were not present?

2. In Chapter 6, we first presented this problem. However, the problem would have a better
outcome if a FIFO was installed to answer the question as to which tank to fill next.

Write the logic in Ladder to satisfy the following control problem:

Q_ O

Conv C1

High Level L1

Storage Bin 1

Low Level LO

T seew conv e

Conv C2 Left -— —» Conv C2 Right
Q O
Conv C3 Left - —» Conv C3 Right Conv C4 Left - —» Conv C4 Right

@)

Q O Q
High Level L3 High Level L5 High Level L7 High Level L9
Bin 1 Bin 2 Bin 3 Bin 4
Low Level L2 Low Level L4 Low Level L6 Low Level L8
The process depends on a level switch in the four bins at the bottom (Bin 1-4). For any bin to
fill, it must be at a low level. Then the conveyor C2 will turn on as well as either C3 or C4 to fill
the appropriate bin. The direction of C2, C3 and C4 must be correct as well (forward or reverse).

Also, Storage Bin 1 has a high and low level switch and will be filled from above by conveyor
C1 as needed.

Fill in Definition of Inputs:

Sensor Function/State Signal Assignment

Ch 12 Handling Data 33

Fill in Definition of Outputs:

Actuator

Function/State

Signal Assignment

Next, write the ladder logic to fill any bin that falls below the low level in the order that a request

is made.

Ch 12 Handling Data

34

Lab 12.1

Set up the Shift Register for tracking two different parts similar to the example explained in the
chapter. Use inputs for introducing the two different boxes into two different shift registers and
the prox switch. You can also use a timer to introduce pulses for a simulated prox switch. Make
a variable distance that can be inserted at a location to vary the point of extraction. Turn on an
output to signal an extractor solenoid turning on.

é

C)

Tracking Boxes Down Conveyor

Use BSR to track boxes down conveyor

Ch 12 Handling Data 35

Lab 12.2

Set up the shift register for tracking multiple parts on a conveyor using SCL similar to the
application described in Fig. 12-35.

Part 2
Part 1

C)

Action T
Position

Lab 12.3

Set up the queuing operation similar to the mix tank example in the chapter. Demonstrate a tank
level switch going low and the subsequent operation of the mix tank to make a mix, drain it to
the appropriate tank and continue with the next queued operation.

Mix Tank

Tank A Tank B Tank C Tank D Tank E Tank F

Ch 12 Handling Data 36

Appendix A

Languages:
Siemens

» M} Program editor

» Ml Using software units (S7-1500)
» Ml Creating and managing blocks

» Jl Protecting blocks

» M| Declaring the block interface

» Ml Programming data blocks

»] Declaring PLC tags

» M| Declaring PLC data types (UDT)
» Ml Creating LAD programs

» Ml Creating FBD programs

» M| Creating STL programs (S7-300, S7-400, S7-...
» Ml Creating SCL programs

» Ml Creating GRAPH programs (S7-300, 57-400, S...

» Ml Creating CEM programs (S7-1200, S7-1500)
» Ml Configuring alarms

» M| Compiling and downloading PLC programs
» M| Comparing PLC programs

» [l Displaying program information

» Ml Displaying crossteferences

» Ml Testing the user program

» Ml Supervision of machinery and plants with ProDi...

» Wl Import SIMATIC AX libraries into TIA Portal
» M| SIMATIC Safety - Configuring and Programming

[l| Visualizing processes (Basic Panels, Panels, Conf ...

Ch 12 Handling Data

37

Basic information on logic paths in FBD

Use of logic paths
The user program will be mapped in one or more networks. The networks can contain one or more logic paths
on which the binary signals are arranged in the form of boxes.

The following figure shows an example of the use of several logic paths within a network:

*StartSwitch_Left'— >=1 | . ivTOR ON

“StartSwitch_Right*— s

StopSwitch_Left— >=1 | .oTOR ON*

StopSwitch_Right — R

Rules

Remember the following rules when using logic paths:

e Connections are not permitted between logic paths.

e Only one jump instruction is permissible per network. The positioning rules for jump instructions remain
valid.

Executing logic paths

Logic paths are executed from top to bottom and from left to right. This means that the first instruction in the first
logic path of the first network is executed first. All instructions of this logic path are then executed. After this come
all other logic paths of the first network. The next network is executed only after all logic paths have first been

executed.
When jumps are used the regular execution of the logic paths is circumvented and the instruction is executed at
the jump destination.

Differences between branches and logic paths

The difference between branches and logic paths is that the logic paths are independent branches that can also
stand in a different network. Branches, on the other hand, permit the programming of a parallel connection and

have a common preceding logic operation.

Ch 12 Handling Data

38

Example of detecting the fill level of a storage area

Detecling the fill level of a storage area

The following figure shows a system with two conveyor beltsand a temporary storage area between them . Conveyor
belt1 delivers packages to the storage area. A photoelectricbarrierat the end of conveyor beit 1 near the storage area
detects howm any packages are delivered to the storage area. Conveyor belt 2 transports packages from the
emporary storage area to a loading dock where they are loaded onto trucks. Aphotoelecricbamer at the siorage
area ext detects how many packagesleave the storage area to be transported to the loading dock. Five displaylamps
indicate the capacity of the temporary storage area.

Display panel
O Xr XX O O
V il
Storage area Storage area Storage area Storage area Storage area

emply not empty 50% full 90% full full
Incoming outgoing
packages Temporary packages
St storage area

for 100
packages
/
Conveyor belt 1 Conveyor belt 2

Photoelectric barrier 1 Photoelectric barrier 2

Ch 12 Handling Data

39

Example of detecting the fill level of a storage area

PEB1 Input BOOL Photoelectric barrier 1

PEB2 Input BOOL Photoelectric barrier 2

RESET Input BOOL Reset counter

LOAD Input BOOL Adjust the current
countervalue to the
value ofthe PV
param eter.

MAX STORAGE AREA Input INT Maxm um possble

FILL AMOUNT numberof packages in
the storage area

PACKAGECOUNT Qutput INT Numberof packagesin
the storage area (current
count value)

STOCK_PACKAGES Output BOOL Is set when the current
count value is greater
than or equal to the value
of the "MAX STORAGE
AREA FILL AMOUNT"
tag.

STOR_EMPTY Qutput BOOL Displaylamp: Storage
area empty

STOR_NOT_EMPTY Qutput BOOL Displaylamp: Storage
area notempty

STOR_50%_FULL Qutput BOOL Displaylamp: Storage
area 50 % full

STOR_90%_FULL Qutput BOOL Displaylamp: Storage
area 90 % full

STOR_FULL Output BOOL Displaylamp: Storage
area full

VOLUME_50 Input INT Comparnson value: 50
packages

VOLUME_S0 Input INT Companson value: 90
packages

VOLUME_100 Input INT Comparnson value: 100
packages

Ch 12 Handling Data

40

The following networks show the LAD program ming foractivating the lam ps:

Network 1:

When apackage isdelivered to the storage area, the signal state at "PEB 1" switches from "0"to ™~ (positive signal
edge). On a positive signal edge at "PEB 1", the "Up™ counteris enabled, and the current count value of
PACKAGECOUNT isincreased by one.

When a package isdelivered from the storage area to the loading dock, the signal state at "PEB2" switches from "0"to
™" (postive signal edge). On a positive signal edge at "PEB2", the "Down" counteris enabled, and the current count
value of "PACKAGECOUNT" is decreased byone.

If there are no packages in the storage area (PACKAGECOUNT™ ="0"), the "STOR_EMPTY"tag is set to signal state
*1",and the "Storage area empty”lamp is switched on.

The curentcount value can be resetto "0" ifthe "RESET tag is setto sgnal state ™1™,

if the "LOAD" tag is setto signal state "1, the currentcount value is setto the value of he "MAX STORAGE AREAFILL
AMOUNT" tag. As long asthe currentcount value isgreaterthan orequal o the value of the MAX STORAGE AREA

FILL AMOUN T tag, the "STOCK_PACKAGES" tag suppliesthe signal state "1".

CTUD_DB
CTuD
“PEB1* INT “STOCK_PACKAGES"
il L OU ok ! 1
i \/ 1
‘PEB2"
I} QD}{—*STOR_EMPTY"
“RESET*
1t R CV —"PACKAGECOUNT"
“LOAD"
| D
“‘MAX STORAGE PV
AREA FILL AMOUNT"|
Network 2:

As long as there are packagesin the storage area, the "STOR_NOT_EMPTY™ tag is set to signal state "1", and the
"Storage area not em pty” lam p is switched on.

*STOR_EMPTY" *STOR_NOT_EMPTY"

A £]

| Vi 7 1
Netawork 3:

if the num ber of packagesin the storage areaisgreaterthan orequal o 50, the "Storage area 50 % full"lamp
swiiches on.

“PACKAGECOUNT™PACKAGECOUNT* “STOR_50%_FULL"
| >= | | < ‘% |
| INT | |INT | ‘7 !

"VOLUME 50° "VOLUME_90°

Network 4:

f the num ber of packagesin the storage area isgreaterthan orequal b 90, the “Storage area 90% full” lamp switches
on.

"PACKAGECOUNT*PACKAGECOUNT* *STOR_90% _FuLL"
| = | | =< ‘5 |

‘ | INT |] INT | L7 !

“VOLUME_90* “VOLUME 100"

Ch 12 Handling Data 41

Network5:
If the num ber of packagesin the storage area reaches 100, the lamp for the "Storage area full” message switches on

I S I 3 |
*VOLUME 100"

‘ | INT | </ '

The following networks show the FBD program ming foractivating the lam ps:
Network 1:

When a package isdelivered to the storage area, the signal state at "PEB1" switches from "0"to ™" (positive signal
edge). On a positive signal edge at "PEB1", the "Up” counteris enabled, and the current count value of
"PACKAGECOUNT isincreased by one.

When a package isdelivered from the storage area to the loading dock, the signal state at "PEB2" switches from "0"to
"1" (postive signal edge). On a positive signal edge at "PEB2", the "Down" counteris enabled, and the current count
value of "PACKAGECOUNT" is decreased byone.

If there are no packages in the storage area "PACKAGECOUNT™ = "07), the "STOR_EMPTY"tag is set to signal state
™" and the "Storage area empty”lamp is switched on.

The cumentcount value can be resetto "0" ifthe "RESET tag is setto signal state ™1™

If the "LOAD" tag is setto signal state "1 the currentcount value is setto the value of he WMAX STORAGE AREAFILL
AMOUNT" tag. As long asthe currentcount value isgreaterthan orequal o the value of the MAX STORAGE AREA
FILL AMOUNT" tag, the "STOCK_PACKAGES" tag suppliesthe signal state "1".

*CTUD_DB"
CTUD
INT
"PEB1" | CU
"PEB2" —{CD
"RESET" —{R QD |—"STOR_EMPTY"
LOAD" LD CV |—"PACKAGECOUNT"
*STOCK_PACKAGES®
"MAX STORAGE -
AREA FILC] PV Qu = =
AMOUNT"
Network 2:

Aslong as there are packagesin the storage area, the "STOR_NOT_EMPTY" tag is set to signal state "1", and the
"Storage area not em pty” lam p is switched on.

"STOR_NOT_EMPTY"

"STOR EMPTY"— = -

Ch 12 Handling Data

42

Network 3:

If the num ber of packagesin the storage areaisgreaterthan orequal o 50, the "Storage area 50 % full"lamp
switches on.

>=
INT
"PACKAGECOUNT={ N1
&
“VOLUME_50* —{IN2 -
<
INT "STOR_50%_FULL"
*PACKAGECOUNT=] IN1 -
“VOLUME_90" —{ IN2 - B

Network 4:

If the num ber of packagesin the storage areaisgreaterthan orequal o 90, the "Storage area 90% full” lamp switches
on.

>=
INT
"PACKAGECOUNT={ IN1
&
“VOLUME _90* —{IN2 -
<
INT "STOR_90%_FULL"
*PACKAGECOUNT=] IN1 -
*VOLUME_100" —| IN2 = B
Network 5:
if the num ber of packagesin the storage area reaches 100, the lamp for the "Storage area full” message switches on
>=
INT i)
“PACKAGECOUNT=} IN1 STOR_FULL
“VOLUME _100" —fIN2 —

Ch 12 Handling Data

43

STL (F

A $LS1

CU "PACKRGECOUNT"

A gLS2
CD "PACKAGECOUNT"

AN "PACKAGECOUNT"
= $STOR_EMPTY

A "DACKAGECCUNT"
= $STOR_NOT_EMPTY

L s0

L "PACKAGECCUNT"

<=1

= $"STOR_S50%_ FULL"
L 30

>=I

= $"STOR_90%_ FULL"

L "PACKAGECCUNT"

L 100

>=T

= $STOR_FULL

Explanation
// Scan photocelectric barrier "LS1" for "1".

// In the event of a positive signal edge at photcelectric barrier
"LS1", the count value of counter "PACKAGECOUNT" is increased by
cne.

// Scan photcocelectric barrier "LS2" for "1".

// In the event of a positive signal edge at photcelectric barrier
"LS2", the count value of counter "PACKAGECOUNI" is decreased by
cne.

// Scan count value for "0".

// With a count value of "0" the display lamp "storage area empty"”
is switched on.

// Scan count value for "1".

// With a count value greater than "0" the display lamp "Storage
area not empty"” is switched on.

// load the comparison wvalue "50" to accumulator 1.

// Move the comparison value to accumulator 2.
// load the current count value to accumulator 1.

// Compare wvalues

// With a count value greater than or equal te "50" the display lamp
"Storage area 50% full"™ is switched on.

// Move the counter value to accumulator 2.
// lecad the comparison value "S0" to accumnulator 1.

// Compare wvalues

// With a count value greater than or equal to "3S0" the display lamp
"Storage area 50% full"™ is switched on.

// load the current count value to accumulator 1.

// Move the counter wvalue to accumulator 2.
// load the compariscn value "100" to accumulator 1.

// Compare values

// At a count value greater than "100" the display lamp "Storage
area full" is switched on.

The following SCL program shows how to im plem ent this example:

When a package isdelivered to the sibrage area, the signal state at "PEB 1" switches from "0"to ™" (positive signal
edge). On a positive signal edge at "PEB 17, the "Up" counteris enabled, and the current count value of
"PACKAGECOUNT isincreased by one.

When a package isdelivered from the storage area to the loading dock, the signal state at "PEB2" switches from "0"to
"" (positive signal edge). On a positive signal edge at "PEB2", the "Down" counteris enabled, and the current count
value of "PACKAGECOUNT" is decreased byone.

If there are no packages in the storage area ("PACKAGECOUNT™ ="0"), the "STOR_EMPTY"tag is set to signal state
™" and the "Storage area em pty"lamp is switched on.

The cumentcount value can be resetto "0" ifthe "RESET tag issetto signal state "1".

If the "LOAD" tag is setto signal state "1" the currentcount value is setto the value of the MAX STORAGE AREAFILL
AMOUNT" fag. As long as the curentcount value is greaterthan orequal o the value of the MAX STORAGE AREA
FILL AMOUNT"tag, the "STOCK_PACKAGES" tag supplies the signal state "1".

Ch 12 Handling Data 44

SCL (7]

"VOLUME_ 50" := 5; // Preassigning of the camparison value to 50 packages (for the test
only 5 packages)

"VOLUME_ 350" := 9; // Preassigning of the camparison wvalue to 50 packages (for the test
only S packages)

"VOLUME 100" := 10; // Preassigning of the comparison value to 100 packages (for the test
only 10 packages)

"MRX STORAGE AREA FILL AMOUNT" := 10; // Preassigning of the maximum amount in storage
area to 100 packages (for the test only 10 packages)

"IEC Counter 0 DB"™.CTUD(CU := "PEBl",

CD := "PEB2",

R = "RESET",

LD := "LOAD",

PV := "MARX STCRAGE ARER FILL AMCUNI",

QU => "STOCE PACERGES”,

QD => "STOR_EMPTY",

CV => "PACKAGECOUNTI") ;

As long as the storage area contains packages, the "Storage area not em pty” lam p is switched on.
SCL Eﬁ

"STOR_NOT_EMPTY" := NOT "STOR EMPTY"

If the num ber of packagesin the storage areaislower than 50 %, the lam psforthe alarm s"Storage area 50% full™,
“Storage area 90% full" and "Storage area full” switch off.

SCL (F
IF "PACKAGECOUNT" < "VOLUME_S0" THEN

"STOR_50%_FULL" := 0;

"STOR_90%_FULL" := 0;
"STOR_FULL" := 0;
END IF;

If the num ber of packagesin the storage areais greaterthan orequal b 50 %, the "Storage area 50 % full” lam p
switches on.

SCL [

IF "PACKRCECOUNT"™ >= "VOLUME_S0" AND "PARCKAGECOUNT <= "VOLUME_S0"™ THEN

"STOR _50% FULL" := 1;

"STOR_3S0%_FULL" := 0;

"STOR_FULL" := 0;

END IF;

if the num ber of packagesin the storage area is greaterthan orequal o 90 %, the "Storage area 90 % full” lam p
switches on. The display lam p for50 % full also emainson.

SCL [

Ch 12 Handling Data 45

IF "PACKACECOUNT" >= "VOLUME_SO"™ AND "PACKACECOUNT < "VOLUME 100" THEN

*STOR_50%_FULL"

1;

"STOR_90%_ FULL" 1;

"STOR_FULL" := 0;

END_IF;

If the num ber of packagesin the storage area reaches 100 %, the lam p forthe "Storage area full”"m essage swiiches
on. The displaylampsfor 50 % and 90 % full also rem ain on.

SCL [

IF "PACEKAGCECOUNT"™ >= "VOLUME 100" THEN

"STOR_50% FULL" := 1;

*STOR_S0%_FULL"

1;
"STOR_FULL" := 1;

END_IF;

CEM
https://www.youtube.com/watch?v=FaR9rVVXUkJo

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ch 12 Handling Data

https://www.youtube.com/watch?v=FaR9rVXUkJo
https://creativecommons.org/licenses/by/4.0/

