
 Ch. 16 Networks and Protocols 1

Chapter 16 NETWORKS and PROTOCOLS

Introduction

In their web-based documentation of Windows 2000, Microsoft details how TCP/IP came about:

“TCP/IP is an industry-standard suite of protocols designed for large internetworks spanning

wide area network (WAN) links. TCP/IP was developed in 1969 by the U.S. Department of

Defense Advanced Research Projects Agency (DARPA), the result of a resource-sharing

experiment called ARPANET (Advanced Research Projects Agency Network). The purpose of

TCP/IP was to provide high-speed communication network links. Since 1969, ARPANET has

grown into a worldwide community of networks known as the Internet.”

Ethernet, TCP/IP and other networking principles are subjects too vast to be expanded here. It is

important for the student to master the principles of networking, however, as they pertain to the

factory floor. The use of addresses is discussed when setting up devices. Other networking

issues need to be discussed since the move of Ethernet from the business side of the factory to

the factory floor has been around long enough for equipment to be accepted having Ethernet.

A historical network no longer in demand will be discussed briefly. This network – DeviceNet –

was popular about 20 years ago as an industrial network. It had its origins in the automotive

industry – CanBus – a network primarily initiated to replace wiring harnesses in automobiles.

Most have moved on from it, however, and it is one of many networks in the boneyard of

networks tried, overtaken by Ethernet and finally abandoned.

The chapter also includes an explanation of a protocol. The use of Modbus protocol is explained.

Also introduced are techniques for communicating between devices. This includes PLC to PLC

communication, PLC to RFID tag and PLC to Cognex Vision System.

Definition of Protocol

A protocol is a specification for standardized packets of data. Moving packets of data is the

method that allows networks to share information. Packets of information move through the

protocol stack and then move across the transmission media.

DeviceNet

DeviceNet is a relatively easy I/O network to install and configure. We can first discuss the

initial bus structure - CanBus. Then the organization, ODVA, through which DeviceNet is

governed, was created. The Allen-Bradley software RSNetworx for Devicenet explains the

mapping of I/O to the processor. While this local network is on the wane today, it is an example

of a recent attempt by the developers to address local area networks in the industrial

environment.

CanBus

CanBus or CAN.bus is a two-wire differential serial bus. It does not need special tools to

termiate. It is designed to operate in noisy electrical environments such as the automobile or the

factory floor. The CanBus system also guarantees a high degree of data integrity between

components. It is also an open architecture which means that many companies are encouraged to

 Ch. 16 Networks and Protocols 2

design components and systems for its use. CanBus is capable of high-speed data transmission

(up to 1 Mbits/s) in short distance applications. It can also operate at longer range but with lower

speeds. CanBus is multi-master with a high fault tolerance and error detection capability.

CanBus was originally developed in Germany by Bosch and was designed to replace electrical

sensor components in the automobile. The design allowed a smaller wiring harness than was the

design standard prior to CanBus. This bus was also recognized as an ideal bus for the industrial

market but the automotive market has remained as its primary focus.

CanBus is especially well adapted for working with intelligent devices in a system or sub-system.

CanBus has become the standard for IVN or in-vehicle network applications. Applications

include power-train applications for automobiles as well as between the truck and trailer in truck

applications. One author described CanBus in the following way: “Many American and

European truck and bus manufacturers have implemented CAN-based IVNs, and more and more

truck-based superstructure control systems (e.g. fire fighting equipment and concrete mixers)

also use CAN as their embedded control network.”

The description continues: “CAN is often used as the embedded network to run functions such as

the power-train, body electronics, super-structure control and trailer communications. Likewise,

CAN is also used to run add-on sub-systems such as harvesters, cranes, winches, drums, etc. In

cases where several CAN-based IVNs are used to run multiple functions, these IVNs may be

interconnected via gateways. This keeps the systems separate to avoid interferences and

disturbances that may be caused if all operations run simultaneously in one physical layer.”

An article in the October, 2003 issue of Control Engineering identifies a question concerning the

use of CanBus or Device Net and its competitor, Ethernet. In the article, Colin MacDonald

writes:

“In choosing the appropriate network bus to support, a designer should ask several questions:

Will both CAN and Ethernet continue to be widely adopted? If so, how will they co-exist? And

finally, how will the choice of buses affect the design of network processors? The short answer

is that DeviceNet has withered and Ethernet has thrived. We will now discuss a few attributes of

the DeviceNet hardware and software and then get on with the Ethernet portion.

New Software to Learn

When starting a new DeviceNet application, it is necessary to become familiar with a new

software product from Allen-Bradley called RSNetWorx for DeviceNet. A DeviceNet Scanner

Card will be installed in both a SLC 5/03 and in a CompactLogix processor. With

CompactLogix, the newer RSLogix 5000 software programming package will be necessary.

This may be the first exposure for students with this software package as well as RSNetWorx for

DeviceNet.

 Ch. 16 Networks and Protocols 3

Notice that in the above figure, the network screen for DeviceNet shows no devices on the graph

portion of the screen. This shows a new network with no devices attached. Also notice the note

in the description section in the message box. Copy protection was not installed in this instance

on the software and the software will run in this instance in demo mode which allows only six

nodes to be attached.

SLC 5/03

In the figure above, the DeviceNet scanner is being added to the rack’s I/O configuration. Notice

the maximum input and output word count for the SDN module listed under Advanced I/O

Configuration. This is the maximum number of data words available for the scanner module to

share with this SLC 5/03 PLC. The scanner is located in slot 1.

Fig. 16-1

Devicenet Network

Configured in the A-B

RSNetWorx Software

Fig. 16-2

Adding the DeviceNet

Scanner to the SLC 5/03

 Ch. 16 Networks and Protocols 4

CompactLogix Processor

The figure above shows the method of adding the scanner card to the CompactLogix I/O

configuration. Notice the type is 1769-SDN/B. Cards must be added to the I/O list in RSLogix

5000 and not read from the I/O as was possible in RSLogix 500. This scanner is also located in

slot 1.

Use the following scan-list information for a scanner in slot 2 of both a SLC and Compact

processor. Both input and output scan lists appear below as they would in the scan-list shown in

RSNetworx for Device-Net. Devices are shown stacked from first to last in 16 bit word format.

If a device uses only 1 bit for communication to a PLC, 8 data bits are reserved. Many times, the

other bits are used to transmit other information. A manual for the device will define the use of

all bits and how they are used.

Device 2 Device 1

Device 4 Device 3

Device 6 Device 5

Output Scan-List

Device 1

Device 3 Device 2

Device 4

Input Scan-List

View in Scan List of

RSNetworx for

DeviceNet

For the SLC 5/03, addresses follow 16 bit words. If the scanner were in slot 2, the addressing

would proceed with word 0 of slot 2 assigned a control word status. Starting with word 1, the

first device would occupy bits 0 to 7 and device 2 would occupy word 1, bits 8-15. Other words

would proceed after the first. For example, if an input were assigned from bit 1 of device 1, the

address would be I:2.1/1. For the CompactLogix processor, addresses follow 32 bit word length

and two 16 bit words would occupy each 32-bit word. For instance, if the bit were from input

device 1, input bit 1, the address would be Local:I:2.0/1. For device 2, input bit 0 would be

Local:I:2.0/16.

Fig. 16-3

Adding the DeviceNet

Scanner to the

CompactLogix

Processor

Fig. 16-4

 Ch. 16 Networks and Protocols 5

Next we look at ethernet networks.

PROFINET and Industrial Networks

Profinet is an industrial Ethernet network. It is capable of connecting computers with PLCs with

I/O. It is also capable of wireless communication as well as operating in safe environments.

Comparison of Profinet with Ethernet/IP as the leading network choices for industrial networks

shows the following:

Industrial Ethernet

Market

Ethernet/IP

PROFINET

Other

Ethernet/IP is the choice of Allen-Bradley controllers and their vendor partners while Profinet is

the choice of Siemens and their vendor partners. As with all industrial equipment, a choice must

be made which network (or both) to have in a facility.

While DeviceNet was discussed earlier, its effective use in the marketplace has waned and

Ethernet/IP has become the defacto standard for all A-B products. Profinet has a similar

relationship with Profibus. On the next page is a list of various industrial network technologies

and their relative strength. The two listed first are Profinet (from Siemens) and Ethernet/IP (from

Allen-Bradley).

Each of the networks listed provide an all-encompassing network for Industrial Automation:

 Real-time I/O, Machine-to-machine Integration, Motion Control, Vertical Integration,

 Safety, Security, Integrates existing buses, Energy Savings.

Fig. 16-5

Fig. 16-6

 Ch. 16 Networks and Protocols 6

A look back at the older Profibus which was similar to DeviceNet and comparing it to the newer

Profinet follows. This chart shows some of the needed changes that took place as the Ethernet-

based networks have taken over.

Differences: PROFIBUS PROFINET

Physical layer RS-485 Ethernet

Speed 12Mbits 100Mbits

Telegram 244 bytes 1440 bytes

Address space 126 2048

Technology master/slave provider/consumer

Connectivity PA + others many buses

Wireless Possible IEEE 802.11, 15.1

Motion 32 axes 150 axes

Mach to mach No Yes

Vert integration No Yes

No. of products 3,000 300
What do we mean when we say Ethernet?

- The IEEE 802.3 Specification defines:

1. The physical media

2. The media access rules

3. The structure of an Ethernet frame

It is important to see that Ethernet is not the entire network solution. The specification does not

specify any physical or environmental operating requirements. The figures on the next page are

an attempt to show the relative position of Ethernet to TCP/IP and the application oriented layers.

It is not the intent of this text to train the student on the principles of network configuration. This

entails a separate course or two and much work on the intricacies of the various network layers.

The ISO/OSI

communications model

Each communication procedure is divided into logical

components which are linked via defined interfaces.

ISO = International Standards Organization

OSI = Open Systems Interconnection

Fig. 16-7

Fig. 16-8

 Ch. 16 Networks and Protocols 7

Multiple application protocols can run at the

same time on the physical medium (Ethernet)

Communications Packet

Flow of data in a communication packet is shown in this section. Again, the text in no means is

trying to establish itself as a text on the intricacies of network communication.

Not all layers are needed:

Fig. 16-9

Fig. 16-10

 Ch. 16 Networks and Protocols 8

Industry’s Demand for Speed

TCP/IP has methods in place to resend telegrams when lost

- But the timing is not acceptable for industrial use!

There is no such thing as a protocol protection against noise

- The need for shielding is independent of the protocol used

Grounding at both ends is best – but not always applicable due to ground loops

If you used shielded cable with DeviceNet or PROFIBUS, use shielded cable with Ethernet as

well!

Four steps to fast, deterministic communication:

Why not use TCP/IP for real-time?

Because it’s not fast enough and it’s not deterministic enough.

The data packet is created to ensure scheduling traffic for even motion control. While the use of

one of the ethernet networks can be used for I/O, it is not always best. The following picture

shows the positioning of the ethernet network with some of the Siemens’ answers for I/O

network. Two answers are IO Link and ASi.

We do not want to define the positioning of the various network types, either ethernet (pick your

type) or I/O network (pick your type). You will have to make this decision as you work with the

various types of PLC and their network topology. I wish you well.

IO Link Functional Positioning: The figure below shows the positioning of various bus types in

the factory with the Ethernet at the top and various I/O networks at the bottom.

Fig. 16-11

 Ch. 16 Networks and Protocols 9

Industrial Networks from RealPar:

Fig. 16-12

 Ch. 16 Networks and Protocols 10

 Ch. 16 Networks and Protocols 11

 Ch. 16 Networks and Protocols 12

 Ch. 16 Networks and Protocols 13

 Ch. 16 Networks and Protocols 14

Communication from PLC to PLC

Next outlined are various ways for PLCs to talk between each other. First Allen-Bradley:

A-B MSG Command – RSLogix 5000

The following manual describes the MSG command for the Compact Logix processors in the lab:

Rockwell Automation Publication 1756-PM012I-EN-P - September 2020

The following describe the setup and execution of the MSG command. Remember, it is only

necessary to be placed in the processor desiring the information and not in both processors:

“

 Ch. 16 Networks and Protocols 15

”

Older RSLogix 500 Message Instruction Overview

The Message Block is an output instruction that allows data to be read or written from one

processor to another via the communication channel(s). The SLC 5/-2 processor can service one

message instruction at any given time. The SLC 5/03 and higher processors can service up to

four message instructions per channel at a time, for a maximum of eight message instructions at

any given time. To invoke the MSG instruction, toggle the MSG instruction rung from false-to-

true or set the instruction to run continuously. Do not toggle the rung again until the MSG

instruction has successfully or unsuccessfully completed the previous message, indicated by the

processor setting either the DN or EN bit.

SLC 5/03 and higher – If a MSG instruction has entered one of the four “channel dependent”

transmission buffers and is waiting to be transmitted, its control block will have status bits EN

and EW set. If more than four MSG instructions for that channel are enabled at one time, a

“channel dependent” overflow queue is used to store the MSG instruction header blocks (not the

data for a MSG write) from the fifth instruction to the fourteenth. These instructions, queued in a

FIFO order, will only have control block status bit EN set.

If more than 14 MSG instructions are enabled at one time for any one channel, only control block

 Ch. 16 Networks and Protocols 16

status bit WQ is set, as there is no room available to currently queue the instruction. This

instruction must be re-scanned with true rung conditions until space exists in the overflow queue.

Tip: If you consistently enable more MSG instructions than the buffers and queues can

accommodate, the order in which MSG instructions enter the queue is determined by the

order in which they are scanned. This means MSG instructions closest to the beginning

of the program enter the queue regularly and MSG instructions later in the program may

never enter the queue.

Message blocks may be set to read/write on a trigger or read/write continuously. Examples of

both are found in the Reference Manual in the MSG chapter.

It is advised to run multiple applications of RSLogix 500 when debugging the MSG command.

The command to write a word or multiple words from one processor to a second processor may

be triggered by toggling the input contact to the MSG block. Verification of the data move may

be seen immediately after a toggle operation if the data was successfully transmitted in the

second processor. In the example above, data is to be read from the processor on the right to the

processor on the left. Note that the instruction for the MSG command is only present in the

processor initiating the command to read or write.

The setup screen brings the user to the screen for setting up the MSG block. When set up

properly, and the bit B3:1/0 toggled on, the MSG block should execute. First the EN coil turns

on. Then either DN or ER will turn on. If DN turns on, the operation was executed. Click to see if

the operation occurred successfully (if the data moved). If so, the command was successful. If

the command was not executed successfully or if the ER bit turned on, more work is necessary to

configure the MSG command correctly.

MSG commands are set up to work automatically in most programs. The use of timers to allow a

sufficient time for the operation to occur followed by a check for DN or ER is appropriate. A

count of 3 or 5 can be set for allowable retries of the communication before the command is

alarmed as not working properly.

Fig. 16-13

 Ch. 16 Networks and Protocols 17

Enter the following parameters when programming this instruction:

Read/Write – read indicates that the local processor (processor in which the instruction is

located) is receiving data; write indicates that it is sending data.

Local or Remote identifies if the message is sent to a device on a local network, or to a remote

device on another network through a bridge. Valid options are:

 -local, if the target device is on the local network

 -remote, if the target device is on the remote network

Control Block is an integer file address that you select. It is a block of words, containing the

status bits, target file address, and other data associated with the message instruction.

Control Block Length is a display-only field that indicates how many integer file words are being

used by the control block.“

Use the MSG Setup Screen to set up the values in the control block.

To troubleshoot a MSG operation, open multiple copies of RSLogix 500 to examine the state of

the data as the read or write block is being executed. This leads to a quick verification that the

data (one or multiple words) is being transmitted successfully.

Siemens’ PLC to PLC Communications

Check the Easy Book:

Easy BookManual, 01/2015, A5E02486774-AG139 - Easy to communicate between devices

and

Youtube - Siemens PLC to PLC Communication PUT GET Easy Guide

From the Help Request from TIA Program, the following descriptions for GET and PUT:

GET: Read data from a remote CPU

Description

With the instruction "GET", you can read data from a remote CPU.

The instruction is started on a positive edge at control input REQ:

 The relevant pointers to the areas to be read out (ADDR_i) are then sent to the partner CPU. The
partner CPU can be in RUN or STOP mode.

 The partner CPU returns the data:

 Ch. 16 Networks and Protocols 18

o If the reply exceeds the maximum user data length, this is displayed with error code "2"
at the STATUS parameter.

o The received data is copied to the configured receive areas (RD_i) at the next call.

 Completion of this action is indicated by the status parameter NDR having the value "1".

Reading can only be activated again after the previous reading process has been completed. Errors and
warnings are output via ERROR and STATUS if access problems occurred while the data was being read
or if the data type check results in an error.

PUT: Write data to a remote CPU

Description

You can write data to a remote CPU with the instruction "PUT".

The instruction is started on a positive edge at control input REQ:

 The pointers to the areas to be written (ADDR_i) and the data (SD_i) are then sent to the partner
CPU. The partner CPU can be in RUN or STOP mode.

 The data to be sent is copied from the configured send areas ((SD_i). The partner CPU saves the
sent data under the addresses supplied with the data and returns an execution
acknowledgment.

 If no errors occur, this is indicated at the next instruction call with status parameter DONE = "1".
The writing process can only be activated again after the last job is complete.

Errors and warnings are output via ERROR and STATUS if access problems occurred while the

data was being written or if the execution check results in an error.

Or, use the I-Device Method:

This method is recommended for use by most systems engineers. The fact that more than one

distinct method exists to communicate between processors is interesting. The following I-Device

method is the better method per Siemens personnel.

https://support.industry.siemens.com/cs/us/en/view/109478798

It was also used by a student in MIME 5450 – Michael Smith with the following:

“
Michael Smith -MIME 5450

PLC to PLC Communication – Siemens I Device

The objective of this lab was to establish communication between 2 Siemens S7-1215 PLCs
using ‘I Device’. I started by creating 2 projects for each of the PLCs. In each projected I inserted
the S7-1215 as shown below.

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsupport.industry.siemens.com%2Fcs%2Fus%2Fen%2Fview%2F109478798&data=04%7C01%7CWILLIAM.EVANS%40utoledo.edu%7C367e3186be3648455cb608d8ea1df4aa%7C1d6b1707baa94a3da8f8deabfb3d467b%7C0%7C0%7C637516761822266885%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=lTOLIoQc4HgBYRIN11DWyZScbd2EMsUz3MZK%2FUquvS0%3D&reserved=0

 Ch. 16 Networks and Protocols 19

One of the PLCs had to be configured as an IO device which can be seen in the below image. To
bring up the menu below I had clicked on the ProfiNet ports shown in the above image.

Next I had to configure the input and output sizes which can be done by just scrolling down. In
the same window. Notice I have 1 byte of input and output data configured.

After the input and output data was configured I had to generate a GSD file which was done in
the same window.

 Ch. 16 Networks and Protocols 20

I then saved the project and downloaded the project to the PLC.
In the second PLC I had to install the GSD file generated from the first PLC. This can be done by
selecting ‘Options’ and ‘Manage GSD Files.’

After the GSD file was installed PLC_1 can be inserted in the ProfiNet network as shown in the
image below.

 Ch. 16 Networks and Protocols 21

I then downloaded the project to PLC_2. With both PLCs in RUN mode and connected VIA an
ethernet cable connection was established.

Below are ‘Watch Tables’ from each PLC and you can see the data from PLC_1 at QB10 is being
moved into IB68 of PLC_2 and the value in QB68 in PLC_2 is being moved into IB10 of PLC_1.

”

Also, a third method can be used. It is found in part in early literature for the S7-1200:

 Ch. 16 Networks and Protocols 22

Fig. 16-15

Fig. 16-16

 Ch. 16 Networks and Protocols 23

So, there are at least three different distinct methods for the Siemens PLCs to talk one to another.

How to Interconnect Dissimilar Devices

To look at how to interconnect between PLC and other device, just look at the following ad from

one of the industrial leaders in interconnecting the PLC on the factory floor:

“

“

The ad continues with a listing that gives popular interconnection types and Anybus’ solution:

Fig. 16-17

 Ch. 16 Networks and Protocols 24

Others with similar products for interconnecting PLCs with various devices include Red Lion

with their ad below:

“

 Ch. 16 Networks and Protocols 25

”

Another protocol converter is Hilscher. Their NT 151-RE-RE converter is presently planned to

be used in the Lab for converting between Profibus and Ethernet/IP and Modbus/TCP.

The setup of the Hilscher unit can be found at the Atlassian website under the sycon heading.

The url for the site is:

https://hilscher.atlassian.net/wiki/spaces/SYCON/overview

This site gives the setup software, presently 2.0 as well as manuals for the setup of the network

card for the various protocols.

This website is shown below:

(Documentation for the setup of the cards can also be found on this page.)

https://hilscher.atlassian.net/wiki/spaces/SYCON/overview

 Ch. 16 Networks and Protocols 26

Setup of the card is shown in the pictures below:

 Ch. 16 Networks and Protocols 27

Writing your own ASCII READ/WRITE BLOCKS

Various sets of numeric codes have been implemented to transfer text information between

computers. One of these codes is ASCII. ASCII stands for American Standard Code for

Information Interchange. As can be seen from the table of ASCII characters in the ASCII Table

in an index to the chapter, not all codes represent letters or numbers. Many codes represent

actions, special keys or control characters.

One computer capable of transmitting and accepting ASCII coded data is the PLC. The SLC

5/03 as well as a number of other PLCs is capable of reading and writing ASCII string data

through its 9 pin D-shell connector on the CPU front panel. Instructions for transfer of data are

found in Allen-Bradley’s SLC 500 Instruction Set Reference Manual, Chapter 10.

Writing a program to communicate between computer controllers involves handling of ASCII

codes or other numeric data in order to move information or request an action. Many of these

programs use ASCII data to accomplish the task. A mixture of ASCII data and other numeric

data is the norm for most tasks. A second data transmission type is RTU (Remote Terminal

Unit) with a more dense data packet.

Definition of the communication between two controllers is included in a protocol. Many

protocols are very simple and require only a simple description of the query and any expected

response.

Then a more complete protocol is explored. How one controller requests information from

another device and how that device responds is the basis for an advanced protocol. Contents of

various fields in the protocol are described so the protocol can function properly.

Configuring a PLC for ASCII Read/Write

The figure above shows the Channel Configuration setting change that must take place prior to

using the port as an ASCII port. Channel 0 must be changed from System to User.

Many devices use ASCII code to transmit information. Scales send weights from the scale

computer to a batching computer. Bar code readers send bar code data to a sorting computer.

Fig. 16-18

Using the SLC

Processor as

ASCII Device

 Ch. 16 Networks and Protocols 28

RFID tag readers send tag information to and from the tag and communicate to a computer

system controlling the process. PLCs have the ability to read and write ASCII strings of data

from these devices and are used to gather data and control processes using the string data.

A new file type is needed to hold ASCII string information, the String file type. It is added to the

Data File list as follows:

File, Data Files, Select Data File and from below, Create New:

The process of creating a new file may also be done by right clicking Data Files and then choosing

Add New. The example below shows the adding of File 9 as a String file. Files do not necessarily

need to be added sequentially although most applications tend to reserve File 9 as a String or

ASCII file type.

Fig. 16-19

Configure the

String or

ASCII file in

the SLC

Fig. 16-20

Configure the

String or

ASCII file in

the SLC

 Ch. 16 Networks and Protocols 29

ASCII Transmission

ASCII characters are transmitted sequentially a bit at a time through a serial data cable. Each bit

is transmitted sequentially starting with the left-most bit. Two start bits and 1, 1.5, or 2 stops

may be specified. The channel may be configured from RSLogix 500 using the project tree –

channel configuration, channel 0, and then user. From this tab, choose the baud rate, parity, stop

bits and data bits to be used. Typical choices are 9600 baud, no parity, 1 stop bit and 8 data bits.

For protocol control, chose Control Line – no handshaking – and for Delete Mode – ignore.

Echo and XON/XOFF are usually left unchecked. The important point about these settings is

that they must match the settings with the other device.

Looking at a transmission on the oscilloscope may yield good information. Storage

oscilloscopes are definitely superior to non-storage oscilloscopes for this job. Transmissions

should be visible per character with start and stop bits present as well as data bits of the 7 or 8 bit

character string. For instance, the character “:” from the ASCII Table is 00111010 binary. With

two start bits and one stop bit, it would resemble the following on the oscilloscope:

1 1 1 1 1 1 10 0
 Fig. 16-21 Oscilloscope Representation of ASCII Character

Transmission Modes and ASCII Tables

The Modbus protocol discussed later in this chapter is set up to communicate in one of two types

of transmission: ASCII or RTU. The choice of ASCII or RTU is made by the system designer

and must be kept the same throughout. This communication represents a typical transmission for

a computer to computer data exchange.

From the manual defining the Modbus protocol, one finds the two following serial transmission

diagrams, one for ASCII and the other for RTU data transmission. The data is sent in the order

defined by the diagram from left to right:

ASCII with Parity Checking

START 1 2 3 4 5 6 7 PRTY STOP

START 1 2 3 4 5 6 7 STOP

START 1 2 3 4 5 6 7 PRTY STOP

START 1 2 3 4 5 6 7 STOP

STOP

ASCII without Parity Checking

8

RTU with Parity Checking

8 STOP

RTU without Parity Checking

Fig. 16-22

Modbus

Protocol

Frames

 Ch. 16 Networks and Protocols 30

ASCII Mode in Modbus Protocol

In the Modbus protocol, each 8–bit byte is set up to be sent in a message as two separate ASCII

characters. This protocol gives the following rules for coding data in a message as: (from the

Modbus manual)

 "Coding System:

 Hexadecimal, ASCII characters 0–9, A–F
 One hexadecimal character contained in each
 ASCII character of the message

 Bits per Byte:

 1 start bit
 7 data bits, least significant bit sent first
 1 bit for even/odd parity; no bit for no parity
 1 stop bit if parity is used; 2 bits if no parity

Error Check Field:

 Longitudinal Redundancy Check (LRC)"

RTU Mode in Modbus Protocol

In the Modbus protocol, each 8-bit byte transmits two hexadecimal characters in the RTU mode.

This protocol gives the following rules for coding data in a message as: (from the Modbus

manual)

 "Coding System:

 8–bit binary, hexadecimal 0–9, A–F
 Two hexadecimal characters contained in each
 8–bit field of the message

 Bits per Byte:

 1 start bit
 8 data bits, least significant bit sent first
 1 bit for even/odd parity; no bit for no parity
 1 stop bit if parity is used; 2 bits if no parity

 Error Check Field:

 Cyclical Redundancy Check (CRC)"

In general, while ASCII may be configured as either 7 or 8 bit, the standard ASCII table

identifies only 128 characters. With the Modbus protocol defined above, 7 bit ASCII is

sufficient and is required per the protocol. ASCII protocol is less efficient in the Modbus

protocol than RTU, in that for each transmission, only 4 bits of data is transmitted. With RTU, 8

bit must be selected since 8 bits define 8 bits or one byte of data to be transmitted.

 Ch. 16 Networks and Protocols 31

Example of a Simple ASCII Protocol

The protocol described here is a simple protocol using ASCII characters. It is less sophisticated

than the Modbus protocol discussed later. The protocol for the device below is a letter, a number

(Head Number), a check sum followed by an end of text character or <ETX>. Each

communication follows roughly the same simple pattern. A computer receives the request from

the device and responds with the appropriate information. The device initiates a request and

gathers the results. The examples below are between a computer and a radio-frequency

identification system from Peprl and Fuchs. Peprl and Fuchs literature defines each specific data

type. For instance <HdNo> refers to a specific head number in the range 1 to 4.

Command: A<HdNo><CHCK><ETX>
Response: A<Status><DB><CHCK><ETX>
Example: Read all data in Auto mode with read head 1:
Command: A 1 72h 03h

 Read bytes, Single mode
Command: w<HdNo><StAdrH><BytesH><CHCK><ETX>
Response: w<Status><DB><CHCK><ETX>

 Read bytes, Auto mode
Command: W<HdNo><StAdrH><BytesH>CHCK><ETX>
Response: W<Status><DB><CHCK><ETX>
Example: Read bytes 7 to 11 in Auto mode with read head 1:
 Command: W 1 07 05 54h 03h

 Write bytes, Auto mode
Command: K<HdNo><StAdrH><BytesH><DB><CHCK><ETX>
Response: K<Status><CHCK><ETX>
Example: Write “P & F” to data carrier, at start address 10, in Auto mode with read head 2:
 Command: K 2 0A 03 50h 2Bh 46h 12h 03h

To calculate a check sum <CHCK>, the following addition is performed:

 K 4Bh Ascii char "K"

 2 32h Ascii char "2"

 0 30h Ascii char "0"

 A 41h Ascii char "A"

 0 30h Ascii char "0"

 3 33h Ascii char "3"

 50h 50h hex char 50

 2Bh 2Bh hex char 2B

 46h + 46h hex char 46

 (2)12h

This gives a check sum <CHCK> of 12h.

The check sum is used in many applications for error-checking. If the check sum does not equal

the calculated checksum, the data is discarded as bad. Check sum is also referenced as LRC or

Longitudinal Redundancy Check. It is a simple procedure giving a good check on validity of the

characters sent.

Fig. 16-23

Simple ASCII

Communication

 Ch. 16 Networks and Protocols 32

ASCII Instructions in the PLC

The SLC Instruction Set includes several ASCII instructions for reading and writing data from

the PLC.

Different applications require some or all of these instructions to accurately find information in

the string of data and use the information in the control of the process. AWA is ASCII Write

with append and AWT is an ASCII string write with no append. While the student may be at

first excited about the use of serial data transmission and writing a protocol, these programs are

among the most difficult to keep running in a factory environment. Noise may interfere with a

proper transmission and add a random character. A computer may not respond when asked.

Error recovery programs, time-outs, re-trys all become an integral part of any program to

implement one of these programs in a factory. Testing a procedure on the lab bench is usually

not enough to ensure success with this type of program in a field application.

A More Complete Protocol

A protocol is a defined method by which computers communicate. A very early PLC protocol

first used by Modicon and the Modicon PLC family is the Modbus protocol. This protocol has

provided a standard for communication between various controllers since the late 1970s and

remains active today in a number of PLC and other industrial products. The protocol defines a

message stream that various controllers can recognize. Its inclusion here gives an example of a

more complete protocol with a more robust set of functions available. This protocol has survived

over the years due to its early acceptance, its flexibility, and its adaptability to a wide range of

control devices. A rigorous explanation of the protocol is found in Modicon's Modbus Protocol

Reference Guide.

From Modicon's Modbus Protocol Reference Guide*:

"It describes the process a controller uses to request access to another device, how it will
respond to requests from the other devices, and how errors will be detected and reported. It
establishes a common format for the layout and contents of message fields. The Modbus
protocol provides the internal standard that the Modicon controllers use for parsing messages.
During communications on a Modbus network, the protocol determines how each controller will
know its device address, recognize a message addressed to it, determine the kind of action to be
taken, and extract any data or other information contained in the message. If a reply is required,
the controller will construct the reply message and send it using Modbus protocol."

The addressing of all Modicon PLCs is as follows:

00001 – 0xxxx – Discrete Outputs and Internal Coils

10001 – 1xxxx – Discrete Inputs

30001 – 3xxxx – 16 bit word Input

40001 – 4xxxx – 16 bit word Output and Internal Storage

What is common about each of these is that the displacement to any address is from 1, not from
0. For instance, if the address for location 500 of the discrete output table, the displacement

 Ch. 16 Networks and Protocols 33

would not be 500 but 499 and this number would be converted to hex. The same would be for

any of the addressing types.

The Modbus Transaction

Modbus defines a master-slave protocol in which the master device queries the slave device

which then responds with its own transmission. A slave response is typically a table of data but

may include an action as requested by the master. A master may include computers or HMI

terminals but may also include other PLCs. A typical slave is a PLC or other control device.

Devices used as slave devices include any device from which control information is desired or

needs to be changed. A wide range of devices other than Modicon PLCs have adopted the

Modbus protocol and are programmed as Modbus slaves. Responses from slave devices range

from a single device response to a general broadcast query message to all slave devices on the

network.

Modbus provides a format for both master and slave protocols. From the figure on the next page,

a typical master query followed by a slave response is shown. In the query are information such

as the device address being communicated to, a function code, any data being sent or requested,

and an error checking field. This protocol is more sophisticated than the simple Peprl-Fuchs

protocol in that if an error occurs, the slave sends the appropriate error message.

* Modicon: Modbus Protocol Reference Guide

 PI–MBUS–300 Rev. J

Device Address

Function Code

Data

Error Checking

Device Address

Function Code

Data

Error Checking

Device Address

Function Code

Data

Error Checking

Query from Master

Response from slave Response from slave

Fig. 16-25

 Ch. 16 Networks and Protocols 34

The Query:

A query provides a function code requesting an action. The query may include any of the

following allowable function codes:

 Code Name Comments *
 01 Read Coil Status specifies 16*n discrete slave PLC outputs
 02 Read Input Status specifies 16*n discrete slave PLC inputs
 03 Read Holding Registers specifies n 16 bit words from slave PLC output tbl
 04 Read Input Registers specifies n 16 bit words from slave PLC input table
 05 Force Single Coil
 06 Preset Single Register
 07 Read Exception Status
 08 Diagnostics
 09 Program 484 84 specifies a type of Modicon PLC
 10 Poll 484
 11 Fetch Comm. Event Ctr.
 12 Fetch Comm. Event Log
 13 Program Controller
 14 Poll Controller
 15 Force Multiple Coils
 16 Preset Multiple Registers
 17 Report Slave ID
 18 Program 884/M84 884/M84specifies a type of Modicon PLC
 19 Reset Comm. Link
 20 Read General Reference
 21 Write General Reference
 22 Mask Write 4X Register
 23 Read/Write 4X Registers
 24 Read FIFO Queue

The function code field is followed by information in the master query telling the slave at which

word to begin and the number of words to read or write. Error checking provides a validation of

the message.

The Response:

The response is an echo of the function code found in the query plus any data requested followed

by the error checking byte or bytes. The new error checking provides the master with a

validation of the message and its contents.

Data Addresses Referenced

Every part of the data field in the Modbus protocol must be addressed correctly. For example,

the data address must be referenced to one. From the Modbus Protocol manual, the following

examples show calculations of offsets for data addresses:

 "The coil known as ‘coil 1’ in a programmable controller is addressed as coil 0000 in the data address
 field of a Modbus message. Coil 127 decimal is addressed as coil 007E hex (126 decimal).

 Holding register 40001 is addressed as register 0000 in the data address field of the message. The
 function code field already specifies a ‘holding register’ operation. Therefore the ‘4XXXX’ reference is
 implicit.

 Holding register 40108 is addressed as register 006B hex (107 decimal)."

 Ch. 16 Networks and Protocols 35

Framing - ASCII

From the Modbus manual, the following:

 "In ASCII mode, messages start with a ‘colon’ (:) character (ASCII 3A hex), and end with a ‘carriage

 return – line feed’ (CRLF) pair (ASCII 0D and 0A hex). The allowable characters transmitted for all
 other fields are hexadecimal 0–9, A–F."

The typical transmission for a Modbus ASCII transmission resembles:

Start Address Function Data LRC Check End

1 Char
:

2 Chars 2 Chars n Chars 2 Chars
2 Chars
CRLF

 Fig. 16-26 ASCII Transmission Frame

Framing - RTU

From the Modbus manual, the following:

 "In RTU mode, messages start with a silent interval of at least 3.5 character times. This is most
 easily implemented as a multiple of character times at the baud rate that is being used on the network
 (shown as T1–T2–T3–T4 in the figure below). The first field then transmitted is the device address.
 The allowable characters transmitted for all fields are hexadecimal 0–9, A–F.
 Networked devices monitor the network bus continuously, including during the ‘silent’ intervals.
 When the first field (the address field) is received, each device decodes it to find out if it is the
 addressed device. Following the last transmitted character, a similar interval of at least 3.5 character
 times marks the end of the message."

The typical transmission for a Modbus RTU transmission resembles:

Start Address Function Data CRC Check End

T1-T2-T3-T4 8 Bits 8 Bits n * 8 Bits 16 Bits T1-T2-T3-T4

 Fig. 16-27 RTU Transmission Frame

 Ch. 16 Networks and Protocols 36

Example Modbus Transmissions

Description of "02" Read Input Status

The "02" request reads the status of discrete input points. The request is for inputs 197 to 218

from slave device 17.

Query

Hex 11 = Decimal 17 or the 17th device
Function 02 = Data Read from Digital Input Table starting at 10001
High Address = 00
Low Address = C4 or 12*16 + 4 or 192 + 4 = 196 which is address 10197
or 196 offset from 10001
No of points = 16 or 1*16 + 6 = 22 data points

 Sample Modbus Read Input Query

Response

Hex 11 = Decimal 17 or the 17th device
Function 02 = Data Read from Digital Input Table starting at 10001
Byte Count = number of 8 bit bytes to be sent. There are 3 based on bit
count of 22
Data includes the first byte (AC), second byte (DB) and third byte (35).
Notice that the third byte is not complete due to the fact that only 22,
not 24 bits are desired. The extra two bits are not included and
recorded as 0's.

 Sample Modbus Read Input Response

Explanation of Response:

The Slave Address is repeated from the query as 11. The function is also repeated from the

query as 02. Byte count is calculated from the number of bytes to be sent. The number of bytes

sent can be calculated by establishing the number of bytes necessary to send 16 hex data points.

The number 16 hex is equal to 22 decimal. If each input represents one data point, three 8-bit

bytes are needed for 22 data points. The data is sent from input addresses starting at offset C4

hex from the first data point 10001. The hex number C4 is equal to 12*16 or 192 plus 4 or total

196. The first data point is displaced 196 from 10001 or 10197. The first 8 data points reside in

addresses 10197 to 10204. The next eight reside in addresses 10205 to 10212. The final 6 reside

in addresses 10213 to 10218. Two bits are not used (10219, 10220). The data from these bits is

sent in three consecutive bytes. The value of 10197 through 10204 is shown in the first entry of

the figure below. Values of 10205 through 10212 are found in the second entry and values of

10213 to 10218 are found in the third.

Fig. 16-28

 Ch. 16 Networks and Protocols 37

10204 10203 10202 10201 10200 10199 10198 10197

1 0 1 0 1 1 0 0

 A C

 D B

 3 5

Description of "04" Read Registers

This is a request to read input register 30009 from the slave device at location 17.

Query

Field Name

Slave Address 11

Function 04

Starting Address Hi 00

Starting Address Lo 08

No. of Points Hi 00

No. of Points Lo 01

Error Check (LRC or CRC) ----

 Sample Modbus Read Registers Query

10212 10211 10210 10209 10208 10207 10206 10205

1 1 0 1 1 0 1 1

 10218 10217 10216 10215 10214 10213

0 0 1 1 0 1 0 1

Fig. 16-28 Calculating the Slave Response

 Ch. 16 Networks and Protocols 38

Response

Field Name

Slave Address 11

Function 04

Byte Count 02

Data Hi (Register 30009) 00

Data Lo (Register 30009) 0A

Error Check (LRC or CRC) ----

 Sample Modbus Read Registers Response

Explanation of Response:

The Slave Address is repeated from the query as 11. The function is also repeated from the

query as 04. Byte count is calculated from the number of bytes to be sent. The number of bytes

sent can be calculated by establishing the number of bytes necessary to send 01 16-bit words.

This number is 2 bytes. Contents of input register 30009 are sent in the following two bytes.

First is sent the high byte (00). Second is sent the low byte (0A). Input register 30009 is

displacement 8 from the first input register 30001. If more than 1 register is requested, the

number of bytes added would equal 2 bytes for each register requested.

Possible Responses to Request

As a more sophisticated protocol, the programmer must be aware of possible outcomes other than

a normal response as shown above. Any of four different responses might occur when a request

is initiated and the PLC or computer program must be capable of handling any of them.

 1. Normal Response

 2. Slave doesn't Receive - No response (master program should process a timeout and retry)

 3. Communication Error (parity, LRC, or CRC error) - No Response

 4. Unable to handle request - Returns an exception response

Error Checking

Either the ASCII or RTU mode may be scheduled for the Modbus protocol. Error checking for

these two modes varies in that a different algorithm is used to calculate the error checking field.

ASCII uses the Longitudinal Redundancy Check (LRC) and RTU uses the Cyclical Redundancy

Check (CRC). ASCII mode begins the transmission with a 'colon' and ends the transmission with

CRLF characters. In either mode, if the LRC or CRC does not match the calculated value in the

computer program, an error is present and the communication is terminated. Calculating these

two checking types may be obtained from various websites with the programs written and

examples provided. A more thorough discussion of these methods is also found in the Modbus

Reference Manual. LRC mode is similar to the check sum example of the Simple ASCII

Protocol.

The user rarely needs to fully understand the protocol or the various codes for the transmission.

He should be able to configure the transmission and the expected response, however. The use of

Fig. 16-29

 Ch. 16 Networks and Protocols 39

this protocol shows up in the most unusual situations with equipment not at all related to the

Modicon organization.

You may not believe it but a capstone group in Fall 2013 was required to implement this

protocol to succeed with their project.

A Failure to Communicate

Some of the most serious problems encountered as a PLC programmer involve problems with

communications. Whether it is that they can’t be seen or that they can be easily over-loaded, the

stories about failures in communications problems are many and varied. The following is just

one not to be duplicated.

The following engineered system was to be implemented in an automotive parts plant. The PLC

program was to send a command string to the Remote I/O module located in a rack in the PLC

housing. From there, the command was to be sent to the vendor’s remote I/O receiver module

and from there to the vendor’s communications device. Any communication that was to be

successful would need to pass through four CPUs and successfully return to the initiating

program. While the test program worked successfully on the bench, when it entered the field,

problems developed. The problem was that if a communication was not successfully received

back prior to a second communication starting, the communications became confused and

stopped. The only procedure for re-starting the communications was to power down and back up

both vendor devices, a task that would be painful to do even if given permission by the end user.

The fact that proximity switches initiated the communication and they are noisy devices that

many times have multiple inputs when a device is sensed was also part of the problem.

Program
Statements in
PLC Program

Initializing
Communication

Remote I/O
Processor

located in I/O
Rack

communicates to
external device

Vendor Remote
I/O Receiver

Module

Vendor
Communications
Device to 4 RFID

Tag Readers

RFID Tag Readers

RFID Tag
(typ)

This system obviously was in serious trouble before the programmer entered the picture. Anyone

designing a system with so many computer cpu’s involved should be questioned as to their

sanity. The problem was that at the time of this installation, there were few alternatives to this

design and it looked, at least on paper, to be one of the best. In retrospect, this type of design is

always problematic and should be avoided. The fewer devices placed in a critical path, the better

the system.

Fig. 16-30

 Ch. 16 Networks and Protocols 40

Summary

The subject of PLC communications could encompass an entire book on its own.

The subject could be depressing but hopefully we leave it with a smile. Thank you, Paul!

You do not want to be associated with either of these
situations, the one at left, or especially, the one below.

If you are not familiar with these people, look up the
movie “Cool Hand Luke”. At left is Strother Martin, the
captain of the prison camp with his famous statement
“what we have here is a failure to communicate”.

Below is Paul Newman, the object of the comment.

And, we would be negligent not to introduce Factory 4.0 or Industry 4.0. The concepts

introduced in this chapter are an integral part of the concepts of both. It is necessary to remain

engaged in the need to constantly improve our factory control systems to implement the concepts

of Factory 4.0.

Nor would we want you to be discouraged by the number of topics found in the Siemens TIA
portal programming software concerning either hardware or software for communication
between processors or other devices. The following is a sampling of the Siemens offerings.

 Ch. 16 Networks and Protocols 41

Fig. 16-31

Siemens’ 1215 processor

describes the following

Siemens hardware for

industrial remote

communication with the

processor.

When programming in

OB1 or other program

space, the following S7

Communication

instructions are available

for use. They are

extensive.

 Ch. 16 Networks and Protocols 42

Fig. 16-32

 Ch. 16 Networks and Protocols 43

The three cards attached to the left of the CPU in the picture above represent three different

configurations of the serial communications port available with the S7-1200 processors. These

are the RS-232, RS-422 and RS-485 protocols. Each has a different voltage and current

requirement for completion of a data transmission.

Some of the devices these cards can be attached to include bar code readers and RFID tag

readers. Siemens has a standard set of instructions for communication to the Siemens RFID tag

system. Lab 16.1 outlines the requirements for implementing this RFID tag reader.

Merrick Loss in
Weight Feeder

Ingredient 1

Merrick Loss in
Weight Feeder

Merrick Loss in
Weight Feeder

Ingredient 2 Ingredient 3

Mixed Ingredient Conveyor

M
o

d
b

u
s

M
odbus

Modbus

DH+

AnyBus Interface

Allen-Bradley PLC

The process described here was
installed by the instructor in a
plant. The three ingredient
tanks had material that was
mixed on the conveyor belt at
the base. The three Merrick
loss in weight feeders metered
the material onto the belt.
Setpoint data was fed to the
three feeders from the A-B PLC
through the AnyBus interface
and then through the Modbus
protocol to the Merrick
controllers. Setpoint data as
well as actual feed rates were
part of the data shared over the
Modbus connection.

Again, we turn to the Easy Book from Siemens to get a better idea of some of the flexibility of

this chapter on communications. Their Chapter 7 starts as follows: “

Fig. 16-33

Fig. 16-34

 Ch. 16 Networks and Protocols 44

”

Or Chapter 9: “

”

 Ch. 16 Networks and Protocols 45

Exercises

1. Use the following scan-list information for a scanner in slot 2 of both a SLC and Compact
processor:

Device 2 Device 1

Device 4 Device 3

Device 6 Device 5

Output Scan-List

Device 1

Device 3 Device 2

Device 4

Input Scan-List

Show the address of bit 3 of output device 3 for the SLC processor, for the CompactLogix
processor.

Show the address of bit 5 of input device 4 for the SLC processor, for the CompactLogix
processor.

2. Use the following scan-list information for a scanner in slot 6 of both a SLC and Compact
processor:

Device 2 Device 1

Device 4

Device 3

Device 6 Device 5

Output Scan-List

Device 1

Device 3

Device 2

Device 4

Input Scan-List

empty

empty

Show the address of bit 5 of output device 6 for the SLC processor, for the CompactLogix
processor.

Show the address of bit 5 of input device 4 for the SLC processor, for the CompactLogix
processor.

Use the following information for the Modbus Protocol Problems below:

Description of "02" Read Input Status

The "02" request reads the status of discrete input points. The request is for inputs 197 to 218

from slave device 17.

Query

Field Name

Slave Address 11

Function 02

Fig. 16-35

Fig. 16-36

Fig. 16-37

 Ch. 16 Networks and Protocols 46

Starting Address Hi 00

Starting Address Lo C4

No. of Points Hi 00

No. of Points Lo 16

Error Check (LRC or CRC) ----

Response

Field Name

Slave Address 11

Function 02

Byte Count 03

Data (Inputs 10204 - 10197) AC

Data (Inputs 10212 - 10205) DB

Data (Inputs 10218 - 10213) 35

Error Check (LRC or CRC) ----

10204 10203 10202 10201 10200 10199 10198 10197

1 0 1 0 1 1 0 0

10212 10211 10210 10209 10208 10207 10206 10205

1 1 0 1 1 0 1 1

 10218 10217 10216 10215 10214 10213

0 0 1 1 0 1 0 1

Description of "04" Read Registers

This is a request to read input register 30009 from the slave device at location 17.

Query
Field Name

Slave Address 11

Function 04

Starting Address Hi 00

Starting Address Lo 08

No. of Points Hi 00

No. of Points Lo 01

Error Check (LRC or CRC) ----

Response

Field Name

Slave Address 11

Function 04

Byte Count 02

Data Hi (Register 30009) FF

Data Lo (Register 30009) F1

Error Check (LRC or CRC) ----

Input Register Value

30001 A123

30002 0102

Fig. 16-38

 Ch. 16 Networks and Protocols 47

30003 BBE3

30004 30E3

30005 0001

30006 4E23

30007 8989

30008 234F

30009 FFF1

3. For the following Modbus query, describe the slave’s response:

03
02
00
C4
00
0C
CRC

4. For the following Modbus query, describe the slave’s response:

05
04
00
03
00
04
CRC

5. For the following Modbus query, describe the slave’s response:

05
04
00
05
00
03
CRC

6. Find a device other than a Modicon device that uses the Modicon protocol to

communicate with it.

7. Use the ASCII tables to find the checksum for the following:

 A
 2
 3
 ;

 CkSum =

 Ch. 16 Networks and Protocols 48

8. For the following, an operator at an HMI station may push a button B3:0/4 to request a

MSG Read block be executed. B3:0/4 is a multistate toggle button programmed to be

either on or off from the HMI. Add logic to allow three automatic retries with a delay

between retry of 4 seconds if an error occurs. Assume B3:0/4 stays on while the retries

occur.

9. Of PROFINET, Ethernet/IP, EtherCAT and Modbus TCP, which is/are unicast, multicast,

shift register? What do the terms unicast and multicast mean?

MSG
Type peer-to-peer
Read/Write Read
Target Device 500CPU
Local/Remote Local
Control Block N7:20
Control Block Length 14

B3:0/4

Fig. 16-39

 Ch. 16 Networks and Protocols 49

Lab 16.1

This lab is a transitional lab requiring students to build the set-up with the equipment supplied

and provide a resulting system capable of reading and writing to multiple tags and being able to

demonstrate the operation to the instructor:

This is the manual for the RF200 system. It covers transponders and readers but no the

configuration / setup.

https://support.industry.siemens.com/cs/us/en/view/109766065

This is an application example specific to the equipment you have:

https://support.industry.siemens.com/cs/us/en/view/109483367

This is a full list of application examples.

https://support.industry.siemens.com/cs/us/en/view/109483416

At this time, there is no directly applicable Allen-Bradley equipment available in the lab to

incorporate RFID although this equipment does exist and works in a manner similar to the

Siemens.

Lab 16.2

Demonstrate a communication between two PLCs using Ethernet.

This lab is a transitional lab requiring students to build the set-up with the equipment supplied

and provide a resulting system capable of reading and writing.

Easy BookManual, 01/2015, A5E02486774-AG139 - Easy to communicate between devices

and

Youtube - Siemens PLC to PLC Communication PUT GET Easy Guide

From the Help Request from TIA Program, the following descriptions for GET and PUT:

GET: Read data from a remote CPU

Description

https://support.industry.siemens.com/cs/us/en/view/109766065
https://support.industry.siemens.com/cs/us/en/view/109483367
https://support.industry.siemens.com/cs/us/en/view/109483416

 Ch. 16 Networks and Protocols 50

With the instruction "GET", you can read data from a remote CPU.

The instruction is started on a positive edge at control input REQ:

 The relevant pointers to the areas to be read out (ADDR_i) are then sent to the partner CPU. The
partner CPU can be in RUN or STOP mode.

 The partner CPU returns the data:
o If the reply exceeds the maximum user data length, this is displayed with error code "2"

at the STATUS parameter.
o The received data is copied to the configured receive areas (RD_i) at the next call.

 Completion of this action is indicated by the status parameter NDR having the value "1".

Reading can only be activated again after the previous reading process has been completed. Errors and
warnings are output via ERROR and STATUS if access problems occurred while the data was being read
or if the data type check results in an error.

PUT: Write data to a remote CPU

Description

You can write data to a remote CPU with the instruction "PUT".

The instruction is started on a positive edge at control input REQ:

 The pointers to the areas to be written (ADDR_i) and the data (SD_i) are then sent to the partner
CPU. The partner CPU can be in RUN or STOP mode.

 The data to be sent is copied from the configured send areas ((SD_i). The partner CPU saves the
sent data under the addresses supplied with the data and returns an execution
acknowledgment.

 If no errors occur, this is indicated at the next instruction call with status parameter DONE = "1".
The writing process can only be activated again after the last job is complete.

Errors and warnings are output via ERROR and STATUS if access problems occurred while the data was
being written or if the execution check results in an error.

Or, use the I-Device Method:

https://support.industry.siemens.com/cs/us/en/view/109478798

Or use the T-Send method discussed above in the text. Yes, Siemens gives the choice of any of

three different methods for communicating between PLCs.

Michael Smith - MIME 5450

PLC to PLC Communication – Siemens I Device

The objective of this lab was to establish communication between 2 Siemens S7-1215 PLCs
using ‘I Device’. I started by creating 2 projects for each of the PLCs. In each projected I inserted

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsupport.industry.siemens.com%2Fcs%2Fus%2Fen%2Fview%2F109478798&data=04%7C01%7CWILLIAM.EVANS%40utoledo.edu%7C367e3186be3648455cb608d8ea1df4aa%7C1d6b1707baa94a3da8f8deabfb3d467b%7C0%7C0%7C637516761822266885%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=lTOLIoQc4HgBYRIN11DWyZScbd2EMsUz3MZK%2FUquvS0%3D&reserved=0

 Ch. 16 Networks and Protocols 51

the S7-1215 as shown below.

One of the PLCs had to be configured as an IO device which can be seen in the below image. To
bring up the menu below I had clicked on the ProfiNet ports shown in the above image.

Next I had to configure the input and output sizes which can be done by just scrolling down. In
the same window. Notice I have 1 byte of input and output data configured.

After the input and output data was configured I had to generate a GSD file which was done in
the same window.

 Ch. 16 Networks and Protocols 52

I then saved the project and downloaded the project to the PLC.
In the second PLC I had to install the GSD file generated from the first PLC. This can be done by
selecting ‘Options’ and ‘Manage GSD Files.’

After the GSD file was installed PLC_1 can be inserted in the ProfiNet network as shown in the
image below.

 Ch. 16 Networks and Protocols 53

I then downloaded the project to PLC_2. With both PLCs in RUN mode and connected VIA an
ethernet cable connection was established.

Below are ‘Watch Tables’ from each PLC and you can see the data from PLC_1 at QB10 is being
moved into IB68 of PLC_2 and the value in QB68 in PLC_2 is being moved into IB10 of PLC_1.

Or for A-B:

For Allen-Bradley, set up communications with MSG commands similar to the commands

described in the text.

 Ch. 16 Networks and Protocols 54

Lab 16.3

Demonstrate a communication between two PLCs using an ASCII communication protocol

(RS422, 232, etc.)

This lab is a transitional lab requiring students to build the set-up with the equipment supplied

and provide a resulting system capable of reading and writing.

You could set up two Siemens PLCS using the COMS add-on port and use their modbus

instructions to set up two PLCs communicating using Modbus. One would be the master and the

other the slave.

Use the following website as needed:

modbus tools - https://www.modbustools.com/contact.html

then choose ‘MODBUS’ and then ‘PROTOCOL’.

Lab 16.4

Write a review at least 2 pgs on the following report (use 12 font single space):

https://www.boozallen.com/content/dam/boozallen/documents/2016/09/ukraine-report-when-the-
lights-went-out.pdf

or about a hack of a safety PLC system at a huge chemical plant.

 https://darknetdiaries.com/transcript/68/

Lab 16.5 – Communication between PLC and Cognex

The Siemens instructions for connecting the S7-1200 PLC to the Cognex cameras can be found

in the instructions at the following:

MIME_4450_Notes>

 Cognex_Siemens> (this is for Siemens P

 InSight Explorer IS7802>

Cognex Siemens Quick Start Guide ISE 2023 05 04_7802.pdf

 InSight Vision Suite_IS3805>

 Cognex Siemens Quick Start Guide ISVS 2023 05 04_3805.pdf

https://www.modbustools.com/contact.html
https://www.boozallen.com/content/dam/boozallen/documents/2016/09/ukraine-report-when-the-lights-went-out.pdf
https://www.boozallen.com/content/dam/boozallen/documents/2016/09/ukraine-report-when-the-lights-went-out.pdf
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdarknetdiaries.com%2Ftranscript%2F68%2F&data=04%7C01%7CWILLIAM.EVANS%40utoledo.edu%7C95d610f31f71443b49ee08da0789b19a%7C1d6b1707baa94a3da8f8deabfb3d467b%7C0%7C0%7C637830585217872869%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=WTA%2BSfyT7UADY0DsiHvEHGPSO3hYLXgQFfToLO0iCq8%3D&reserved=0

 Ch. 16 Networks and Protocols 55

The Rockwell instructions for connecting the 16ER-BB1B PLC to the Cognex cameras can be

found in the instructions at the following:

MIME_4450_Notes>

Cognex_Rockwell_IS7802_ISE>

Cognex Rockwell Quick Start Guide ISE 2023 11 01_7802.pdf

Cognex Rockwell Quick Start Guide ISVS 09012023_3805.pdf

 Ch. 16 Networks and Protocols 56

Appendix 1

Flash for CompactLogix Processor

Before the CompactLogix processor will work, the processor must have its flash memory loaded.

This process must be done before the processor can be attached or programmed in ladder logic.

Out-of-the-box processors will not allow an up-load or download without the flash memory task.

With a change in version of the processor, the memory must also be re-flashed. The program

shown above, Control Flash, must be run. Control Flash is accessible from the Allen-Bradley

website and can be downloaded from the internet.

Fig. 16-40

Flash Software

for A-B

Processors

 Ch. 16 Networks and Protocols 57

Appendix 2

Table of standard set of ASCII characters:

Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex

(nul) 0 0000 0x00 | (sp) 32 0040 0x20 | @ 64 0100 0x40 | ` 96 0140 0x60

(soh) 1 0001 0x01 | ! 33 0041 0x21 | A 65 0101 0x41 | a 97 0141 0x61

(stx) 2 0002 0x02 | " 34 0042 0x22 | B 66 0102 0x42 | b 98 0142 0x62

(etx) 3 0003 0x03 | # 35 0043 0x23 | C 67 0103 0x43 | c 99 0143 0x63

(eot) 4 0004 0x04 | $ 36 0044 0x24 | D 68 0104 0x44 | d 100 0144 0x64

(enq) 5 0005 0x05 | % 37 0045 0x25 | E 69 0105 0x45 | e 101 0145 0x65

(ack) 6 0006 0x06 | & 38 0046 0x26 | F 70 0106 0x46 | f 102 0146 0x66

(bel) 7 0007 0x07 | ' 39 0047 0x27 | G 71 0107 0x47 | g 103 0147 0x67

(bs) 8 0010 0x08 | (40 0050 0x28 | H 72 0110 0x48 | h 104 0150 0x68

(ht) 9 0011 0x09 |) 41 0051 0x29 | I 73 0111 0x49 | i 105 0151 0x69

(nl) 10 0012 0x0a | * 42 0052 0x2a | J 74 0112 0x4a | j 106 0152 0x6a

(vt) 11 0013 0x0b | + 43 0053 0x2b | K 75 0113 0x4b | k 107 0153 0x6b

(np) 12 0014 0x0c | , 44 0054 0x2c | L 76 0114 0x4c | l 108 0154 0x6c

(cr) 13 0015 0x0d | - 45 0055 0x2d | M 77 0115 0x4d | m 109 0155 0x6d

(so) 14 0016 0x0e | . 46 0056 0x2e | N 78 0116 0x4e | n 110 0156 0x6e

(si) 15 0017 0x0f | / 47 0057 0x2f | O 79 0117 0x4f | o 111 0157 0x6f

(dle) 16 0020 0x10 | 0 48 0060 0x30 | P 80 0120 0x50 | p 112 0160 0x70

(dc1) 17 0021 0x11 | 1 49 0061 0x31 | Q 81 0121 0x51 | q 113 0161 0x71

(dc2) 18 0022 0x12 | 2 50 0062 0x32 | R 82 0122 0x52 | r 114 0162 0x72

(dc3) 19 0023 0x13 | 3 51 0063 0x33 | S 83 0123 0x53 | s 115 0163 0x73

(dc4) 20 0024 0x14 | 4 52 0064 0x34 | T 84 0124 0x54 | t 116 0164 0x74

(nak) 21 0025 0x15 | 5 53 0065 0x35 | U 85 0125 0x55 | u 117 0165 0x75

(syn) 22 0026 0x16 | 6 54 0066 0x36 | V 86 0126 0x56 | v 118 0166 0x76

(etb) 23 0027 0x17 | 7 55 0067 0x37 | W 87 0127 0x57 | w 119 0167 0x77

(can) 24 0030 0x18 | 8 56 0070 0x38 | X 88 0130 0x58 | x 120 0170 0x78

(em) 25 0031 0x19 | 9 57 0071 0x39 | Y 89 0131 0x59 | y 121 0171 0x79

(sub) 26 0032 0x1a | : 58 0072 0x3a | Z 90 0132 0x5a | z 122 0172 0x7a

(esc) 27 0033 0x1b | ; 59 0073 0x3b | [91 0133 0x5b | { 123 0173 0x7b

(fs) 28 0034 0x1c | < 60 0074 0x3c | \ 92 0134 0x5c | | 124 0174 0x7c

(gs) 29 0035 0x1d | = 61 0075 0x3d |] 93 0135 0x5d | } 125 0175 0x7d

(rs) 30 0036 0x1e | > 62 0076 0x3e | ^ 94 0136 0x5e | ~ 126 0176 0x7e

(us) 31 0037 0x1f | ? 63 0077 0x3f | _ 95 0137 0x5f | (del) 127 0177 0x7f

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

