Chapter 16 NETWORKS and PROTOCOLS

Introduction

In their web-based documentation of Windows 2000, Microsoft details how TCP/IP came about:

"TCP/IP is an industry-standard suite of protocols designed for large internetworks spanning wide area network (WAN) links. TCP/IP was developed in 1969 by the U.S. Department of Defense Advanced Research Projects Agency (DARPA), the result of a resource-sharing experiment called ARPANET (Advanced Research Projects Agency Network). The purpose of TCP/IP was to provide high-speed communication network links. Since 1969, ARPANET has grown into a worldwide community of networks known as the Internet."

Ethernet, TCP/IP and other networking principles are subjects too vast to be expanded here. It is important for the student to master the principles of networking, however, as they pertain to the factory floor. The use of addresses is discussed when setting up devices. Other networking issues need to be discussed since the move of Ethernet from the business side of the factory to the factory floor has been around long enough for equipment to be accepted having Ethernet.

A historical network no longer in demand will be discussed briefly. This network – DeviceNet – was popular about 20 years ago as an industrial network. It had its origins in the automotive industry – CanBus – a network primarily initiated to replace wiring harnesses in automobiles. Most have moved on from it, however, and it is one of many networks in the boneyard of networks tried, overtaken by Ethernet and finally abandoned.

The chapter also includes an explanation of a protocol. The use of Modbus protocol is explained. Also introduced are techniques for communicating between devices. This includes PLC to PLC communication, PLC to RFID tag and PLC to Cognex Vision System.

Definition of Protocol

A protocol is a specification for standardized packets of data. Moving packets of data is the method that allows networks to share information. Packets of information move through the protocol stack and then move across the transmission media.

DeviceNet

DeviceNet is a relatively easy I/O network to install and configure. We can first discuss the initial bus structure - CanBus. Then the organization, ODVA, through which DeviceNet is governed, was created. The Allen-Bradley software RSNetworx for Devicenet explains the mapping of I/O to the processor. While this local network is on the wane today, it is an example of a recent attempt by the developers to address local area networks in the industrial environment.

CanBus

CanBus or CAN.bus is a two-wire differential serial bus. It does not need special tools to termiate. It is designed to operate in noisy electrical environments such as the automobile or the factory floor. The CanBus system also guarantees a high degree of data integrity between components. It is also an open architecture which means that many companies are encouraged to

design components and systems for its use. CanBus is capable of high-speed data transmission (up to 1 Mbits/s) in short distance applications. It can also operate at longer range but with lower speeds. CanBus is multi-master with a high fault tolerance and error detection capability.

CanBus was originally developed in Germany by Bosch and was designed to replace electrical sensor components in the automobile. The design allowed a smaller wiring harness than was the design standard prior to CanBus. This bus was also recognized as an ideal bus for the industrial market but the automotive market has remained as its primary focus.

CanBus is especially well adapted for working with intelligent devices in a system or sub-system. CanBus has become the standard for IVN or in-vehicle network applications. Applications include power-train applications for automobiles as well as between the truck and trailer in truck applications. One author described CanBus in the following way: "Many American and European truck and bus manufacturers have implemented CAN-based IVNs, and more and more truck-based superstructure control systems (e.g. fire fighting equipment and concrete mixers) also use CAN as their embedded control network."

The description continues: "CAN is often used as the embedded network to run functions such as the power-train, body electronics, super-structure control and trailer communications. Likewise, CAN is also used to run add-on sub-systems such as harvesters, cranes, winches, drums, etc. In cases where several CAN-based IVNs are used to run multiple functions, these IVNs may be interconnected via gateways. This keeps the systems separate to avoid interferences and disturbances that may be caused if all operations run simultaneously in one physical layer."

An article in the October, 2003 issue of Control Engineering identifies a question concerning the use of CanBus or Device Net and its competitor, Ethernet. In the article, Colin MacDonald writes:

"In choosing the appropriate network bus to support, a designer should ask several questions: Will both CAN and Ethernet continue to be widely adopted? If so, how will they co-exist? And finally, how will the choice of buses affect the design of network processors? The short answer is that DeviceNet has withered and Ethernet has thrived. We will now discuss a few attributes of the DeviceNet hardware and software and then get on with the Ethernet portion.

New Software to Learn

When starting a new DeviceNet application, it is necessary to become familiar with a new software product from Allen-Bradley called RSNetWorx for DeviceNet. A DeviceNet Scanner Card will be installed in both a SLC 5/03 and in a CompactLogix processor. With CompactLogix, the newer RSLogix 5000 software programming package will be necessary. This may be the first exposure for students with this software package as well as RSNetWorx for DeviceNet.

Fig. 16-1 Devicenet Network Configured in the A-B RSNetWorx Software

Notice that in the above figure, the network screen for DeviceNet shows no devices on the graph portion of the screen. This shows a new network with no devices attached. Also notice the note in the description section in the message box. Copy protection was not installed in this instance on the software and the software will run in this instance in demo mode which allows only six nodes to be attached.

SLC 5/03

In the figure above, the DeviceNet scanner is being added to the rack's I/O configuration. Notice the maximum input and output word count for the SDN module listed under Advanced I/O Configuration. This is the maximum number of data words available for the scanner module to share with this SLC 5/03 PLC. The scanner is located in slot 1.

CompactLogix Processor

R5Logix 5000 - t2 [1769-L20]	ommunisations Tools Window Halo
	Mandalacers fors which hap
Offline II, FUN No Forces C No Edits A II/O	Image: Petry Connex Image: Sector S
Controller 12 Controller Tags Controller Tags Controller Tags Controller Fault Handler Tosks Controller MainTask Controller M	Select Module Type Type: Major Revision: 1769-0D166P7/B 16 Point 24V DC Protected Output Tres-0B16P7/B 16 Point 24V DC Protected Output 1769-0F2/A 2 Channel Current/Voltage Analog Output 1769-0V16/A 16 Point 24V DC Output, Sink 1769-0V46/B 16 Point AC/DC Relay Output 1769-0W8/A 8 Point AC/DC Relay Output 1769-0W8/B 8 Point AC/DC Relay Output 1769-0W8/B 8 Point AC/DC Relay Output 1769-0W8/A 8 Point AC/DC Relay Output 1769-0W8/A 8 Point AC/
Description Module Fault	Show Vendor: All Image: Clear All Image: Analog Image: Digital Image: Clear All Image: OK Cancel

Fig. 16-3 Adding the DeviceNet Scanner to the CompactLogix Processor

The figure above shows the method of adding the scanner card to the CompactLogix I/O configuration. Notice the type is 1769-SDN/B. Cards must be added to the I/O list in RSLogix 5000 and not read from the I/O as was possible in RSLogix 500. This scanner is also located in slot 1.

Use the following scan-list information for a scanner in slot 2 of both a SLC and Compact processor. Both input and output scan lists appear below as they would in the scan-list shown in RSNetworx for Device-Net. Devices are shown stacked from first to last in 16 bit word format. If a device uses only 1 bit for communication to a PLC, 8 data bits are reserved. Many times, the other bits are used to transmit other information. A manual for the device will define the use of all bits and how they are used.

Device 2	Device 1
Device 4	Device 3
Device 6	Device 5

Device 1				
Device 3	Device 2			
	Device 4			

Output Scan-List

View in Scan List of RSNetworx for DeviceNet

Input Scan-List

Fig. 16-4

For the SLC 5/03, addresses follow 16 bit words. If the scanner were in slot 2, the addressing would proceed with word 0 of slot 2 assigned a control word status. Starting with word 1, the first device would occupy bits 0 to 7 and device 2 would occupy word 1, bits 8-15. Other words would proceed after the first. For example, if an input were assigned from bit 1 of device 1, the address would be 1:2.1/1. For the CompactLogix processor, addresses follow 32 bit word length and two 16 bit words would occupy each 32-bit word. For instance, if the bit were from input device 1, input bit 1, the address would be Local:1:2.0/1. For device 2, input bit 0 would be Local:1:2.0/16.

Next we look at ethernet networks.

PROFINET and Industrial Networks

Profinet is an industrial Ethernet network. It is capable of connecting computers with PLCs with I/O. It is also capable of wireless communication as well as operating in safe environments.

Comparison of Profinet with Ethernet/IP as the leading network choices for industrial networks shows the following:

Ethernet/IP is the choice of Allen-Bradley controllers and their vendor partners while Profinet is the choice of Siemens and their vendor partners. As with all industrial equipment, a choice must be made which network (or both) to have in a facility.

While DeviceNet was discussed earlier, its effective use in the marketplace has waned and Ethernet/IP has become the defacto standard for all A-B products. Profinet has a similar relationship with Profibus. On the next page is a list of various industrial network technologies and their relative strength. The two listed first are Profinet (from Siemens) and Ethernet/IP (from Allen-Bradley).

Each of the networks listed provide an all-encompassing network for Industrial Automation: Real-time I/O, Machine-to-machine Integration, Motion Control, Vertical Integration, Safety, Security, Integrates existing buses, Energy Savings.

Technology	PROFINET PROFIBUS	DeviceNet Ethernet/IP	Foundation Fieldbus	Modbus ModbusTCP	EtherCAT
Consortium	PI	ODVA	Fieldbus Foundation	Modbus IDA	ETG
Primary Backer	Siemens Phoenix Contact	Rockwell	Emerson	Schneider	Beckhoff
Founded	1989	1995	1994	2002	2004
Membership	1,400	290	350	65	1,195
Regional Organizations	26	4	4	0	3
Competence Centers	40 😔	0	0	0	0
Test Labs	10 😔	3	1	1	1
Training Centers	18	0	8	0	0

Fig. 16-6

A look back at the older Profibus which was similar to DeviceNet and comparing it to the newer Profinet follows. This chart shows some of the needed changes that took place as the Ethernet-based networks have taken over.

Differences:	PROFIBUS	PROFINET
Physical layer	RS-485	Ethernet
Speed	12Mbits	100Mbits
Telegram	244 bytes	1440 bytes
Address space	126	2048
Technology	master/slave	provider/consumer
Connectivity	PA + others	many buses
Wireless	Possible	IEEE 802.11, 15.1
Motion	32 axes	150 axes
Mach to mach	No	Yes
Vert integration	No	Yes
No. of products	3,000	300

Fig. 16-7

What do we mean when we say Ethernet?

- The IEEE 802.3 Specification defines:
 - 1. The physical media
 - 2. The media access rules
 - 3. The structure of an Ethernet frame

The ISO/OSI

It is important to see that Ethernet is not the entire network solution. The specification does not specify any physical or environmental operating requirements. The figures on the next page are an attempt to show the relative position of Ethernet to TCP/IP and the application oriented layers. It is not the intent of this text to train the student on the principles of network configuration. This entails a separate course or two and much work on the intricacies of the various network layers.

OSI = Open Systems Interconnection

Each communication procedure is divided into logical

same time on the physical medium (Ethernet)

Communications Packet

Flow of data in a communication packet is shown in this section. Again, the text in no means is trying to establish itself as a text on the intricacies of network communication.

Not all layers are needed:

Ch. 16 Networks and Protocols

Industry's Demand for Speed

TCP/IP has methods in place to resend telegrams when lost

- But the timing is not acceptable for industrial use!
- There is no such thing as a protocol protection against noise
- The need for shielding is independent of the protocol used
- Grounding at both ends is best but not always applicable due to ground loops
- If you used shielded cable with DeviceNet or PROFIBUS, use shielded cable with Ethernet as well!

Four steps to fast, deterministic communication:

Why not use TCP/IP for real-time?

Because it's not fast enough and it's not deterministic enough.

The data packet is created to ensure scheduling traffic for even motion control. While the use of one of the ethernet networks can be used for I/O, it is not always best. The following picture shows the positioning of the ethernet network with some of the Siemens' answers for I/O network. Two answers are IO Link and ASi.

We do not want to define the positioning of the various network types, either ethernet (pick your type) or I/O network (pick your type). You will have to make this decision as you work with the various types of PLC and their network topology. I wish you well.

IO Link Functional Positioning: The figure below shows the positioning of various bus types in the factory with the Ethernet at the top and various I/O networks at the bottom.

Industrial Networks from RealPar:

PouTube	Search				Q	Ŷ	Ŧ	ر،
Profibus-F	PA vs. Profibus-DP	5	What is DeviceNet?	What is RealPars •	DeviceNet 212K views •	? 5 years ago		
Bagment Chapter		6	What is Ethernet?	What is RealPars •	Ethernet? 2.1M views • 3	5 years ago		
Industrial by RealPars Playlist - 54 videos - 2	Networks	7	What is RS-232?	What is RealPars •	RS232 and 630K views •	l What is it 6 years ago	Used for?	
		8	What is Fieldbus?	What is RealPars •	Fieldbus? 224K views •	5 years ago		
YouTube	Search				Q	Ŷ	₽ ₽	3
Profibus-F	PA vs. Profibus-DP	9	What is RS-485?	What is Control RealPars	RS485 and Systems?	d How it's u 6 years ago	used in Indu	strial
Segner Cogler		10	Modbus Communication	How do Work? RealPars	es Modbus	s Commun 5 years ago	ication Prote	ocol
Industrial by RealPars Playlist + 54 videos + 2	Networks	11	What is What is Control Con	What is RealPars	OSI Mode 1.1M views •	!? 5 years ago		
► Play al		12	What is Ethernet/IP ?	What is RealPars	Ethernet/I	P? 5 years ago		
YouTube	Search				Q	Ŷ	Ŧ	ر 3
Profibus-F	PA vs. Profibus-DP	13		What is I RealPars •	IO-Link? 285K views • 5	i years ago		
RG		14	AS-Interface	What is A RealPars •	AS-Interfac	ce? Lyears ago		
Industrial by RealPars Playlist + 54 videos + 27	Networks	15	How to Wire a Profibus Cable to a Profibus Connector 8:54	How to V Connect RealPars •	Vire a Profi or 272K views • 7	ibus Cable	to a Profibu	s
▶ Play al		16	Industrial Wireless Communication	How doe Work? RealPars •	es Industria	al Wireless	Communica	ition

Ch. 16 Networks and Protocols

Communication from PLC to PLC

Next outlined are various ways for PLCs to talk between each other. First Allen-Bradley:

A-B MSG Command – RSLogix 5000

The following manual describes the MSG command for the Compact Logix processors in the lab:

Rockwell Automation Publication 1756-PM012I-EN-P - September 2020

The following describe the setup and execution of the MSG command. Remember, it is only necessary to be placed in the processor desiring the information and not in both processors:

Introduction to
Controller MessagesThis section describes how to transfer (send or receive) data between
controllers by executing a message (MSG) instruction. It explains cache
connections and buffers so you can correctly program the controller.Supported data typesThe following data types are supported when sending CIP messages.SINT
INT
ELINT
REALINT
INT
ELINT
For more information, see "Convert between INTs and DINTs on page 15".

For complete details on programming a message instruction, see the <u>LOGIX</u> 5000 <u>Controllers General Instruction Reference Manual</u>, publication 1756-RM003.

Example: Execute a message (MSG) instruction

If count_send = 1

and count_msg.EN = 0 (MSG instruction is not enabled)

then execute a MSG instruction that sends data to another controller.

,,

Older RSLogix 500 Message Instruction Overview

The Message Block is an output instruction that allows data to be read or written from one processor to another via the communication channel(s). The SLC 5/-2 processor can service one message instruction at any given time. The SLC 5/03 and higher processors can service up to four message instructions per channel at a time, for a maximum of eight message instructions at any given time. To invoke the MSG instruction, toggle the MSG instruction rung from false-to-true or set the instruction to run continuously. Do not toggle the rung again until the MSG instruction has successfully or unsuccessfully completed the previous message, indicated by the processor setting either the DN or EN bit.

SLC 5/03 and higher – If a MSG instruction has entered one of the four "channel dependent" transmission buffers and is waiting to be transmitted, its control block will have status bits EN and EW set. If more than four MSG instructions for that channel are enabled at one time, a "channel dependent" overflow queue is used to store the MSG instruction header blocks (not the data for a MSG write) from the fifth instruction to the fourteenth. These instructions, queued in a FIFO order, will only have control block status bit EN set.

If more than 14 MSG instructions are enabled at one time for any one channel, only control block

status bit WQ is set, as there is no room available to currently queue the instruction. This instruction must be re-scanned with true rung conditions until space exists in the overflow queue.

Tip: If you consistently enable more MSG instructions than the buffers and queues can accommodate, the order in which MSG instructions enter the queue is determined by the order in which they are scanned. This means MSG instructions closest to the beginning of the program enter the queue regularly and MSG instructions later in the program may never enter the queue.

Message blocks may be set to read/write on a trigger or read/write continuously. Examples of both are found in the Reference Manual in the MSG chapter.

Fig. 16-13

It is advised to **run multiple applications** of RSLogix 500 when debugging the MSG command. The command to write a word or multiple words from one processor to a second processor may be triggered by toggling the input contact to the MSG block. Verification of the data move may be seen immediately after a toggle operation if the data was successfully transmitted in the second processor. In the example above, data is to be read from the processor on the right to the processor on the left. Note that the instruction for the MSG command is only present in the processor initiating the command to read or write.

The setup screen brings the user to the screen for setting up the MSG block. When set up properly, and the bit B3:1/0 toggled on, the MSG block should execute. First the EN coil turns on. Then either DN or ER will turn on. If DN turns on, the operation was executed. Click to see if the operation occurred successfully (if the data moved). If so, the command was successful. If the command was not executed successfully or if the ER bit turned on, more work is necessary to configure the MSG command correctly.

MSG commands are set up to work automatically in most programs. The use of timers to allow a sufficient time for the operation to occur followed by a check for DN or ER is appropriate. A count of 3 or 5 can be set for allowable retries of the communication before the command is alarmed as not working properly.

Enter the following parameters when programming this instruction:

Read/Write – read indicates that the local processor (processor in which the instruction is located) is receiving data; write indicates that it is sending data.

Local or Remote identifies if the message is sent to a device on a local network, or to a remote device on another network through a bridge. Valid options are:

-local, if the target device is on the local network -remote, if the target device is on the remote network

Control Block is an integer file address that you select. It is a block of words, containing the status bits, target file address, and other data associated with the message instruction. Control Block Length is a display-only field that indicates how many integer file words are being used by the control block."

Use the MSG Setup Screen to set up the values in the control block.

To troubleshoot a MSG operation, open multiple copies of RSLogix 500 to examine the state of the data as the read or write block is being executed. This leads to a quick verification that the data (one or multiple words) is being transmitted successfully.

Siemens' PLC to PLC Communications

Check the Easy Book:

Easy BookManual, 01/2015, A5E02486774-AG139 - Easy to communicate between devices

and

Youtube - Siemens PLC to PLC Communication PUT GET Easy Guide

From the Help Request from TIA Program, the following descriptions for GET and PUT:

GET: Read data from a remote CPU

Description

With the instruction "GET", you can read data from a remote CPU.

The instruction is started on a positive edge at control input REQ:

- The relevant pointers to the areas to be read out (ADDR_i) are then sent to the partner CPU. The partner CPU can be in RUN or STOP mode.
- The partner CPU returns the data:

- If the reply exceeds the maximum user data length, this is displayed with error code "2" at the STATUS parameter.
- The received data is copied to the configured receive areas (RD_i) at the next call.
- Completion of this action is indicated by the status parameter NDR having the value "1".

Reading can only be activated again after the previous reading process has been completed. Errors and warnings are output via ERROR and STATUS if access problems occurred while the data was being read or if the data type check results in an error.

PUT: Write data to a remote CPU

Description

You can write data to a remote CPU with the instruction "PUT".

The instruction is started on a positive edge at control input REQ:

- The pointers to the areas to be written (ADDR_i) and the data (SD_i) are then sent to the partner CPU. The partner CPU can be in RUN or STOP mode.
- The data to be sent is copied from the configured send areas ((SD_i). The partner CPU saves the sent data under the addresses supplied with the data and returns an execution acknowledgment.
- If no errors occur, this is indicated at the next instruction call with status parameter DONE = "1". The writing process can only be activated again after the last job is complete.

Errors and warnings are output via ERROR and STATUS if access problems occurred while the data was being written or if the execution check results in an error.

Or, use the I-Device Method:

This method is recommended for use by most systems engineers. The fact that more than one distinct method exists to communicate between processors is interesting. The following I-Device method is the better method per Siemens personnel.

https://support.industry.siemens.com/cs/us/en/view/109478798

It was also used by a student in MIME 5450 – Michael Smith with the following:

u

Michael Smith -MIME 5450

PLC to PLC Communication – Siemens I Device

The objective of this lab was to establish communication between 2 Siemens S7-1215 PLCs using 'I Device'. I started by creating 2 projects for each of the PLCs. In each projected I inserted the S7-1215 as shown below.

One of the PLCs had to be configured as an IO device which can be seen in the below image. To bring up the menu below I had clicked on the ProfiNet ports shown in the above image.

ProfiNet1 [Module]		🔍 Properties 🚺 Info 🚺 🛽 Diagnostics 💷
General IO tags	System constants Texts	
General	Operating mode	
Ethernet addresses		
Time synchronization		
Operating mode		V IO controller
 Advanced options 		
Interface options	IO system:	
Media redundancy	■ Device number:	0
Real time settings		IO device
 Port [X1 P1] 	-	Network and
General	Assigned to controller:	Notassigned
Port interconnection		Parameter assignment of PN interface by higher-level IO controller
Port options		Prioritized startup
Port [X1 P2]	Device number:	
Web server access		

Next I had to configure the input and output sizes which can be done by just scrolling down. In the same window. Notice I have 1 byte of input and output data configured.

l-devi	device communication									
Trar	Transfer areas									
		-	-							
		Transfer area	Туре	Address in IO contr	+	Address in I-device	Length			
1		INPUTS	CD		→	110	1 Byte			
2		OUTPUTS	CD		←	Q 10	1 Byte			
З		<add new=""></add>								

After the input and output data was configured I had to generate a GSD file which was done in the same window.

port generic sta	ation description file (GSD)
Designation:	PLC_1_IDevice
GSD file:	GSDML-V2.34-#Siemens-PreConf_ PLC_1_IDevice -20241015-134820.xml
Description: Path:	Work memory 125 KB; 24VDC power supply with DI14 x 24VDC SINK/SOURCE, DQ10 x 24VDC and Al2 and AQ2 on board; 6 high-speed counters and 4 pulse outputs on-board; signal board expands on-board I/O; up to 3 communication modules for serial communication; up to 8 signal modules for I/O expansion; PROFINET IO controller, 2 ports, I-device, transport protocol TCP/IP, secure Open User Communication, S7 communication, Web C:\Users\NZ8MJG.GCC\Documents
Export	Cancel
Export generic	station description file (GSD)
Export generic You can export to to the export.	station description file (GSD) he interface configuration. The hardware configuration must be compiled without errors prior

I then saved the project and downloaded the project to the PLC.

In the second PLC I had to install the GSD file generated from the first PLC. This can be done by selecting 'Options' and 'Manage GSD Files.'

Manage general st	ation description	files			×	
Installed GSDs	GSDs in the p	oroject				
Source path: C:	Automation\s7120	0_IDevice2\Ad	ditionalFiles\G	SD		
Content of import	ted path					
File		Version	Language	Status	Info	
gsdml-v2.34-#sie	emens-preconf_pl	V2.34	English	Already installed		
X						
				Delete Insta	Cancel	

After the GSD file was installed PLC_1 can be inserted in the ProfiNet network as shown in the image below.

I then downloaded the project to PLC_2. With both PLCs in RUN mode and connected VIA an ethernet cable connection was established.

Below are 'Watch Tables' from each PLC and you can see the data from PLC_1 at QB10 is being moved into IB68 of PLC_2 and the value in QB68 in PLC_2 is being moved into IB10 of PLC_1.

S 71	S71200_IDevice ▶ PLC_1 [CPU 1215C DC/DC/DC] ▶ Watch and force tables ▶ Watch table_1												
\$	🖉	🦻 🔓	🗲 1 %	A 🏞	h 1								
	i Na	ame		Address	Dis	play format		Monitor value	Modify val	ue 👌	3		(
1				%QB10	DE	с		10	10		\checkmark	▲	
2				%IB10	DE	с	-	20					
3				<add new=""></add>									
	IDevice2 > PLC_2 [CPU 1215C DC/DC/DC] > Watch and force tables > Watch table_1												
*	🛫 🔮 📠 🕪 Խ 🤧 🤁 👺 😋												
	i N	Name A	ddress		Display fo	ormat	Mon	itor value	Modify value	9			1
1		9	6IB68		DEC		10			8			
2		9	%QB68		DEC		20		20			1	
3			Add ne	W>									,,

Also, a third method can be used. It is found in part in early literature for the S7-1200:

Fig. 16-15

▼ 🕄 Network 3:

Fig	16 - 1	6
<u>-</u>	10 1	v

12. The data block is generated and incorporated automatically.

Under Properties, select the connection partners.

First, at the connection data of the local controller, select the existing data block "controller_data_connection_DB", otherwise, a new data block is generated. Then, select the partner controller and the associated data block.

So, there are at least three different distinct methods for the Siemens PLCs to talk one to another.

How to Interconnect Dissimilar Devices

To look at how to interconnect between PLC and other device, just look at the following ad from one of the industrial leaders in interconnecting the PLC on the factory floor:

"

The ad continues with a listing that gives popular interconnection types and Anybus' solution:

```
ANYBUS SOLUTIONS FOR INDUSTRIAL ETHERNET NETWORKS

\rightarrow BACnet/IP \rightarrow CC-Link IE Field \rightarrow EtherCAT \rightarrow EtherNet/IP \rightarrow Modbus

TCP \rightarrow Powerlink \rightarrow PROFINET

ANYBUS SOLUTIONS FOR FIELDBUS/SERIAL/OTHERS

\rightarrow CAN/CANopen \rightarrow CC-Link \rightarrow ControlNet \rightarrow DeviceNet \rightarrow M-Bus

\rightarrow Modbus RTU (RS232/422/485) \rightarrow PROFIBUS \rightarrow Wireless
```

Others with similar products for interconnecting PLCs with various devices include Red Lion with their ad below:

"

COMMUNICATION CONVERTERS

Protocol Converters

- FlexEdge
- Data Station
- ICM8 Gateway
- Media Converters
- Serial Converters
- Accessories

DATA STATION

easier than with our simple-to-use Crimson® software.

The Data Station from Red Lion is a protocol conversion and data acquisition solution for a connected industry. In addition to supporting over 300 industrial drivers, it also offers data, event and security logging with cryptographic signature support; remote machine access through an advanced web server; connectivity to some of the industry's most popular IIoT platforms and embedded OPC UA server and client functionality. Learn more.

FLEXEDGE[™] INTELLIGENT EDGE AUTOMATION PLATFORM

Bridge the communication gap between disparate serial, Ethernet and fieldbus devices, orphaned by incompatible

communications standards, using Red Lion's suite of protocol conversion products. Supporting more than 300 industrial protocols, communicating from vendors like ABB, Emerson, Rockwell Automation, Schneider and Siemens has never been

Regardless of the brand of PLC or other equipment specified, the FlexEdge platform leveraging the more than 300 drivers in Red Lion's intuitive Crimson® software - enables connectivity to virtually anything in your system with point-and-click simplicity. In addition, avoid costly and complex rip-andreplace scenarios by leveraging the FlexEdge sled architecture, designed to enable organizations to leverage new communications technologies as they become available. Rugged construction, a wide operating temperature range, and industrial certifications provide a dependable solution for protocol conversion, control, edge processing and data visualization in even the harshest environments. Learn more.

Another protocol converter is Hilscher. Their NT 151-RE-RE converter is presently planned to be used in the Lab for converting between Profibus and Ethernet/IP and Modbus/TCP.

The setup of the Hilscher unit can be found at the Atlassian website under the sycon heading. The url for the site is:

https://hilscher.atlassian.net/wiki/spaces/SYCON/overview

This site gives the setup software, presently 2.0 as well as manuals for the setup of the network card for the various protocols.

This website is shown below:

(Documentation for the setup of the cards can also be found on this page.)

\leftarrow	\rightarrow	C	\bigcirc	8	https://hilscher.a	atlassian.net/	wiki/spa	aces/SYC	ON/ov	erview				
Atla indi	ssian (cate tł	uses cookies to impro nat you agree to our	ove you use of (ır bro cook	owsing experien ies on your devi	ice, perform a ice. <u>Atlassian</u>	analytic: cookies	s and res s and Tra	earch, <u>cking r</u>	and cor notice	nduct advertisin	ıg. Accept all co	ookies to)
>	י ה	ilscher	Hilsch	er Kr	nowledge Base	Spaces 🗸	Apps `	✓ Tem	plates	H	Create			
p	syco	DN.net					SY	CON.net	İ					
88	All co	ontent						÷	cvr		pot			
₿	Caler	ndars						F UT	310	.ON	.net			
¢	Spac	e settings						Releas	es					
~	CONT	ENT							Curro relea	ent ise:	V2.0.111.V1.0500.3	48381 240823.49689	For pr see ve	evious versersion histo
Q	Searc	ch by title												
>	SYCC	DN.net V1												
>	SYCC	DN.net V2						Opera	ting Sy	/stems				
>	BLOG APPS	s						Micro Wine 20	osoft dows	Micro	soft Windows XP SP3	Microsoft Wi Vista SP	ndows 2	Microsof Window: 7

Setup of the card is shown in the pictures below:

Writing your own ASCII READ/WRITE BLOCKS

Various sets of numeric codes have been implemented to transfer text information between computers. One of these codes is ASCII. ASCII stands for American Standard Code for Information Interchange. As can be seen from the table of ASCII characters in the ASCII Table in an index to the chapter, not all codes represent letters or numbers. Many codes represent actions, special keys or control characters.

One computer capable of transmitting and accepting ASCII coded data is the PLC. The SLC 5/03 as well as a number of other PLCs is capable of reading and writing ASCII string data through its 9 pin D-shell connector on the CPU front panel. Instructions for transfer of data are found in Allen-Bradley's SLC 500 Instruction Set Reference Manual, Chapter 10.

Writing a program to communicate between computer controllers involves handling of ASCII codes or other numeric data in order to move information or request an action. Many of these programs use ASCII data to accomplish the task. A mixture of ASCII data and other numeric data is the norm for most tasks. A second data transmission type is RTU (Remote Terminal Unit) with a more dense data packet.

Definition of the communication between two controllers is included in a protocol. Many protocols are very simple and require only a simple description of the query and any expected response.

Then a more complete protocol is explored. How one controller requests information from another device and how that device responds is the basis for an advanced protocol. Contents of various fields in the protocol are described so the protocol can function properly.

	Channel Configuration	×
⊡-@ Project	General Chan. 1 - System Chan. 0 - System Chan. 0 - User	
庄 🧰 Help		1
🖻 🛅 Controller	Channel 1	
- 1 Controller Properties	Driver DH485	
- 🚫 Processor Status		
- 🛄 IO Configuration	I Write Protected	
- 🙀 Channel Configuration	Passthru Link ID (dec) 2	
🛄 Multipoint Monitor	Edit Besquirce/Dwner Timenut (x1 sec) 60	Fig. 16-18
🚊 🦲 Program Files		11g. 10-10
SYS 0 -		Using the SLC
- 📓 SYS1 -		Droggeor ag
🕌 🕼 LAD 2 -	Channel 0	Processor as
🖻 🧰 Data Files	System Driver: DF1 Full Duplex User Driver: ASCI	ASCII Device
- 📓 Cross Reference		
	Mode: System 💌 🗖 Mode Change Enabled	
🛄 H - INPUT	Write Prot System Mode Attention Character Mb	
🛅 S2 - STATUS	Develop Link ID (dev) 1	
B3 - BINARY		
	Edit Resource/Owner Timeout (x 1sec) 60 User Mode Character U	
CS - COUNTER		
- 🚺 R6 - CONTROL		
N7 - INTEGER		
	OK Cancel Apply Help	

Configuring a PLC for ASCII Read/Write

The figure above shows the Channel Configuration setting change that must take place prior to using the port as an ASCII port. Channel 0 must be changed from System to User.

Many devices use ASCII code to transmit information. Scales send weights from the scale computer to a batching computer. Bar code readers send bar code data to a sorting computer.

RFID tag readers send tag information to and from the tag and communicate to a computer system controlling the process. PLCs have the ability to read and write ASCII strings of data from these devices and are used to gather data and control processes using the string data.

A new file type is needed to hold ASCII string information, the String file type. It is added to the Data File list as follows:

Data Tilo ot	Total Files: Active Files:	9 9	Т	otal Memo	ry (Words):	96			
Name	Desc	File	Туре	Scope	Debug	Elems	WORDS	Last	Protection 9
DUTPUT		0	0	Global	No	0	0		No
NPUT		1	1	Global	No	0	0		No
STATUS		2	S	Global	No	83	83	S:82	N
3INABY		3	В	Global	No	1	1	B3:0	N
IMER		4	Т	Global	No	1	3	T4:0	N
COUNTER		5	С	Global	No	1	3	C5:0	N
CONTROL		6	R	Global	No	1	3	R6:0	N
NTEGER		7	N	Global	No	1	1	N7:0	N
LOAT		8	F	Global	No	1	2	F8:0	N
•									

File, Data Files, Select Data File and from below, Create New:

Fig. 16-19 Configure the String or ASCII file in the SLC

The process of creating a new file may also be done by right clicking Data Files and then choosing Add New. The example below shows the adding of File 9 as a String file. Files do not necessarily need to be added sequentially although most applications tend to reserve File 9 as a String or ASCII file type.

- 1 Controller Properties	Freate Data File	XI
- 🔨 Processor Status		
- III IO Configuration		
Channel Configuration		
Multipoint Monitor	Type: Binary	
🚊 🧰 Program Files	Name: Binary	
	Franks Timer Coupter	
📓 SYS1 -	Desc: Control	
📖 🦓 LAD 2 -	Elements: Integer	
🚊 📇 Data Files	Float	
📓 Cross Reference	Attributes String	
🛅 00 - OUTPUT		-
- 🚺 H - INPUT	L Debug	
S2 - STATUS	I Skip When Deleting Unused Memory	
🛅 83 - BINARY	Scope	
📑 T4 - TIMER		-
- 📑 CS - COUNTER	Global	
📔 R6 - CONTROL	🗢 Local 🛛 To File: 2 -	
🛅 N7 - INTEGER		
F8 - FLOAT	Protection	
📄 🧰 Force Files		-
📔 00 - OUTPUT	C Constant C Static 💌 None	
🛄 🖬 H - INPUT	E Memory Module	
🚊 🧰 Custom Data Monitors		
🛄 CDM 0 - Untitled	OK Cancel Help	
		_

Fig. 16-20 Configure the String or ASCII file in the SLC

ASCII Transmission

ASCII characters are transmitted sequentially a bit at a time through a serial data cable. Each bit is transmitted sequentially starting with the left-most bit. Two start bits and 1, 1.5, or 2 stops may be specified. The channel may be configured from RSLogix 500 using the project tree – channel configuration, channel 0, and then user. From this tab, choose the baud rate, parity, stop bits and data bits to be used. Typical choices are 9600 baud, no parity, 1 stop bit and 8 data bits. For protocol control, chose Control Line – no handshaking – and for Delete Mode – ignore. Echo and XON/XOFF are usually left unchecked. The important point about these settings is that they must match the settings with the other device.

Looking at a transmission on the oscilloscope may yield good information. Storage oscilloscopes are definitely superior to non-storage oscilloscopes for this job. Transmissions should be visible per character with start and stop bits present as well as data bits of the 7 or 8 bit character string. For instance, the character ":" from the ASCII Table is 00111010 binary. With two start bits and one stop bit, it would resemble the following on the oscilloscope:

Fig. 16-21 Oscilloscope Representation of ASCII Character

Transmission Modes and ASCII Tables

The Modbus protocol discussed later in this chapter is set up to communicate in one of two types of transmission: ASCII or RTU. The choice of ASCII or RTU is made by the system designer and must be kept the same throughout. This communication represents a typical transmission for a computer to computer data exchange.

From the manual defining the Modbus protocol, one finds the two following serial transmission diagrams, one for ASCII and the other for RTU data transmission. The data is sent in the order defined by the diagram from left to right:

ASCII with Parity Checking										
START	1	2	3	4	5	6	7	PRTY	STOP	

	ASCII without Parity Checking											
START	1	2	3	4	5	6	7	STOP	STOP			

Fig. 16-22 Modbus Protocol Frames

RTU	with	Parity	Chec	kina
	<u>vvici i</u>	i unity	01100	// in ig

START	1	2	3	4	5	6	7	8	PRTY	STOP
-------	---	---	---	---	---	---	---	---	------	------

RTU without Parity Checking

START	1	2	3	4	5	6	7	8	STOP	STOP

ASCII Mode in Modbus Protocol

In the Modbus protocol, each 8-bit byte is set up to be sent in a message as two separate ASCII characters. This protocol gives the following rules for coding data in a message as: (from the Modbus manual)

"Coding System:

Hexadecimal, ASCII characters 0–9, A–F One hexadecimal character contained in each ASCII character of the message

Bits per Byte:

1 start bit
 7 data bits, least significant bit sent first
 1 bit for even/odd parity; no bit for no parity
 1 stop bit if parity is used; 2 bits if no parity

Error Check Field:

Longitudinal Redundancy Check (LRC)"

RTU Mode in Modbus Protocol

In the Modbus protocol, each 8-bit byte transmits two hexadecimal characters in the RTU mode. This protocol gives the following rules for coding data in a message as: (from the Modbus manual)

"Coding System:

8-bit binary, hexadecimal 0–9, A–FTwo hexadecimal characters contained in each8-bit field of the message

Bits per Byte:

1 start bit
 8 data bits, least significant bit sent first
 1 bit for even/odd parity; no bit for no parity
 1 stop bit if parity is used; 2 bits if no parity

Error Check Field:

Cyclical Redundancy Check (CRC)"

In general, while ASCII may be configured as either 7 or 8 bit, the standard ASCII table identifies only 128 characters. With the Modbus protocol defined above, 7 bit ASCII is sufficient and is required per the protocol. ASCII protocol is less efficient in the Modbus protocol than RTU, in that for each transmission, only 4 bits of data is transmitted. With RTU, 8 bit must be selected since 8 bits define 8 bits or one byte of data to be transmitted.

Example of a Simple ASCII Protocol

The protocol described here is a simple protocol using ASCII characters. It is less sophisticated than the Modbus protocol discussed later. The protocol for the device below is a letter, a number (Head Number), a check sum followed by an end of text character or <ETX>. Each communication follows roughly the same simple pattern. A computer receives the request from the device and responds with the appropriate information. The device initiates a request and gathers the results. The examples below are between a computer and a radio-frequency identification system from Peprl and Fuchs. Peprl and Fuchs literature defines each specific data type. For instance <HdNo> refers to a specific head number in the range 1 to 4.

Command: Response: Example: Command:	A <hdno><chck><etx> A<status><db><chck><etx> Read all data in Auto mode with read head 1: A 1 72h 03h</etx></chck></db></status></etx></chck></hdno>	
Read bvt	es. Single mode	
Command:	w <hdno><stadrh><bytesh><chck><etx></etx></chck></bytesh></stadrh></hdno>	Fig. 16-23
Response:	w <status><db><chck><etx></etx></chck></db></status>	Simple ASCII
•		Communication
Read byt	es, Auto mode	Communication
Command:	W <hdno><stadrh><bytesh>CHCK><etx></etx></bytesh></stadrh></hdno>	
Response:	W <status><db><chck><etx></etx></chck></db></status>	
Example:	Read bytes 7 to 11 in Auto mode with read head 1:	
Comman	d: W 1 07 05 54h 03h	
Write byt	es, Auto mode	
Command:	K <hdno><stadrh><bytesh><db><chck><etx></etx></chck></db></bytesh></stadrh></hdno>	
Response:	K <status><chck><etx></etx></chck></status>	
Example:	Write "P & F" to data carrier, at start address 10, in Auto mode with	read head 2:
	Command: K 2 0A 03 50h 2Bh 46h 12h 03h	

To calculate a check sum <CHCK>, the following addition is performed:

K		4Bh	Asci	i	cha	ır	"K"
2		32h	Asci	i	cha	ır	"2"
0		30h	Asci	i	cha	ır	"0"
A		41h	Asci	i	cha	ır	"A"
0		30h	Asci	i	cha	ır	"0"
3		33h	Asci	i	cha	ır	"3"
50h		50h	hex	ch	ar	50	1
2Bh		2Bh	hex	ch	ar	2B	5
46h	+	46h	hex	ch	ar	46)
	(2)	12h					

This gives a check sum <CHCK> of 12h.

The check sum is used in many applications for error-checking. If the check sum does not equal the calculated checksum, the data is discarded as bad. Check sum is also referenced as LRC or Longitudinal Redundancy Check. It is a simple procedure giving a good check on validity of the characters sent.

ASCII Instructions in the PLC

The SLC Instruction Set includes several ASCII instructions for reading and writing data from the PLC.

Different applications require some or all of these instructions to accurately find information in the string of data and use the information in the control of the process. AWA is ASCII Write with append and AWT is an ASCII string write with no append. While the student may be at first excited about the use of serial data transmission and writing a protocol, these programs are among the most difficult to keep running in a factory environment. Noise may interfere with a proper transmission and add a random character. A computer may not respond when asked. Error recovery programs, time-outs, re-trys all become an integral part of any program to implement one of these programs in a factory. Testing a procedure on the lab bench is usually not enough to ensure success with this type of program in a field application.

A More Complete Protocol

A protocol is a defined method by which computers communicate. A very early PLC protocol first used by Modicon and the Modicon PLC family is the Modbus protocol. This protocol has provided a standard for communication between various controllers since the late 1970s and remains active today in a number of PLC and other industrial products. The protocol defines a message stream that various controllers can recognize. Its inclusion here gives an example of a more complete protocol with a more robust set of functions available. This protocol has survived over the years due to its early acceptance, its flexibility, and its adaptability to a wide range of control devices. A rigorous explanation of the protocol is found in Modicon's Modbus Protocol Reference Guide.

From Modicon's Modbus Protocol Reference Guide*:

"It describes the process a controller uses to request access to another device, how it will respond to requests from the other devices, and how errors will be detected and reported. It establishes a common format for the layout and contents of message fields. The Modbus protocol provides the internal standard that the Modicon controllers use for parsing messages. During communications on a Modbus network, the protocol determines how each controller will know its device address, recognize a message addressed to it, determine the kind of action to be taken, and extract any data or other information contained in the message. If a reply is required, the controller will construct the reply message and send it using Modbus protocol."

The addressing of all Modicon PLCs is as follows:

00001 – 0xxxx – Discrete Outputs and Internal Coils 10001 – 1xxxx – Discrete Inputs 30001 – 3xxxx – 16 bit word Input 40001 – 4xxxx – 16 bit word Output and Internal Storage

What is common about each of these is that the displacement **to any address is from 1, not from 0**. For instance, if the address for location 500 of the discrete output table, the displacement would not be 500 but 499 and this number would be converted to hex. The same would be for any of the addressing types.

The Modbus Transaction

Modbus defines a master-slave protocol in which the master device queries the slave device which then responds with its own transmission. A slave response is typically a table of data but may include an action as requested by the master. A master may include computers or HMI terminals but may also include other PLCs. A typical slave is a PLC or other control device. Devices used as slave devices include any device from which control information is desired or needs to be changed. A wide range of devices other than Modicon PLCs have adopted the Modbus protocol and are programmed as Modbus slaves. Responses from slave devices range from a single device response to a general broadcast query message to all slave devices on the network.

Modbus provides a format for both master and slave protocols. From the figure on the next page, a typical master query followed by a slave response is shown. In the query are information such as the device address being communicated to, a function code, any data being sent or requested, and an error checking field. This protocol is more sophisticated than the simple Peprl-Fuchs protocol in that if an error occurs, the slave sends the appropriate error message.

* Modicon: Modbus Protocol Reference Guide PI–MBUS–300 Rev. J

Fig. 16-25

The Query:

A query provides a function code requesting an action. The query may include any of the following allowable function codes:

Code	e Name	Comments *
01	Read Coil Status	specifies 16*n discrete slave PLC outputs
02	Read Input Status	specifies 16*n discrete slave PLC inputs
03	Read Holding Registers	specifies n 16 bit words from slave PLC output tbl
04	Read Input Registers	specifies n 16 bit words from slave PLC input table
05	Force Single Coil	
06	Preset Single Register	
07	Read Exception Status	
08	Diagnostics	
09	Program 484	84 specifies a type of Modicon PLC
10	Poll 484	
11	Fetch Comm. Event Ctr.	
12	Fetch Comm. Event Log	
13	Program Controller	
14	Poll Controller	
15	Force Multiple Coils	
16	Preset Multiple Registers	
17	Report Slave ID	
18	Program 884/M84	884/M84specifies a type of Modicon PLC
19	Reset Comm. Link	
20	Read General Reference	
21	Write General Reference	
22	Mask Write 4X Register	
23	Read/Write 4X Registers	

24 Read FIFO Queue

The function code field is followed by information in the master query telling the slave at which word to begin and the number of words to read or write. Error checking provides a validation of the message.

The Response:

The response is an echo of the function code found in the query plus any data requested followed by the error checking byte or bytes. The new error checking provides the master with a validation of the message and its contents.

Data Addresses Referenced

Every part of the data field in the Modbus protocol must be addressed correctly. For example, the data address must be referenced to one. From the Modbus Protocol manual, the following examples show calculations of offsets for data addresses:

"The coil known as 'coil 1' in a programmable controller is addressed as coil 0000 in the data address field of a Modbus message. Coil 127 decimal is addressed as coil 007E hex (126 decimal).

Holding register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a 'holding register' operation. Therefore the '4XXXX' reference is implicit.

Holding register 40108 is addressed as register 006B hex (107 decimal)."

Framing - ASCII

From the Modbus manual, the following:

"In ASCII mode, messages start with a 'colon' (:) character (ASCII 3A hex), and end with a 'carriage return – line feed' (CRLF) pair (ASCII 0D and 0A hex). The allowable characters transmitted for all other fields are hexadecimal 0–9, A–F."

The typical transmission for a Modbus ASCII transmission resembles:

Start	Address	Function	Data	LRC Check	End
1 Char :	2 Chars	2 Chars	n Chars	2 Chars	2 Chars CRLF

Fig.	16-26	ASCII	Transmission	Frame
<u></u>				

Framing - RTU

From the Modbus manual, the following:

"In RTU mode, messages start with a silent interval of at least 3.5 character times. This is most easily implemented as a multiple of character times at the baud rate that is being used on the network (shown as T1–T2–T3–T4 in the figure below). The first field then transmitted is the device address. The allowable characters transmitted for all fields are hexadecimal 0–9, A–F. Networked devices monitor the network bus continuously, including during the 'silent' intervals. When the first field (the address field) is received, each device decodes it to find out if it is the addressed device. Following the last transmitted character, a similar interval of at least 3.5 character times marks the end of the message."

The typical transmission for a Modbus RTU transmission resembles:

Start	Address	Function	Data	CRC Check	End
T1-T2-T3-T4	8 Bits	8 Bits	n * 8 Bits	16 Bits	T1-T2-T3-T4

Fig. 16-2	27 RTU	Transmission	n Frame
-----------	--------	--------------	---------

Example Modbus Transmissions

Description of "02" Read Input Status

The "02" request reads the status of discrete input points. The request is for inputs 197 to 218 from slave device 17.

Query

Field Name	
Slave Address	11
Function	02
Starting Address Hi	00
Starting Address Lo	C4
No. of Points Hi	00
No. of Points Lo	16
Error Check (LRC or CRC)	

Hex 11 = Decimal 17 or the 17th device Function 02 = Data Read from Digital Input Table starting at 10001 High Address = 00 Low Address = C4 or 12*16 + 4 or 192 + 4 = 196 which is address 10197 or 196 offset from 10001 No of points = 16 or 1*16 + 6 = 22 data points

Sample Modbus Read Input Query

Response

Field Name	
Slave Address	11
Function	02
Byte Count	03
Data (Inputs 10204 - 10197)	AC
Data (Inputs 10212 - 10205)	DB
Data (Inputs 10218 - 10213)	35
Error Check (LRC or CRC)	

Hex 11 = Decimal 17 or the 17^{th} device

Function 02 = Data Read from Digital Input Table starting at 10001 Byte Count = number of 8 bit bytes to be sent. There are 3 based on bit count of 22

Data includes the first byte (AC), second byte (DB) and third byte (35). Notice that the third byte is not complete due to the fact that only 22, not 24 bits are desired. The extra two bits are not included and recorded as 0's.

Fig. 16-28

Sample Modbus Read Input Response

Explanation of Response:

The Slave Address is repeated from the query as 11. The function is also repeated from the query as 02. Byte count is calculated from the number of bytes to be sent. The number of bytes sent can be calculated by establishing the number of bytes necessary to send 16 hex data points. The number 16 hex is equal to 22 decimal. If each input represents one data point, three 8-bit bytes are needed for 22 data points. The data is sent from input addresses starting at offset C4 hex from the first data point 10001. The hex number C4 is equal to 12*16 or 192 plus 4 or total 196. The first data point is displaced 196 from 10001 or 10197. The first 8 data points reside in addresses 10197 to 10204. The next eight reside in addresses 10205 to 10212. The final 6 reside in addresses 10213 to 10218. Two bits are not used (10219, 10220). The data from these bits is sent in three consecutive bytes. The value of 10197 through 10204 is shown in the first entry of the figure below. Values of 10205 through 10212 are found in the second entry and values of 10213 to 10218 are found in the third.

Fig. 16-28 Calculating the Slave Response

Description of "04" Read Registers

This is a request to read input register 30009 from the slave device at location 17.

Query

Field Name	
Slave Address	11
Function	04
Starting Address Hi	00
Starting Address Lo	08
No. of Points Hi	00
No. of Points Lo	01
Error Check (LRC or CRC)	

Sample Modbus Read Registers Query

Response

Field Name	
Slave Address	11
Function	04
Byte Count	02
Data Hi (Register 30009)	00
Data Lo (Register 30009)	0A
Error Check (LRC or CRC)	

Fig. 16-29

Sample Modbus Read Registers Response

Explanation of Response:

The Slave Address is repeated from the query as 11. The function is also repeated from the query as 04. Byte count is calculated from the number of bytes to be sent. The number of bytes sent can be calculated by establishing the number of bytes necessary to send 01 16-bit words. This number is 2 bytes. Contents of input register 30009 are sent in the following two bytes. First is sent the high byte (00). Second is sent the low byte (0A). Input register 30009 is displacement 8 from the first input register 30001. If more than 1 register is requested, the number of bytes added would equal 2 bytes for each register requested.

Possible Responses to Request

As a more sophisticated protocol, the programmer must be aware of possible outcomes other than a normal response as shown above. Any of four different responses might occur when a request is initiated and the PLC or computer program must be capable of handling any of them.

- 1. Normal Response
- 2. Slave doesn't Receive No response (master program should process a timeout and retry)
- 3. Communication Error (parity, LRC, or CRC error) No Response
- 4. Unable to handle request Returns an exception response

Error Checking

Either the ASCII or RTU mode may be scheduled for the Modbus protocol. Error checking for these two modes varies in that a different algorithm is used to calculate the error checking field. ASCII uses the Longitudinal Redundancy Check (LRC) and RTU uses the Cyclical Redundancy Check (CRC). ASCII mode begins the transmission with a 'colon' and ends the transmission with CRLF characters. In either mode, if the LRC or CRC does not match the calculated value in the computer program, an error is present and the communication is terminated. Calculating these two checking types may be obtained from various websites with the programs written and examples provided. A more thorough discussion of these methods is also found in the Modbus Reference Manual. LRC mode is similar to the check sum example of the Simple ASCII Protocol.

The user rarely needs to fully understand the protocol or the various codes for the transmission. He should be able to configure the transmission and the expected response, however. The use of this protocol shows up in the most unusual situations with equipment not at all related to the Modicon organization.

You may not believe it but a capstone group in Fall 2013 was required to implement this protocol to succeed with their project.

A Failure to Communicate

Some of the most serious problems encountered as a PLC programmer involve problems with communications. Whether it is that they can't be seen or that they can be easily over-loaded, the stories about failures in communications problems are many and varied. The following is just one not to be duplicated.

The following engineered system was to be implemented in an automotive parts plant. The PLC program was to send a command string to the Remote I/O module located in a rack in the PLC housing. From there, the command was to be sent to the vendor's remote I/O receiver module and from there to the vendor's communications device. Any communication that was to be successful would need to pass through four CPUs and successfully return to the initiating program. While the test program worked successfully on the bench, when it entered the field, problems developed. The problem was that if a communication was not successfully received back prior to a second communication starting, the communications became confused and stopped. The only procedure for re-starting the communications was to power down and back up both vendor devices, a task that would be painful to do even if given permission by the end user. The fact that proximity switches initiated the communication and they are noisy devices that many times have multiple inputs when a device is sensed was also part of the problem.

This system obviously was in serious trouble before the programmer entered the picture. Anyone designing a system with so many computer cpu's involved should be questioned as to their sanity. The problem was that at the time of this installation, there were few alternatives to this design and it looked, at least on paper, to be one of the best. In retrospect, this type of design is always problematic and should be avoided. The fewer devices placed in a critical path, the better the system.

Summary

The subject of PLC communications could encompass an entire book on its own. The subject could be depressing but hopefully we leave it with a smile. Thank you, Paul!

You do not want to be associated with either of these situations, the one at left, or especially, the one below.

If you are not familiar with these people, look up the movie "Cool Hand Luke". At left is Strother Martin, the captain of the prison camp with his famous statement "what we have here is a failure to communicate".

Below is Paul Newman, the object of the comment.

And, we would be negligent not to introduce Factory 4.0 or Industry 4.0. The concepts introduced in this chapter are an integral part of the concepts of both. It is necessary to remain engaged in the need to constantly improve our factory control systems to implement the concepts of Factory 4.0.

Nor would we want you to be discouraged by the number of topics found in the Siemens TIA portal programming software concerning either hardware or software for communication between processors or other devices. The following is a sampling of the Siemens offerings.

Fig. 16-31 Siemens' 1215 processor describes the following Siemens hardware for industrial remote communication with the

 S7 communication 		V1.5
=- GET	Read data from a remo	<u>V1.3</u>
=- PUT	Write data to a remote	<u>V1.3</u>
🔻 🛅 Open user communicati		<u>V7.0</u>
TSEND_C	Establishing a connecti	V3.2
TRCV_C	Establishing a connecti	V3.2
TMAIL_C	Send e-mail	V6.0
🔻 🛅 Others		
TCON	Establish communicati	V4.0
=- TDISCON	Terminate communica	V2.1
=- TSEND	Send data via commun	V4.0
TRCV	Receive data via comm	V4.0
TUSEND	Send data via Ethernet	V4.0
TURCV	Receive data via Ethern	V4.0
T_RESET	Resetting the connection	V1.2
T_DIAG	Checking the connection	V1.2
T_CONFIG	Configure interface	V1.0

- **D** an

When programming in OB1 or other program space, the following S7 Communication instructions are available for use. They are extensive.

🔻 🛅 WEB Server		V1.1
=- www	Synchronizing user-def.	. <u>V1.1</u>
🕶 🛅 Others		
🔻 🛅 MODBUS TCP		<u>V5.2</u>
MB_CLIENT	Communicate via PROF	<u>V5.2</u>
MB_SERVER	Communicate via PROF	<u>V5.2</u>
🔻 🛅 MODBUS TCP Redund		V5.2
MB_RED_CLIENT	Redundant communic	. <u>V1.2</u>
MB_RED_SERVER	Redundant communic	. <u>V1.2</u>
N		
Communication processo	וכ	
PtP Communication		<u>V3.2</u>
Port_Config	Configure PtP commun	V1.2
Send_Config	Configure PtP sender	V1.2
Receive_Config	Configure PtP recipient	<u>V1.3</u>
P3964_Config	Configure protocol	V1.3
Send_P2P	Send data	<u>V3.1</u>
Receive_P2P	Receive data	<u>V2.6</u>
Kecelve_Keset	Delete receive buffer	V1.2
Signal_Get	Read status	<u>V1.4</u>
- Signal_Set	Set accompanying sign.	V1.2
Get_reatures	Get extended functions	V2.1
- Set_reatures	Set extended functions	VZ.1
USS communication		V4.3
USS_Port_Scan	Communication via US	V3.3
USS_Drive_Control	Data exchange with th	V2.0
USS_Read_Param	Read data from drive	V1.5
=- USS_Write_Param	Change data in drive	V1.6
MODBUS (RTU)	-	V4.4
Modbus_Comm	Configure port for Mod	V3.1
=- Modbus_Master	Communicate as Modb	V3.3
📑 Modbus_Slave	Communicate as Modb	V4.3
_		
TeleService		V1.9
TM_MAIL	Send email	<u>V1.4</u>

Fig. 16-32

The three cards attached to the left of the CPU in the picture above represent three different configurations of the serial communications port available with the S7-1200 processors. These are the RS-232, RS-422 and RS-485 protocols. Each has a different voltage and current requirement for completion of a data transmission.

Some of the devices these cards can be attached to include bar code readers and RFID tag readers. Siemens has a standard set of instructions for communication to the Siemens RFID tag system. Lab 16.1 outlines the requirements for implementing this RFID tag reader.

Again, we turn to the Easy Book from Siemens to get a better idea of some of the flexibility of this chapter on communications. Their Chapter 7 starts as follows:

Easy to communicate between devices

For a direct connection between the programming device and a CPU:

- The project must include the CPU.
- The programming device is not part of the project, but must be running STEP 7.

For a direct connection between an HMI panel and a CPU, the project must include both the CPU and the HMI.

For a direct connection between two CPUs:

- The project must include both CPUs.
- You must configure a network connection between the two CPUs.

,,

u

Or Chapter 9:

Web server for easy Internet connectivity

The Web server provides Web page access to data about your CPU and to the process data within the CPU. With these Web pages, you access the CPU (or Web-enabled CP) with the Web browser of your PC or mobile device. The standard web pages allow authorized users to perform these functions and more:

- Changing the operating mode (STOP and RUN) of the CPU
- Monitoring and modifying PLC tags, data block tags, and I/O values
- Viewing and downloading data logs
- Viewing the diagnostic buffer of the CPU.
- Updating the firmware of the CPU.

The Web server also allows you to create user-defined Web pages that can access CPU data. You can develop these pages with the HTML authoring software of your choice. You insert pre-defined "AWP" (Automation Web Programming) commands in your HTML code to access the data in the CPU.

You set up users and privilege levels for the Web server in the device configuration for the CPU in STEP 7.

Exercises

1. Use the following scan-list information for a scanner in slot 2 of both a SLC and Compact processor:

Device 2	Device 1	Output Scan-List
Device 4	Device 3	
Device 6	Device 5	

Fig. 16-35

Dev	Input Scan-List	
Device 3	Device 2	
	Device 4	

Show the address of bit 3 of output device 3 for the SLC processor, for the CompactLogix processor.

Show the address of bit 5 of input device 4 for the SLC processor, for the CompactLogix processor.

2. Use the following scan-list information for a scanner in slot 6 of both a SLC and Compact processor:

Device 2	Device 1	Output Scan-List
empty	Device 3	
Devi		
Device 6	Device 5	
Device 6	Device 5	

Fig. 16-36

Device 1				
empty Device 2				
Device 4	Device 3			

nput Scan-List

Show the address of bit 5 of output device 6 for the SLC processor, for the CompactLogix processor.

Show the address of bit 5 of input device 4 for the SLC processor, for the CompactLogix processor.

Use the following information for the Modbus Protocol Problems below:

Description of "02" Read Input Status

The "02" request reads the status of discrete input points. The request is for inputs 197 to 218 from slave device 17.

Query

Field Name	
Slave Address	11
Function	02

Fig. 16-37

Starting Address Hi	00
Starting Address Lo	C4
No. of Points Hi	00
No. of Points Lo	16
Error Check (LRC or CRC)	

Response

Field Name	
Slave Address	11
Function	02
Byte Count	03
Data (Inputs 10204 - 10197)	AC
Data (Inputs 10212 - 10205)	DB
Data (Inputs 10218 - 10213)	35
Error Check (LRC or CRC)	

10204	10203	10202	10201	10200	10199	10198	10197
1	0	1	0	1	1	0	0
10212	10211	10210	10209	10208	10207	10206	10205
1	1	0	1	1	0	1	1
		10218	10217	10216	10215	10214	10213
0	0	1	1	0	1	0	1

Description of "04" Read Registers

This is a request to read input register 30009 from the slave device at location 17.

Query

Field Name	
Slave Address	11
Function	04
Starting Address Hi	00
Starting Address Lo	08
No. of Points Hi	00
No. of Points Lo	01
Error Check (LRC or CRC)	

Fig. 16-38

Response

Field Name	
Slave Address	11
Function	04
Byte Count	02
Data Hi (Register 30009)	FF
Data Lo (Register 30009)	F1
Error Check (LRC or CRC)	
Input Register	Value
30001	A123
30002	0102

30003	BBE3
30004	30E3
30005	0001
30006	4E23
30007	8989
30008	234F
30009	FFF1

3. For the following Modbus query, describe the slave's response:

03 02 00 C4 00 0C CRC

- 4. For the following Modbus query, describe the slave's response:
 - 05 04 00 03 00 04 CRC
- 5. For the following Modbus query, describe the slave's response:
 - 05 04 05 00 03 CRC
- 6. Find a device other than a Modicon device that uses the Modicon protocol to communicate with it.
- 7. Use the ASCII tables to find the checksum for the following:

A 2 3 ; CkSum = 8. For the following, an operator at an HMI station may push a button B3:0/4 to request a MSG Read block be executed. B3:0/4 is a multistate toggle button programmed to be either on or off from the HMI. Add logic to allow three automatic retries with a delay between retry of 4 seconds if an error occurs. Assume B3:0/4 stays on while the retries occur.

9. Of PROFINET, Ethernet/IP, EtherCAT and Modbus TCP, which is/are unicast, multicast, shift register? What do the terms unicast and multicast mean?

Lab 16.1

This lab is a transitional lab requiring students to build the set-up with the equipment supplied and provide a resulting system capable of reading and writing to multiple tags and being able to demonstrate the operation to the instructor:

This is the manual for the RF200 system. It covers transponders and readers but no the configuration / setup.

https://support.industry.siemens.com/cs/us/en/view/109766065

This is an application example specific to the equipment you have:

https://support.industry.siemens.com/cs/us/en/view/109483367

This is a full list of application examples.

https://support.industry.siemens.com/cs/us/en/view/109483416

At this time, there is no directly applicable Allen-Bradley equipment available in the lab to incorporate RFID although this equipment does exist and works in a manner similar to the Siemens.

Lab 16.2

Demonstrate a communication between two PLCs using Ethernet.

This lab is a transitional lab requiring students to build the set-up with the equipment supplied and provide a resulting system capable of reading and writing.

Easy BookManual, 01/2015, A5E02486774-AG139 - Easy to communicate between devices

and

Youtube - Siemens PLC to PLC Communication PUT GET Easy Guide

From the Help Request from TIA Program, the following descriptions for GET and PUT:

GET: Read data from a remote CPU

Description

With the instruction "GET", you can read data from a remote CPU.

The instruction is started on a positive edge at control input REQ:

- The relevant pointers to the areas to be read out (ADDR_i) are then sent to the partner CPU. The partner CPU can be in RUN or STOP mode.
- The partner CPU returns the data:
 - If the reply exceeds the maximum user data length, this is displayed with error code "2" at the STATUS parameter.
 - The received data is copied to the configured receive areas (RD_i) at the next call.
- Completion of this action is indicated by the status parameter NDR having the value "1".

Reading can only be activated again after the previous reading process has been completed. Errors and warnings are output via ERROR and STATUS if access problems occurred while the data was being read or if the data type check results in an error.

PUT: Write data to a remote CPU

Description

You can write data to a remote CPU with the instruction "PUT".

The instruction is started on a positive edge at control input REQ:

- The pointers to the areas to be written (ADDR_i) and the data (SD_i) are then sent to the partner CPU. The partner CPU can be in RUN or STOP mode.
- The data to be sent is copied from the configured send areas ((SD_i). The partner CPU saves the sent data under the addresses supplied with the data and returns an execution acknowledgment.
- If no errors occur, this is indicated at the next instruction call with status parameter DONE = "1". The writing process can only be activated again after the last job is complete.

Errors and warnings are output via ERROR and STATUS if access problems occurred while the data was being written or if the execution check results in an error.

Or, use the I-Device Method:

https://support.industry.siemens.com/cs/us/en/view/109478798

Or use the T-Send method discussed above in the text. Yes, Siemens gives the choice of any of three different methods for communicating between PLCs.

Michael Smith - MIME 5450

PLC to PLC Communication – Siemens I Device

The objective of this lab was to establish communication between 2 Siemens S7-1215 PLCs using 'I Device'. I started by creating 2 projects for each of the PLCs. In each projected I inserted

the S7-1215 as shown below.

One of the PLCs had to be configured as an IO device which can be seen in the below image. To bring up the menu below I had clicked on the ProfiNet ports shown in the above image.

ProfiNet1 [Module]		🖳 Properties 🚺 Info 🔋 🗓 Diagnostics 🗖		
General IO tags	System constants Texts			
General	Operating mode			
Ethernet addresses				
Time synchronization				
Operating mode		10 controller		
 Advanced options 				
Interface options	IO system:			
Media redundancy	■ Device number:	0		
Real time settings		IO device		
 Port [X1 P1] 		Network		
General	Assigned to controller: Not assigned			
Port interconnection		Parameter assignment of PN interface by higher-level IO controller		
Port options		Prioritized startup		
Port [X1 P2]	Device number:	v		
Web server access				

Next I had to configure the input and output sizes which can be done by just scrolling down. In the same window. Notice I have 1 byte of input and output data configured.

l-devio	device communication						
Trar	Transfer areas						
		-					
		Transfer area	Туре	Address in IO contr	+	Address in I-device	Length
1		INPUTS	CD		→	110	1 Byte
2		OUTPUTS	CD		←	Q 10	1 Byte
З		<add new=""></add>					

After the input and output data was configured I had to generate a GSD file which was done in the same window.

Export generic sta	ation description file (GSD)
Designation:	PLC_1_IDevice
GSD file:	GSDML-V2.34-#Siemens-PreConf_ PLC_1_IDevice -20241015-134820.xml
Description:	Work memory 125 KB; 24VDC power supply with DI14 x 24VDC SINK/SOURCE, DQ10 x 24VDC and Al2 and AQ2 on board; 6 high-speed counters and 4 pulse outputs on-board; signal board expands on-board I/O; up to 3 communication modules for serial communication; up to 8 signal modules for I/O expansion; PROFINET IO controller, 2 ports, I-device, transport protocol TCP/IP, secure Open User Communication, S7 communication, Web
Path:	C:\Users\NZ8MJG.GCC\Documents
Export	Cancel
Export generic	station description file (GSD)
You can export t to the export.	he interface configuration. The hardware configuration must be compiled without errors prior
	Export

I then saved the project and downloaded the project to the PLC.

In the second PLC I had to install the GSD file generated from the first PLC. This can be done by selecting 'Options' and 'Manage GSD Files.'

Manage general station description files												
Installed GSDs GSDs in the p	oroject											
Source path: C:\Automation\s71200_IDevice2\AdditionalFiles\GSD												
Content of imported path												
File	Version	Language	Status	Info								
gsdml-v2.34-#siemens-preconf_pl	V2.34	English	Already installed									
<				>								
			Delete Install	Cancel								

After the GSD file was installed PLC_1 can be inserted in the ProfiNet network as shown in the image below.

I then downloaded the project to PLC_2. With both PLCs in RUN mode and connected VIA an ethernet cable connection was established.

Below are 'Watch Tables' from each PLC and you can see the data from PLC_1 at QB10 is being moved into IB68 of PLC_2 and the value in QB68 in PLC_2 is being moved into IB10 of PLC_1.

														-
\$71	200_I	Device 🕨	PLC_1	[CPU 1215C	DC/DC/DC]	Watch	and for	rce tables	• N	/atch tab	le_1			
*		ž 📝 L.	9 1 %	27 📭 🕫	h 1									
_	i	Name		Address	Displa	y format	Monito	or value	Mod	lify value		9		
1				%QB10	DEC		10		10			\checkmark		
2				%IB10	DEC		20							
3			_	<add new=""></add>										
											_			
	Devic	:e2 🕨 PL	C_2 [C	PU 1215C D	(DC/DC)	Watch	and fo	rce table	es 🕨	Watch t	able_		-	
														1
Ý	ا 👻	yž. 🔰 🛛	o 💋	R 🗊 障	1 1									
	i	Name	Address		Display form	at Mo	nitor val	ue I	Modify	value	9	;		1
1			%IB68		DEC	10								1
2			%QB68		DEC	20		1	20		1	~		
3			<add ne<="" td=""><td>ew></td><td></td><td></td><td></td><td></td><td></td><th></th><td></td><td></td><td></td><td></td></add>	ew>										
								_			_			

Or for A-B:

For Allen-Bradley, set up communications with MSG commands similar to the commands described in the text.

Lab 16.3

Demonstrate a communication between two PLCs using an ASCII communication protocol (RS422, 232, etc.)

This lab is a transitional lab requiring students to build the set-up with the equipment supplied and provide a resulting system capable of reading and writing.

You could set up two Siemens PLCS using the COMS add-on port and use their modbus instructions to set up two PLCs communicating using Modbus. One would be the master and the other the slave.

Use the following website as needed:

modbus tools - https://www.modbustools.com/contact.html

then choose 'MODBUS' and then 'PROTOCOL'.

Lab 16.4

Write a review at least 2 pgs on the following report (use 12 font single space):

https://www.boozallen.com/content/dam/boozallen/documents/2016/09/ukraine-report-when-thelights-went-out.pdf

or about a hack of a safety PLC system at a huge chemical plant.

https://darknetdiaries.com/transcript/68/

Lab 16.5 – Communication between PLC and Cognex

The Siemens instructions for connecting the S7-1200 PLC to the Cognex cameras can be found in the instructions at the following:

MIME_4450_Notes>

Cognex_Siemens> (this is for Siemens P

InSight Explorer IS7802>

Cognex Siemens Quick Start Guide ISE 2023 05 04_7802.pdf

InSight Vision Suite_IS3805>

Cognex Siemens Quick Start Guide ISVS 2023 05 04_3805.pdf

 Devices & networks 		_ - = ×	Hardware catalog
🚰 Topology view 🛛	🚮 Network view	Device view	Options
💦 Network 🔢 Connections 🛛 HMI connection 🕞 🐫 🔍 🛨		Network overvi 4 🕨	
	^	W Device	✓ Catalog
		 S7-1200 station, 	<search></search>
PLC 1	=	PLC_1	Filter
CPU 1211 C In-Sight Controll			Controllers
Not assigned		In-Sight-VC20	🕨 🛅 HMI
			PC systems
			Drives & starters
			Image:
			🕨 🛅 Detecting & Monitoring
			Distributed I/O
			Field devices
			🗢 🛅 Other field devices
	-		
	•		🗢 🛅 Controllers
			🕨 🛅 Cognex Corp
			🗢 🛅 Cognex Corp.
			🗢 📊 Cognex Vision Controllers
			In-Sight
			🕨 🛅 Drives
			🕨 🛅 Encoders
			🕨 🛅 Gateway
			🕨 🛅 Ident Systems
			Image:
			🕨 🛅 Sensors
			PROFIBUS DP

The Rockwell instructions for connecting the 16ER-BB1B PLC to the Cognex cameras can be found in the instructions at the following:

MIME_4450_Notes>

Cognex_Rockwell_IS7802_ISE>

Cognex Rockwell Quick Start Guide ISE 2023 11 01_7802.pdf

Cognex Rockwell Quick Start Guide ISVS 09012023_3805.pdf

Rockwell Automation	's EDS Wizard	—							
Change Graphic Image You can change the graphic image that is associated with a device.									
	Product Types								
Change icon	Vendor Specific Type								
	In-Sight 5000 Series	E							
	In-Sight 7000 Series								
	🦻 In-Sight 5700 Series	Ŧ							
	< Back Next >	Cancel							

Appendix 1

Flash for CompactLogix Processor

ControlFLASH	Catalog Number Control Control T788-L30 T788-L53 T788-L50 T788-L50 T788-L50 T788-L50 T788-L50 T788-L50 T788-L50 T788-L50
	I 75b/0186E I 75b/0

Fig. 16-40 Flash Software for A-B Processors

Before the CompactLogix processor will work, the processor must have its flash memory loaded. This process must be done before the processor can be attached or programmed in ladder logic. Out-of-the-box processors will not allow an up-load or download without the flash memory task. With a change in version of the processor, the memory must also be re-flashed. The program shown above, Control Flash, must be run. Control Flash is accessible from the Allen-Bradley website and can be downloaded from the internet.

Appendix 2

Table of standard set of ASCII characters:

Char	Dec	Oct	Hex	C]	har 	Dec	Oct	Hex		Char	Dec	Oct	Hex		Char	Dec	Oct	Hex
(nul)	0	0000	0x00	(:	sp)	32	0040	0x20	L	Ø	64	0100	0x40		`	96	0140	0x60
(soh)	1	0001	0x01	!		33	0041	0x21		A	65	0101	0x41		a	97	0141	0x61
(stx)	2	0002	0x02	"		34	0042	0x22	L	В	66	0102	0x42		b	98	0142	0x62
(etx)	3	0003	0x03	#		35	0043	0x23		С	67	0103	0x43		С	99	0143	0x63
(eot)	4	0004	0x04	\$		36	0044	0x24		D	68	0104	0x44		d	100	0144	0x64
(enq)	5	0005	0x05	9		37	0045	0x25		Е	69	0105	0x45		е	101	0145	0x65
(ack)	6	0006	0x06	6		38	0046	0x26		F	70	0106	0x46		f	102	0146	0x66
(bel)	7	0007	0x07	'		39	0047	0x27		G	71	0107	0x47		g	103	0147	0x67
(bs)	8	0010	0x08	(40	0050	0x28	L	Н	72	0110	0x48		h	104	0150	0x68
(ht)	9	0011	0x09)		41	0051	0x29		I	73	0111	0x49		i	105	0151	0x69
(nl)	10	0012	0x0a	*		42	0052	0x2a		J	74	0112	0x4a		j	106	0152	0x6a
(vt)	11	0013	0x0b	+		43	0053	0x2b	L	K	75	0113	0x4b		k	107	0153	0x6b
(np)	12	0014	0x0c	Ι,		44	0054	0x2c	L	L	76	0114	0x4c		1	108	0154	0x6c
(cr)	13	0015	0x0d	-		45	0055	0x2d		М	77	0115	0x4d		m	109	0155	0x6d
(so)	14	0016	0x0e	۰ ا		46	0056	0x2e		N	78	0116	0x4e		n	110	0156	0x6e
(si)	15	0017	0x0f	/		47	0057	0x2f		0	79	0117	0x4f		0	111	0157	0x6f
(dle)	16	0020	0x10	0		48	0060	0x30		P	80	0120	0x50		р	112	0160	0x70
(dc1)	17	0021	0x11	1		49	0061	0x31		Q	81	0121	0x51		q	113	0161	0x71
(dc2)	18	0022	0x12	2		50	0062	0x32		R	82	0122	0x52		r	114	0162	0x72
(dc3)	19	0023	0x13	3		51	0063	0x33		S	83	0123	0x53		S	115	0163	0x73
(dc4)	20	0024	0x14	4		52	0064	0x34		Т	84	0124	0x54		t	116	0164	0x74
(nak)	21	0025	0x15	5		53	0065	0x35		U	85	0125	0x55		u	117	0165	0x75
(syn)	22	0026	0x16	6		54	0066	0x36		V	86	0126	0x56		v	118	0166	0x76
(etb)	23	0027	0x17	7		55	0067	0x37		W	87	0127	0x57		W	119	0167	0x77
(can)	24	0030	0x18	8		56	0070	0x38		Х	88	0130	0x58		х	120	0170	0x78
(em)	25	0031	0x19	9		57	0071	0x39		Y	89	0131	0x59		У	121	0171	0x79
(sub)	26	0032	0x1a	:		58	0072	0x3a		Z	90	0132	0x5a		Z	122	0172	0x7a
(esc)	27	0033	0x1b	;		59	0073	0x3b	L	[91	0133	0x5b		{	123	0173	0x7b
(fs)	28	0034	0x1c	<		60	0074	0x3c	L	\	92	0134	0x5c		1	124	0174	0x7c
(gs)	29	0035	0x1d	=		61	0075	0x3d	L]	93	0135	0x5d		}	125	0175	0x7d
(rs)	30	0036	0x1e	>		62	0076	0x3e	L	^	94	0136	0x5e		~	126	0176	0x7e
(us)	31	0037	0x1f	?		63	0077	0x3f	L	_	95	0137	0x5f		(del)	127	0177	0x7f