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Chapter 17   Motion 
 

 

 

Introduction 
 

This chapter covers the topic of motion control through the PLC to stepper and servo motor 

devices.  It is not exhaustive in the sense that all motion subjects will be discussed but rather that 

the student will be given experiences with two of the more popular single axis control concepts, 

stepper and servo control.   

 

Stepper motors are used traditionally for low torque applications with no feedback.  The servo on 

the other hand can handle higher torque applications and requires a feedback device. 

 

 
Mechanical Conversions and Moving a Device 
 

A review of mechanical devices follows with some basic formulas for conversion of energy into 

rotating or linear motion, in this case, controlled motion.  Both applications in this chapter 

involve motion projects that are considered controlled motion.  The device does not need to 

coordinate with any other axis but must produce a controlled motion to specification.  In general, 

motors do not provide this level of control.  That is, dc motors and ac motors do not provide 

acceleration and constant speed control at a designated level repetitively.  They do not hold a 

position at zero speed unless there is no torque on the motor shaft. 

 

In general, motors have the following characteristics: 

 

For rotating objects: 

  

  

HP =
T ∗ N

5252
 

           Eq. 17.1 

 
where:   T = Torque (lbft) 

  N = Speed (rpm) 

 
For objects in linear motion: 

 

HP =
F ∗ V

33000
 

           Eq. 17.2 

 
where:   F = Force (lbs) 

  V = Velocity (ft/min) 

 
 

Objects such as pumps, fans, blowers and conveyors require HP ratings for running based on the 

physical characteristics of the device.  General formulas for torque and the relationship between 

torque and horse power are given in the following: 
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Torque Formulas: 

 

T =
HP ∗ 5252

N
 

           Eq. 17.3 

 

 
where       T = Torque(LbFt) 
        HP = Horsepower 
        N = Speed (rpm) 

 

 

T = F ∗ R        Eq. 17.4 

 

 
where       T = Torque(LbFt) 
        F = Force(Lbs) 
        R = Radius(Ft) 

 

Ta(accelerating) =
WK ∗ Change in RPM

308 ∗ t(sec)
 

                Eq. 17.5 

 

 
where       Ta =  Torque(LbFt) 
        WK =  Inertia at Motor Shaft (LbFt) 
        t =   Time to Accelerate (sec) 
 

Torque also has been defined in vector notation.  If a force F is not perpendicular to the rotating 

arm, the component perpendicular produces torque. 

 

 
 

 

A lever arm rotates with a force F is applied. The torque T = r × F has magnitude 

T = |r| |F⊥| = |r| |F| sinθ with direction out of the page. 

 

The cross product is an example of the right-hand rule in which the fingers curl in the direction 

of the force from the lever arm.  Then the thumb points in the direction of the torque.  This can 

be expressed in terms of: 

Lever Arm w/

radius r

Feff

Fig. 17.1
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T = rFsinθ   or  T=rF⊥    Eq. 17.6 

 

Torque is also related to angular momentum L via the following equation: 

 

T =
dL

dt
 

              Eq. 17.7 

 

where L is angular momentum and t is time. 

 

Also, for angular ration about a fixed axis: 

 

L = Iω            Eq. 17.8 

 

where I is moment of inertia and ω is the angular velocity.  

 

Also derived: 

T =
dL

dt
=  

d(Iω)

dt
= I

d(ω)

dt
= Iα 

                 Eq. 17.9 

 

The term α is the angular acceleration of the body with units rad/s2.  

 

These formulas are not inclusive and are not to be committed to memory or used except after 

checking with a manufacturer to verify the accuracy of the specific formula with their equipment.   

Formulas developed from these basic formulas exist to size the motor for an application.  Torque 

is especially valuable in sizing the servo or stepper motor applications.  While progressing 

through the following applications, remember that the proper sizing of the motor and motor 

controller are an integral part of the overall process of configuring the motion application.  

Depend on a particular manufacturer’s data sheets when applying the manufacturer’s equipment.  

They have done much more than the novice to correctly specify a motor or motor drive for an 

application (or at least hopefully so).   

 
 
Motion Control Products 

There is a decision to be made when specifying motion products.  A servo-drive, stepper motor 

or a variable frequency AC drive are the choice for most motion applications.  There is little 

reason to consider DC motors and their motor control.  

 

Regarding precision, a servo drive is usually better than an AC drive. A servo drive can control 

position or speed under extreme conditions and be very precise.  The servo drive requires higher 

performance from the electric motor than the AC drive. Servo drives and servo motors are inter-

dependent so insist that they be supplied from the same manufacturer.  On the other hand, if an 

AC drive is the better choice, it is easier to select the motor and controller from different 

suppliers.  In most applications, the AC drive is less expensive than the comparable servo drive.  

Speed control and torque control have historically been the chief advantages of dc motors and 

drives. However, newer technologies have allowed ac motors to provide these functions and ac 

motors do not have brushes that periodically need maintenance. Application and cost, therefore, 

become the deciding factors when choosing between AC control or servo/stepper control. 

 

http://en.wikipedia.org/wiki/Moment_of_inertia
http://en.wikipedia.org/wiki/Angular_velocity
http://en.wikipedia.org/wiki/Angular_acceleration


 Ch 17 Motion 4 

 

The stepper drive may be used instead of servo control for low torque applications.  If a position 

is to be held at zero speed, servos or steppers are the logical choice since torque drops to zero for 

AC induction motors at zero speed. 

 
The servo motor is specialized for high-response, high-precision positioning. As a motor capable 

of accurate rotation angle and speed control, it can be used for a variety of types of equipment. 

 

Closed Loop Control 

A rotation detector (encoder) is mounted on the motor and feeds the rotation position/speed of 

the motor shaft back to the driver. The driver calculates the error of the pulse signal or analog 

voltage (position command/speed command) from the controller and the feedback signal (current 

position/speed) and controls the motor rotation so the error becomes zero. The closed loop 

control method is achieved with a driver, motor and encoder, so the motor can carry out highly 

accurate positioning operations.  A PLC or other controller may generate a pulse (PTO) or analog 

signal to specify movement of the servo or stepper.  Pictured below are a PLC with pulse output 

and a servo controller.  The next figure shows the internal design of the drive.  The pulse input or 

analog input is used to provide velocity or position control for the drive.. 

The controller inputs the pulse signal. The speed and stop position are then controlled according 

to the pulse number. 

Controller

PLC Servo or 

Stepper
Velocity

Position with 

Servo

No feedback 

with Stepper

Pulse

 

Inverter

Current 

Feedback

Speed 

Adjust
Speed 

Command

 

Positioning 
 
Positioning is one of the most frequently used motion functions.  It is used when moving material 

from point A to point B along a pre-defined track, then on to point C and so on. 

 

Fig. 17-2 

Fig. 17-3 
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Positioning can also be divided into linear and roll-over positioning.  Roll-over positioning 

means position calculation within one revolution. 

 

 
Absolute Positioning 

 

Relative Positioning 

 

Synchronization 

Synchronization means that a follower drive reads speed and position reference from an external 

encoder or from the other drives.  The gear ratio can normally be adjusted to suit the application.  

Synchronization can be absolute or relative and works with linear/rollover axes. 

 

 
 

The follower drive starts to accelerate and continues to increase the speed to catch up with the 

speed of the master.  When areas A and B are equal, the follower has caught up. 

Fig. 17-4 

Fig. 17-5 

Fig. 17-6 
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Linear axis, absolute synchronization:  In this case, the reference is the total travel distance the 

master drive has to complete.  The follower drive will run at a higher speed for long enough to 

catch up with the position of the master drive. 

 

Rollover Axis 

Rollover axis mode is such that only one revolution is calculated and then calculation starts all 

over again. 

 

 
 
The illustration shows how the follower drive catches up with the master drive's position. 

Homing 
 
Homing is required at startup and if position is lost due to power loss of the system.  If an 

absolute encoder is used, the real position is known as soon as power comes back.  One way 

around is to use an auxiliary power supply. 

Whenever the system starts up, the home position must be determined.  If there is only a homing 

limit switch, the software checks the status of this switch.  I the switch is on, the load must move 

in a positive direction until the switch turns off.  This is the position defined as home. 

 

 
 

Fig. 17-7 

Fig. 17-8 

Fig. 17-9 
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Encoder Gear Functions 
 
Motion control applications usually need feedback.  The feedback can be connected to the motor, 

the load, or both. 

 

 
 

 
 
 

If there is no encoder on the load side, the load gear ratio has to be set up according to the gear 

ratio.  In the following set-up, an encoder is attached to both motor and load. 

 

 
 

How stepper or servo motors are used in applications is discussed next.  Several of these 

applications require coordination between multiple axes.  Some don’t.  As you look at the various 

applications in this next section, use the instructions discussed later in the chapter to program the 

motion of the drives in the automatic mode. 

  

Fig. 17-10  

Encoder attached to Load 

Fig. 17-11 

Encoder attached to Motor 

Fig. 17-12 
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The Lead to Linear Speed 
 

"We've used lead screws in our linear motion applications for years because they give us high 

stiffness, very acceptable backlash, and simplicity. As performance requirements increase, we're 

going to have problems with the lead screws not accelerating quickly enough to high speeds. It 

looks like we have some torsional issues as well. Can we overcome this with better sensing and 

control? Is it time to look to an electronic answer?" 

Performance Limitations 
As the market for linear actuators grows, so too will the demand for faster and longer actuators. 

When it comes to electrical actuators, lead screws have been the main go-to solution because 

they provide a high mechanical advantage in a compact envelope. Their position, speed and force 

can also be easily monitored with the application of a feedback device such as an encoder or a 

load cell. However, there are limitations to increased performance at longer strokes and higher 

speeds. 

One of the potential problems when seeking higher speeds is not being able to accelerate fast 

enough to achieve a given peak velocity. For example, if an application has an actuator with a 

really short stroke of 7 in. and it needs to accelerate to a peak velocity of 20 in./s, it will have 

only 3.5 in. of stroke in which to accelerate, given a typical motion profile. However, the actuator 

may only be capable of a maximum acceleration of 90 in./s². In actuality, for this actuator to 

reach the target speed, acceleration would need to be 114.3 in./s². 

 

The limiting factor is mass, as in Newton's second law, where force is equal to mass times 

acceleration. For rotation applications, the required torque would be equal to the polar moment of 

inertia times the angular acceleration. 

 

This means that, given the same torque, the more mass the lead screw or motor has, the slower 

the acceleration will be. The same applies to its inertia. One solution could be to install a larger 

motor with more torque, but it will have greater rotational inertia because its mass is farther from 

the axis of rotation. A better solution would be a coreless motor with high acceleration and low 

inertia. 
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Get in the Groove 

 

Figure 1: A magnetic-style linear encoder has tiny grooves etched in it that a read head can 

sense.Another option would be to eliminate the motor's inertia altogether by having it rotate in 

one direction, using a simple transmission to reverse its output. A screw with a higher lead could 

also be used. 

A problem inherent to long lead screws is that the angle of twist makes it behave like a torsional 

spring, storing and releasing energy with changes in angular momentum. This could lead to small 

errors in position. A method to correct for this would be to drive a little past the desired position 

to compensate for the position error. Another method would be to change the lead screw's 

geometry by switching to a larger-diameter hollow screw or preloading it in tension. 

The only electronic solution is to monitor what is happening and respond accordingly. Proper 

placement of these monitoring devices is critical, and the closer the monitoring is to the output, 

the better the response. Most linear actuators monitor the angular position of the lead screw, but 

this does not account for the error caused by lead screw twist, backlash and changes in length 

from compression or tension. 

It would be better to monitor the position with a linear-style encoder such as an optical 

transmissive, optical reflective or absolute magnetic style. The magnetic style is unique in that it 

has tiny grooves etched in it that a read head can sense (Figure 1). Magnetic-style encoders are 

robust and do not require recalibration. 

Andrew Oudhraj, 

mechanical engineer, 

Tolomatic, www.tolomatic.com 

The Cost of Speed 

Screws are, by design, mechanical reduction devices. They increase the torque output of the 

motor while reducing top end speed and acceleration. Speed and acceleration can be increased by 

changing the pitch; however, this will typically result in increased backlash and reduced 

accuracy. 

Travel length will also limit the top end speed because the resonant frequency of the screw 

decreases as the length increases. Going with direct-drive linear motor technology eliminates all 

these problems, and will result in improved accuracy and a longer operational lifetime. 

The higher speed and acceleration come at a cost. Linear feedback devices and linear motors tend 

to be more expensive than a rotary motor with a lead screw, and the technology requires a 

counterbalance system when used in a non-horizontal orientation. 

Ron Rekowski, 

director of product management, 

Aerotech, www.aerotech.com 

Consider the Lead 
As with most technical questions, I typically like to ask about 10 more clarifying questions 

before I make a recommendation. 

http://www.tolomatic.com/
http://www.aerotech.com/
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For starters, it would help to understand what acceleration you are trying to obtain. Under ideal 

conditions, a lead screw can accelerate at 20 m/s2. If you require accelerations that are 

significantly larger, you will likely need to look at alternate drive train technologies, such as a 

linear motor, which is capable of 50 m/s2 or greater. If an acceleration of 20 m/s2 would satisfy 

your application's requirements, please read on to see what might be limiting your current 

system's performance. 

There are several factors that will limit the acceleration that any screw is capable of. The most 

common limitation is the critical speed of the screw, also known as "whip." Critical speed is 

defined as the eccentric motion of the drive screw that occurs when the rotational velocity (rps) 

of a screw is exceeded. If the screw's critical speed is too low, then the ability to accelerate will 

also be limited. 

Fundamentally, a screw's critical speed is a function of two variables: the diameter and the length 

of the screw. 

 

where N is the critical speed, d is the screw diameter, and L is the length between bearing 

supports. Note that the formula assumes both ends of the screw are rigidly fixed. 

The critical speed and the screw diameter have a direct relationship, so an increase in diameter 

will increase the critical speed. However, the critical speed and the screw length have an inverse 

relationship, so the longer the screw is, the lower the critical speed will be (Figure 2). Knowing 

this, the acceleration capability can be improved by either increasing the screw diameter, 

shortening the screw length, or some combination of both. 

Another way to avoid critical speed issues, while increasing acceleration capability, is to change 

the lead of the screw you are using. The screw lead is the axial advance that is realized from one 

complete turn (360°) of the screw. For example, a 5 mm lead screw will have a linear translation 

of 5 mm per screw rotation. Increasing the lead of the screw will increase the speed and 

acceleration attainable without increasing the critical speed. Please note that by increasing the 

lead of the screw, you will sacrifice some mechanical advantage, and the torque required from 

the motor will increase as well. 

 
 

Size for Speed 
Figure 2: An increase in screw diameter increases critical speed, but an increase in screw length 

decreases critical speed. 

If critical speed is not the issue, then there could be an issue with the amount of torque available. 

If you consider the components that make up the total required thrust force (acceleration force, 

force of gravity, and force of friction), the force required to accelerate your load is the largest 

contributor. It is possible that the motor you are using does not have enough torque to reach the 

accelerations that you are trying to achieve. There are relatively simple calculations that can be 

done to see what your maximum required torque is. Once that is known, you can make sure that 

your motor is properly sized to reach your desired accelerations. 
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Your question also refers to a solution with "better sensing and control." You don't mention what 

your current setup is, but if you are using a stepper motor that is an open-loop system, switching 

to a closed-loop servo motor solution, which certainly could be considered to have better sensing 

and control capabilities, could help in a roundabout way. As I mentioned, acceleration is all 

about torque. When you look at the continuous torque of a similarly sized stepper motor and 

servo motor (NEMA 23, 3 stack, for example), you will find that their torque densities are 

relatively close. The servo motor, however, has a peak torque region that a typical stepper motor 

will not have. This peak torque region allows the motor to put out some multiple of the 

continuous torque (our motors are rated at 3x) for a specified amount of time (our motors are 

rated for roughly 10–30 s based on winding and frame size). The ability to increase the torque 

output for a short period of time allows a smaller servo motor to solve applications where the 

acceleration torque requirements exceed that of the continuous torque rating on the stepper. With 

all of that said, though, increasing the size of the stepper motor —  to, say, a NEMA 34 — could 

give you a continuous torque rating that is large enough to satisfy the application's acceleration 

torque requirements. 

If none of the above suggestions yields the acceleration performance you require, I would 

recommend that you start looking at alternate drive trains to meet your acceleration requirement. 

If high stiffness, low backlash and high accelerations are the goal, then we will likely be looking 

at a linear motor to meet your application's requirements. The linear motor does not have the 

mechanical limitations that screw solutions do. Additionally, if the linear motor solution you go 

with is a servo, you will gain the sensing and control functionality associated with a closed-loop 

system. The downside of this path is that a servo-driven linear motor system is typically more 

expensive than a rotary motor screw-driven solution. 

Mike Szesterniak, 

marketing manager — life sciences, 

Parker Hannifin, www.parker.com 

Minimize Compliance 

 

Often times in mechanical systems, the true culprit in poor system performance is at once 

obvious and overlooked. Minimizing the compliance between the rotary mover and the linear end 

effector can be the most effective way of improving the performance of a linear system. The use 

of belts, pulleys and couplings can result in unwanted compliance that can result in poor overall 

performance. Often, this is a bigger contributor to poor positioning performance than a poor 

inertia ratio. 

Reducing mechanical system compliance is an effective strategy to improving performance 

because it is addressing the root cause of the issue. The most effective way to eliminate 

compliance in a lead screw application is to use an integrated linear motor. Having the lead screw 

incorporated into the motor for an integrated solution eliminates the belts, pulleys and couplings 

that cause the compliance and leads to performance issues. 

Clark Hummel, 

application engineering manager, 

IMS Schneider Electric Motion USA, 

www.se.com 

  

http://www.parker.com/
https://www.se.com/us/en/
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Linear Motor Advantages 

Many applications in motion control require linear translation of rotary motion. Belts, ball 

screws, and rack and pinions can resolve some of these issues, but eventually, as performance 

requirements increase in both accuracy and repeatability, a different linear technology should be 

considered. Often the considerations can be of higher-quality components — stiffer belts, lower-

backlash gears, and different ball screw mounting can help, but these are not free. You must 

account not only for the higher cost of better components, but also increased friction from pre-

load increases. The critical speed of lead screws can result in limitations of top speed, 

acceleration and moving mass sometimes well below requirements. 

Alternatives exist, however. Linear motors have existed for many years. Advantages of linear 

motors come from the direct attachment of the load to the motor without any translational 

devices. When the backlash, compliance and other errors from the translational components are 

eliminated, increases in the performance can be achieved. 

Feedback is another advantage of using a linear motor. When looking at most rotary applications, 

using the encoder on the motor for positioning results in the feedback being located at least two 

mechanical components away from the end effector. With a direct-drive linear (DDL) solution, 

the feedback for the motor is the same as one for the load quite close to the end effector. The 

result is a higher-bandwidth control (less error during motion), higher repeatability and higher 

accuracy. 

Linear motors have found their way in the machining, electronic assembly and packaging 

industries. For example, a water-jet cutting machine can be operated with higher accelerations 

and throughput using linear motors. When you eliminate a translational device, you eliminate its 

inherent degradations of backlash, friction, accuracy and compliance. When this is done, you 

have the ability to operate with higher bandwidth, accelerations, speed and accuracy. 

Lee Stephens,  

senior motion control engineer, 

Kollmorgen, www.kollmorgen.com 

More on the Linear Front 

Conventional solutions like lead screws for turning rotary movements from the motor into linear 

machine movements have some advantages. Such machine solutions are easy to develop and 

fairly easy to integrate into a machine. Complete drive-motor-lead screw solutions have existed 

on the market for a long time. Various drive functions can compensate for disadvantages like 

backlash. 

But when it comes to highest position and traversing accuracies, extreme acceleration demands 

or lifetime/maintenance, the trend is clearly going to direct drive technology with linear motors. 

Linear motors are directly integrated into the machine without additional mechanical devices to 

convert a rotary movement to a linear movement. 

Together with a linear feedback device, there are no longer the disadvantages of backlash or 

maximum torsion/speed. The only limiting accuracy factor is the accuracy of the linear encoder 

(in the micron range); and acceleration is limited by the available maximum force of the motor. 

Several motors can be used in parallel to multiply the available force to get highest accelerations. 

http://www.kollmorgen.com/
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It might be challenging to develop a completely new design using rail/sliding guides, linear 

motors and linear encoders to increase the machine accuracy and productivity, but some 

companies offer complete solutions for rail guides/linear motor/linear encoder to shorten the 

machine design phase. 

Harald Poesch,  

product manager, motion control motors, 

Siemens Industry, www.siemens.com 

Straightforward 

The answer is simple: Replace the lead screw with a linear motor. Linear motors are capable of 

accelerations up to 20 g and speeds up to 5m/s. System performance is increased by providing a 

direct-driven payload and position feedback directly at the payload. The direct connection to the 

payload increases system stiffness and eliminates any potential compliance, backlash and friction 

associated with the rotary-to-linear transmission components. The direct position feedback also 

allows for increased positioning accuracy. 

Paul Zajac,  

product engineer, 

Yaskawa, www.yaskawa.com 

High Speeds or Heavy Loads 
Without knowing the magnitude of the specifications, it is difficult to say whether a lead screw is 

capable of performing well in a particular application. However, lead screws are suitable for high 

accelerations because they do not suffer from ball skidding problems associated with ball screws. 

The limiting factor with a lead screw nut is frictional wear and heating created by the sliding 

surfaces of the thread. This is known as the pressure and velocity (PV) limit. Various nut 

materials have different limiting PV values. These limits should not be exceeded during 

operation. A lead screw can thus move at high speed under light loads or move at slow speeds 

under heavy loads, but it will have difficulty doing both at the same time. 

Torsional stiffness is a factor of the screw and nut geometry and material properties. To improve 

performance, the screw diameter-to-length ratio should be as large as practical. Theoretically, a 

large-diameter hollow screw manufactured from stiff but light material would perform best. The 

benefit of this construction in most applications would not justify the cost. Solid stainless steel 

screw construction offers a good performance-to-cost ratio. 

Robert Lipsett, 

engineering manager, Thomson BSA 

Thomson Industries, www.thomsonlinear.com 

Monitor Conditions 
When you've reached the limits of lead-screw performance, linear motors can be considered a 

possible solution. They have excellent acceleration, high force density, very smooth operation 

and extremely accurate positioning. 

Linear servo motors can achieve acceleration of 30 g, speeds up to 10 m/s, and extremely 

accurate precision. There are also linear motors available that feature an ironless core, 

eliminating cogging. As a result, this permits high control loop gains, yielding even better 

positioning accuracy. A highly dynamic control system is useless without highly capable control 

http://www.siemens.com/
http://www.yaskawa.com/
http://www.thomsonlinear.com/
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software. From the Beckhoff standpoint, motion systems are best programmed via a centralized, 

PC-based software platform. 

Also, machine builders are utilizing the considerable bandwidth of industrial Ethernet systems 

for machine-improvement solutions in addition to traditional I/O and motion control. For 

example, it's possible to implement condition monitoring I/O that can measure machine 

performance, mechanical wear and tear, energy consumption, heat, vibration and more. Even if 

you're unable to eliminate all the leadscrews in the application, I/O terminals with integrated 

functionality can help determine if mechanical components are in need of repair or replacement. 

Simultaneously, downtime can be reduced by understanding when conditions, such as 

degradation of mechanical assemblies, hint of a possible developing failure. 

This combination of linear servo motors, PC-based control platforms, industrial Ethernet 

communication and I/O terminals for measurement functionality could be an ideal fit for your 

application, depending on your specific requirements and goals. 

Matt Lecheler, 

motion specialist, 

Beckhoff Automation, www.beckhoff.com 

 
Applications: Constant Gap Maintaining 
 

Drive A

Drive B

Drive C

Photo-eye

 
 

This conveyor has a feed belt (A), an adjusting belt (B) and a receiving belt (C).  The boxes 

arrive with random spacing.  Each drive receives the line speed reference from the encoder.  The 

sensor follows the presence of the boxes.  When the sensor detects a box, it follows the top edge 

of the box until length of the box is determined.  The dropping edge is seen by the sensor and the 

distance to the next rising edge is the actual gap between boxes.  This is compared to the required 

gap and the software makes the necessary correction by altering the speed of the adjusting belt.  

Each conveyor can be stopped to control the spacing of the boxes.  If the next box does not arrive 

in time to maintain spacing, Drive C may be stopped or slowed to a near-zero speed.  This 

control provides precise spacing between boxes.   

 

A simpler control would require a minimum spacing between boxes.  In this scenario, if boxes 

arrive spaced greater than the desired spacing, the boxes may continue uninterrupted.  The 

spacing may increase, just never falling below a minimum spacing. 

 

Fig. 17-13 

http://www.beckhoff.com/
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Applications: Cut to Length 
 

There are many methods to cut different materials to the required length.  Here are some 

examples.  In applications where the line is stopped to make the cut, both axes use the 

positioning feature of the drive.  The drive that is fed the material first runs a determined number 

of revolutions corresponding to the required length of the material.  When the target position has 

been reached, the drive signals the PLC that it is at the required position. The cutting motor runs 

the required number of revolutions to execute the guillotine operation.  Its drive then gives the 

feed motor permission to again run.  As in other applications, the dynamic performance 

requirements of the system must guide the motor selection. 

Pinch Roll Drive

Slitter Drive

Constant Size 
Blank

 
Applications: Rotary Knife 

Pinch Roll Drive

Rotary Knife

Constant Size 
Blank

 
 

A rotary knife is used to cut material into required length or cut off of unwanted material.  The 

simplest rotary knives are synchronized to the line speed using an electrical gear.  However, in 

many applications, this will not give satisfactory performance. 

 

There are a number of considerations to take into account for rotary knife operations.  First, if the 

cutting length varies, it must be decided whether the tool should be at standstill or move 

continuously.  Secondly, when the tool hits the material, it will in most cases, need to have the 

same speed as the line.  Thirdly, it is important to determine where to place the cut. 

For more sophisticated applications, the knife must form a motion profile during the cycle.  

When the knife is at a standstill and a cut command is given, it has to accelerate to reach the 

position and then decelerate to cutting speed.  After cutting, the tool should return to the home 

position as fast as possible to be ready for the next cut. 

In some cases, the tool may not be able to stop but has to start another cut "on the fly".  This 

means using two profiles that are added together.  CAM profiles with flexible parameter settings 

are normally used in these situations. 

 

Fig. 17-14 

Fig. 17-15 
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Applications: Cyclic Correction, Packing Application 

Sensor for Hat

Hat Conveyor

Sensor for Box

Box Conveyor

 

This operation may be performed with both conveyors constantly moving or with the box 

conveyor stopped while the hat conveyor moves to drop the hat in the box.  Boxes and hats 

cannot be assumed to be equidistant from each other in either case. 

 

 

 

 

Applications: Flying Shear, Angled 
 

Encoder 
reading line 

speed Saw Motor Diagonal Cross-
Cutter

 
 

A flying shear is a cutting machine that allows constant material flow during cutting.  It is based 

on right-angle trigonometry.  When the speed of the line and the speed of the saw are known, the 

angle of the cut can be calculated and adjusted accordingly.  In this illustration, the angle means 

that the blade moves in the direction of the line when the saw operates.  Saw speed control is not 

critical; even an ac single phase motor can be used.   

 

The cutting point can be indicated by a mark on the material or through rotational measurement 

by encoder.  Typically, synchronizing or CAM functions are used.  This setup is often used in 

applications where the material must be cut by a saw rather than a knife/guillotine.  A similar 

application is found in the diagonal cross-scoring of glass in the flat glass manufacturing process. 

 

Fig. 17-16 

Fig. 17-17 
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Applications: Plywood Machine 
 

Log Drive

Log Drive

Knife Drive

Constant 
Speed 

Conveyor

 
 

 

This machine peels plywood from a log.  The two log drive motors turn and the knife cuts a 

constant thickness of wood from the log.  The speed of the conveyor is assumed to be constant.  

The speed of the log drives must increase in speed as the log diameter decreases.  The knife 

speed must increase as well to keep the thickness constant.   

Applications: Material Filling 
 

Sensor for 
Leading Edge 

of Box

Conveyor 
Motor

Possible Load 
Cell under 

Conveyor to 
Weigh Material

Material Fill 
Motor

 
 

 
This application is very similar to the one described above with the Hat to Box.  Similar 

configurations are used to fill bottles, boxes, and other containers.  Usually an inspection station 

is located downstream to validate the fill.   

 
 
Applications: Slitter 

Fig. 17-18 

Fig. 17-19 
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Slitter Motor 
Positioners

 
 

This illustration describes the cutting and take-up of a winder machine.  Each tool is individually 

connected to the screw.  When a tool is engaged, the position of each individual slitter is set. 

 

 
Applications: Picking and Stacking 
 

 

This application uses distributed control in three axes.  The main controller gives commands to 

each axis to make the material flow of the plates occur. The plates are picked up with the picking 

tool using position control.  The plate, still in position control, is moved forward to the stacking 

location.  Finally the plate is positioned down to build up the stack. The plates feeding conveyor 

can run in continuous speed or position control mode. 

 
 
 

Fig. 17-20 
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Vertical Axis 
Positioner 

Motor

Feed Conveyor 
Motor

Horizontal Axis 
Positioner 

Motor

Stack of Parts

 
 

This action is possible with either a robot or a frame with servo controllers as shown here.  Either 

a robot or the servos can accomplish the same function.   

 

 

 

 

 

 

 

 

 

 

  

Fig. 17-21 
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Applications: Warehouse Automation 
 

 
 

Warehouse automation applications can be configured very cost-effectively using the PLC.  The 

control system is part of the full factory automation system and knows where the pallets need to 

go.   

 

Applications: Winding 
 

Take-up Motor

Guide Worm 
Gear

 
 

 

This application pictured here is of traverse control.  Traverse control is an electronic gear 

function where the gear ratio is setup so that the traverse linear movement is locked to the build-

up of the material.  The illustration does not show the limit switches that typically control the 

turning point action. 

Fig. 17-22 

Fig. 17-23 
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Winding and unwinding are well-established applications and there are many dedicated software 

packages commercially available. 

 

 

Applications: Wrapping 
 
 

Table Rotate 
Motor

Wrapping 
Motor

 
 

This illustration shows a simple packaging application.  The electrical gear is formed between 

two motors. 

 
 
 
 
 
 
 
 
 

Fig. 17-24 
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Applications: Grinding 
 

Manual 
Grinder

The X, Y and Z 
Axes may be 

turned 
automatically 

as well as 
manually

Grinder Spindle 
Motor Runs 
Constantly

 

 

This application shows a manual grinder.  The same grinder could be automated by adding servo 

motors to the X, Y and Z axes.  The grinder would then be able to remove metal in an automated 

process. The grinder motor itself does not necessarily need to be controlled from a servo or 

stepper motor.  However, the axes that are used for position control must be configured with 

these motors and appropriate drive electronics. 

  

Fig. 17-25 
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Mechanical Components 
 

Almost all mechanical motion manufacturers have a website with instructions for calculating the 

size of their equipment for various operations.  One such company is Nook Industries of 

Cleveland, Ohio.  The following is from one of their manuals: 

 

Manual Lathe Application Description 

 

Given the following requirements, select an acme screw for an application which uses precision 

Acme screw systems for an automatic part feeder on a machine. 

 
Step 1: Determine Specifications 

 
 5,000 lb load supported and guided on linear bearings moving horizontally 

 
 36" travel 

 
 Complete 36" travel in 10 seconds 

 
 Bearing Support Undecided 

 
 Positioning accuracy +/- ¼" 

 
Step 2: Analysis 

 
Find the Axial Force Required to Move the Load 
 
The axial force is determined by multiplying the coefficient of friction of the guidance system by the 
load. 
 

 F = μ × N (μ = Coefficient of Friction of the guidance system) 
 
Using Nook linear bearings in this application we can determine: 
 

 μ = Coefficient of Friction for lubricated Nook Linear Bearings = .0013 
 

 N = Load = 5000 pounds 
 

 F = μ × N 
 

 F = .0013 × 5000 lb 
 

 F = 6.5 lb 
 
 

Therefore, we can definitively state that the axial force the screw must produce to move the load is 6.5 
lb. 

 

 and so it goes… 
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The purpose of this example is not to convince you to buy a particular product but to show the 

methods used to size a simple device such as a ball screw for a lathe.  While it is not expected 

that you as a PLC programmer will need to size a ball screw but you may and if you do, these are 

the places to look and the procedures to follow.  

 

The study of motion control requires many parts and the above discussions are just a few.  First is 

the understanding of angular or rotating mechanical motion.  Definitions for horsepower, force, 

velocity, and torque are some of the equations needed.  Then there is the requirement to size the 

mechanical equipment.  While we are not going to size the equipment in this chapter, know that 

the steps necessary to properly size the equipment are available.  Whether you are going to build 

a complete machine or only program the motion portion, the concepts of mechanical motion and 

the rules for sizing components will be necessary for you to understand. 

 

 

 

Faceplates for Motion Equipment 
 

We next look at the control of an axis or multiple axes of motion from the point of the operator.  

What specifically will we allow the operator to do?   

 

The machine will dictate much of the answer but we should explore what is a standard faceplate 

for motion control.  The figures below are of some typical multi-axis machine controls that are 

found on the plant floor.  The faceplate may be entirely created on a computer screen and have 

only a few external buttons or may be totally created with hard-wired buttons.  For sake of 

simplicity, the lab experiences in this chapter will be created totally with faceplates. 

 

The one button that is always programmed with hard wire is the E-Stop.  The figure below has 

the E-Stop pictured on the screen but this is never done with equipment that can hurt.  We will 

allow the E-Stop button to be programmed on the faceplate only because the equipment does not 

have the torque or capability to hurt an individual. 

 

A sample of a two different systems below in Figure 17-25 and later in Figures 17-26a,b show 

some common elements.   

 

There should be an on-off enable of some kind for each axis.  The enable switch usually is not on 

the face of the panel but there usually one, either hard-wired or set in software. 

 

There should be an on-off button.  This button or buttons shows the present state of the machine.  

There may be a home switch that either directs the machine to find a hard-wired home position or 

set the present position as the home position.  There should be a jog button that manually 

increments each axis in a manner that slowly moves the axis as long as the button is held down.  

The jog button(s) should allow the machine to turn either in the forward direction or the reverse.  

These buttons should be active only in the manual mode. 

 

There should be an auto-manual switch.  In auto, there is the ability to run a sequence of 

automated moves that would make a part or help in the making of a product.  It may have several 

components such as a move forward, dwell, move reverse, or other sequence of selected moves.   

There should be a button to run the automatic sequence as well as stop the sequence.  There 

should also be a button to halt or pause the sequence and resume the sequence to completion.     
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    Fig. 17-26b  HMI Panel for Series-9 A-B Multi-Axis Motion System (rt side) 
 

 

Notice in the HMI above Fig 17-26a, the terms such as spindle.  The spindle is a motor that turns 

an axis that may or may not be controlled for position.  Spindles may reference a lathe in which 

the motor just turns very fast or a motor that may turn very fast but also be used for threading, a 

controlled action.  Also, notice the very large emergency stop and the e-stop reset just above the 

E-stop button. 

  

Fig. 17-26a  

HMI Screen for   

X-Y Axis 

Machine 
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   Fig. 17-26c  HMI Panel for Series-9 A-B Multi-Axis Motion System (left side) 

 

Notice the above figure controls three axes, X, Y, and Z.  Any axis can be jogged or moved in an 

auto, MDI or manual mode.   

 

These HMI screens may provide more information and go further than a simple single-axis 

motion HMI for classroom use.  They do, however, include most of the motion functions 

required for a real milling machine or lathe in industry.  If the task was to program a factory-floor 

motion application, most of the functions on these panels would at least need to be considered 

prior to commissioning. 

 

The designs of  motion controls below are for Siemens and Allen-Bradley single-axis machines.  

The processors and motion equipment do not support multiple axis machines that are 

coordinated.  The A-B equipment does support multi-axis coordinated machines but not with the 

drive equipment provided.  Both Siemens and Allen-Bradley provide both single and multiple 

axis controls for machine tool applications.  The costs rise as accuracy and coordination between 

axes increase.  
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Siemens Single Axis Stepper Control 
 

The L6208 chip is designed specifically for the control of stepper motors.  It may be used in a 

bread-board application or in conjunction with external components in a pre-packaged circuit 

board.  We will use it in conjunction with a pre-packaged circuit board. 

 

 

The external clock input is shown below.  The Siemens S7-1200 outputs a waveform (PTO) 

switched between 0-24 VDC that creates this waveform. 

 

Other logic pins such as CW/CCW, CONTROL, RESET, HALF/FULL are similar to the CLOCK signal in 

that they are CMOS/TTL compatible.   

The EN pin is a bidirectional input and must be pulled less than a trigger value to turn the 

PowerDMOS off.  This value is attained with a 2.2K resistor at 5 Vdc.   

The EVAL6208N board was used for this application.  It is pictured below.  It was powered with 

a drive voltage of 12Vdc and a signal voltage of 5Vdc.  The board seemed to do a good job of 

powering the NIDEC H17ET120434 stepper motor.  The motor also has been successfully powered 

from an Arduino stepper controller card.  For purposes of this lab, however, the decision was 

made to use the PLC along with an interface card and the stepper to turn a dial or simple bolt 

pointer.  Also in the project is a HMI used to set the parameters of the rotation such as speed, 

number of turns and direction. 

From oscillatory circuit 

(the PLC in our case)

To Clock Input (Stepping 

Sequence Generation)

Fig. 17-27 

Fig. 17-28 
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The board used is powered by 12 V and 5 V or by 12 VDC only with 5 VDC converted on the 

board.  We will use it in the latter mode with only the 12 VDC power to the board.  Signals for 

stepper pulse and direction will be included through the ribbon connector at the left of the board.  

Pin-outs for the ribbon cable include all signal levels for the board but only the two (direction 

and pulse) are used. 

 

The stepper purchased was the one pictured below from Hurst (Nidec).   

 

 

  

Stepper Motor 

Used in Lab

Fig. 17-30a 

Fig. 17-29 
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Above is shown the stepper motor and Eval board with interface connections.   

 

The following two modules have changed from green to gray but are the same modules as those 

shown in the EVAL board design.  The first is a relay board and is used to determine direction of 

the motor.  A closed relay will allow the motor to rotate in one direction while an open relay 

allows the motor to rotate in the opposite direction. 

 

 
 

The optocoupler is designed to step the voltage down from 24 VDC to 5 VDC as required by the 

EVAL board for the pulse input driving the stepper.  The output from the PLC is 24 VDC.  While 

cost of these modules was over $100, the price has dropped to $30-$50 per module. 

 

 

Fig. 17-30b 

Fig. 17-30c 

Fig. 17-30d 
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The lab of Fig. 17-30c is an upgrade to the lab above.  It is much less expensive and uses only a 

single power supply (24 VDC). These components were made for the Arduino and 3D Printer.  

Distributors such as the Robot Shop or Amazon have these components and they are very 

economical.  The signal interfaces for the EVAL board above cost more by far than the entire lab 

below. 

 

   
 

 
 

 

From the manual for the stepper drive, we find the following wiring diagram which shows the 

wiring between the PLC and the stepper drive: 

 

Fig. 17-30e 

Fig. 17-30f 
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Wiring from the PLC to the Stepper Controller using the diagram above: 

 
Pulse wiring from MCU:  Q0/0     from Siemens PLC 
Dir wiring from MCU   Q0.1     from Siemens PLC 
EN wiring from MCU   Q0.2    from Siemens PLC 
GND wiring from MCU  M Terminal  from Siemens PLC (0 V) 
VCC on drive      L Terminal   from Siemens PLC (24 V) 

 

Resistor value between PLC output and stepper drive input: 

 

L

M

Q0.0

Q0.1

Q0.2

Q0.3

2 k 
 typ

EN-

EN+

DIR-

Pulse

Direction

Enable

Not used

DIR+

PUL-

PUL+

B-

B+

A-

A+

GND

VCC

Direct to Power Supply – 
Do not go through Siemens L-M Feed

red

blue

yellow

green

24 V +

24 V -

To Stepper

Wiring on Output 
Terminals of Siemens 1214 
or 1215 DCDCDC PLC

Wiring on 
Microstep 
Driver Module

 

Fig. 17-30g 

Fig. 17-30h 
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Programming the Stepper 

 

The Siemens PLC is used to generate the pulses controlling the stepper motor through one of the 

two systems listed above.  Software configuration is described in this section.  Use this 

application to successfully start and control the stepper motor. 

 
 

 
 

Follow the steps below in the order given to use motion control with the CPU S7-1200. The 

subject will be broadly divided into the following steps.  The text will only cover portions of 

these: 

 

1.  Add technological object Axis  

2.  Working with the configuration dialog  

3.  Download to CPU 

4.  Function test of the axis in the commissioning window 

5.  Programming  

6.  Diagnostics of the axis control 

 

Fig. 17-31 

 

The Project Tree for a single axis PTO 

drive.  There are a number of blocks 

programmed in the example which allow 

the user to experiment with the various 

blocks using the inputs from the selector 

switches.  The selector switches are 

useful but must be supplemented by the 

HMI panel in order to provide a 

complete project. 

 

The various function and data blocks as 

well as tags are created in the steps 

following. 
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The axis program given already has commissioned the drive and has several programming blocks 

present to test the operation of the stepper.  The following gives the list of programming blocks 

available plus the Command Table blocks.  The Command Table block allows the user to enter a 

number of commands in a sequence for execution as a block. 

 

 

 
  

Fig. 17-32a 

The Project Tree continued 
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Homing modes: 

 

Active homing 

 

In active homing mode, the motion control instruction "MC_Home" performs the required 

reference point approach. When the homing switch is detected, the axis is homed according to 

the configuration. Active traversing motions are aborted. 

 

Passive homing 

 

During passive homing, the motion control instruction "MC_Home" does not carry out any 

homing motion. The traversing motion required for this step must be implemented by the user via 

other motion control instructions. When the homing switch is detected, the axis is homed 

according to the configuration. Active traversing motions are not aborted upon start of passive 

homing. 

 

Direct homing absolute 

 

The axis position is set regardless of the homing switch. Active traversing motions are not 

aborted. The value of input parameter "Position" of motion control instruction "MC_Home" is set 

immediately as the reference point of the axis. 

 

Direct homing relative 

 

The axis position is set regardless of the homing switch. Active traversing motions are not 

aborted. The following statement applies to the axis position after homing: 

New axis position = current axis position + value of parameter "Position" of instruction 

"MC_Home".  
 

 

Overview of the Motion Control Statements: 

 

You control the axis with the user program using motion control instructions.  The instructions 

start Motion Control jobs that execute the desired functions. 

 

The status of the motion control jobs and any errors that occur during their execution can be 

obtained from the output parameters of the motion control instructions.  The following Motion 

Control instructions are available: 

 

MC_Power:      Enable, disable axis 
MC_Reset:      Acknowledge error 
MC_Home:      Home axes, set home position 
MC_Halt:      Halt axis 
MC_MoveAbsolute:   Absolute positioning of axes 
MC_MoveRelative:   Relative positioning of axes 
MC_MoveVelocity:   Move axes at preset rotational speed 
MC_Moveog:     Move axes in jogging mode 
MC_CommandTable:  Run axis jobs as movement sequence 
MC_ChangeDynamic:  Changing the dynamic settings for the axis 
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Creating a user program 

 
Proceed as follows to create the user program: 

 

1. In the project tree, double-click your code block (the code block must be called in the 

cyclic program).  The code block is opened in the programming editor and all available 

instructions are displayed. 

 

2. Open the “Technology” category and the “Motion Control” and “S7-1200 Motion 

Control” folders. 

 

3. Use a drag-and-drop operation to move the “MC_Power” instruction to the desired 

network of the code block.  The dialog box for defining the instance DB opens. 

 

4. In the next dialog box, select from the following alternatives: 

Single instance 

Click “Single instance” and select whether you want to define the name and number of 

the instance DB automically or manually. 

Multi-instance 

Click “Multi-instance” and select whether you want to define the name of the multi-

instance automatically or manually. 

 

5. Click “ok”.  The motion control instruction “MC_Power” is inserted into the network: 

 

 
Parameters marked with “<???>” must be initialized; all other parameters are assigned 

default values.  Parameters displayed in black are required for use of the motion control 

instruction. 

 

6. Select technology object in the project tree and drag-and-drop it on <???>. 

 

 
Following selection of the technology object data block, the stethoscope button is 

available.  Click the stethoscope if you want to open the diagnostics dialog for the 

technology object. 

 

  

Fig. 17-32b 

Fig. 17-32c 
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Click the toolbox icon if you want to open the configuration view of the technology 

object: 

 

 
 

Click the toolbox icon if you want to open the configuration view of the technology 

object.  Click the arrow down icon to view additional parameters of the motion control 

instruction.   

 

7. Add your choice of motion control instructions from steps 3 to 6 above. 

 
Programming notes:   

 

When creating your user program, note the following: 

 

 Cyclic call of utilized motion control instructions.  The current status of command 

execution is available via the output parameters of the motion control instruction.  The 

status is updated with every call of the motion control instruction.  Therefore, make sure 

that the utilized motion control instructions are called cyclically. 

 Transfer of parameter values of a motion control instruction.  The parameter values 

pending for the input parameters are transferred with a positive edge at input parameter 

“execute” when the block is called.  The motion control command is started with these 

parameter values.  Parameter values that are subsequently changed for the motion control 

instruction are transferred until the next start of the motion control command.  Exceptions 

to this are input parameters ”StopMode” of motion control instruction “MC_Power” and 

“Velocity” of motion control instruction “MC_MoveJog”.  A change in the input 

parameter is also applied when “Enable” = true or “JogForward’ and “JogBackward”…  

 Programming under consideration of the status information.  In a stepwise execution of 

motion control jobs, make sure to wait for the active command to finish before starting a 

new command.  Use the status messages of the motion control instruction and the 

“StatusBits” tag of the technology object to check for completion of the active command.  

 

In the example below, observe the indicated sequence.  Failure to observe the sequence 

will display an axis or command error. 

 

- Axis enable with motion control instruction “MC_Power”   

You must enable the axis before it can take on motion jobs.  Use an AND operation 

of tag <Axis name>.StatusBits.Enable=TRUE with output parameter Status = TRUE 

of motion control instruction “MC_Power” to verify that the axis is enabled. 

- Acknowledge error with motion control instruction “MC_Reset”.  Prior to starting a 

motion control command, errors requiring acknowledgement must be acknowledged 

with “MC_Reset”.  Eliminate the cause of the error and acknowledge the error with 

motion control instruction “MC_Reset”.  Verify that the error has been successfully 

acknowledged before initiating a new command.  For this purpose, use an AND 

operation of tag <Axis name>.StatusBits.Error = FALSE with output parameter Done 

= TRUE of motion control instruction “MC_Reset”. 

Fig. 17-32d 
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- Home axis with motion control instruction “MC_Home” 

Before you can start an MC_MoveAbsolute command, the axis must be homed.  Use 

an AND operation of tag <Axis name>.StatusBits.HomingDone= TRUE with output 

parameter Done = TRUE of motion control instruction “MC_Home” to verify that 

the axis has been homed.  

 

 Override of motion control command processing 

Motion control jobs for moving an axis can also be executed as overriding jobs.  If a new 

motion control command is started for an axis while another motion control command is 

active, the active command is overridden by the new command before the existing 

command is completely executed.  The overridden command signals this using 

CommandAborted = TRUE in the motion control instruction.  It is possible to override an 

active MC_MoveRelative command with a MC_MoveAbsolute command. 

 Avoiding multiple use of the same instance 

All relevant information of a motion control command is stored in its instance.  Do not 

start a new command using this instance, if you want to track the status of the current 

command.  Use different instances if you want to track the commands separately.  If the 

same instance is used for multiple motion control commands, the status and error 

information of the individual commands will overwrite each other. 

 Call of motion control instructions in different priority classes (run levels).  Motion 

control instructions with the same instance may not be called in different priority classes 

without interlocking.  To learn how to call locked motion control instructions, refer to 

“Tracking commands from higher priority classes”. 

 

Monitoring active commands 

 

There are three groups for tracking active motion control jobs, those with output parameter 

“Done”, instruction MC_MoveVelocity and instruction MC_MoveJog.  
 

See the results of the instructions’ timing diagram with abort or error conditions. The WinCC 

book at about pg. 4000 shows these results. 

 

Create a Motion Technology Object:   

Add new object> Select Axis> Axis_1 (define the axis) 
 

 
 

Fig. 17-33 
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Define the mechanical parameters of the machine: 

Steps per revolution 

Distance per Motor Revolution 

Invert Direction Signal 

 
 

 
 

 

Leave hardware limits not enabled 

 

 
 

 

  

Fig. 17-34 

Fig. 17-35 
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Determine the acceleration/deceleration for the axis: 

Select units for pulses/s 

Set maximum Velocity 

Set Start/Stop Velocity 

 
 

 
 

Set Ramp Up/Ramp Down Time 

Set Emergency Ramp Time 

Determine the Emergency Decel Time for immediate stops: 

 
 

 
 

Fig. 17-36 

Fig. 17-37 
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Emergency Stop Deceleration 

Homing Configuration (leave open) 

 

 

 
 

 

 

 

 
 

 

 

Fig. 17-38 

Fig. 17-39 



 Ch 17 Motion 41 

 

 
 

 

(The Technology Object for Motion configuration is complete.) 

 

Motion transition with preceding velocity jobs 

 

Transition from "Complete command" to "Blend motion" 

 

The charts below show the transition between movements in various different transition modes in 

the "Next step" column: 

 

Fig. 17-40 
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Next begin commissioning: 

Manually move the axis to verify operation 

1 - Select manual control 

2 - Enable axis 

3 - Select action (jog) 

4 - Set Home Position Offset 

5 - Set Accel Rate 

6 - Make it go 

 

 

 
 

 

 

 

Fig. 17-41 

Fig. 17-42 
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This figure shows Movement Status and Dynamic Settings   Fig 17-43  
 

 
 

       This figure shows a Command Table        Fig. 17-44 
 

 

 
 

This figure shows the motion and position of the movements of the Command Table Fig. 17-45 
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Fig. 17-46 

Fig. 17-47 
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Fig. 17-48 

Instructions used in the Motion 

Application to control the axis 

Fig. 17-49a 

Instructions used in the Motion 

Application Help Screens 
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The following instructions are tied to inputs from the switched inputs directly wired to the PLC.  

Each input executes a specific action.  For instance, I0.0, the first input, executes a drive reset 

instruction per Fig. 17-50 below 
 

 
 

 

The Reset Instruction is used to reset the axis.  It is referenced to I0.0 which is the first input on 

the switch panel on top of the PLC.  Use this switch input to reset the axis. 
 

Fig. 17-49b 

Instructions used in the Motion 

Application Help Screens 

Fig. 17-50 

Reset Instruction 
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The Power Instruction is used to enable the axis.  It is referenced to I0.1 which is the second input 

on the switch panel on top of the PLC.  Use this switch input to enable the axis. 
 

 
 

The Home Instruction is used to home the axis.  It is referenced to I0.2 which is the third input on 

the switch panel on top of the PLC.  If there are no home limit switches, the present position is 

used as the home position and absolute moves can be entered following the Home block being 

executed 

 

 
 

The Move Velocity Instruction is used to set the velocity of the axis.  It is referenced to I0.3. 
 

Fig. 17-51 

Axis Power 

(Enable) 

Fig. 17-52 

Axis Home 

Fig. 17-53 

Set Velocity 
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The Move Relative Instruction is used to trigger a relative move of the axis.  It is referenced to 
I0.4.   
 

 
 

The Halt Instruction is used to halt a move of the axis.  It is referenced to I0.7.   
 

 
 

The Move Absolute Instruction is used to trigger an absolute move of the axis.  It is referenced to 

I0.6.  It will move the axis to a position relative to the home instruction.   

 

Fig. 17-54 

Move Relative 

Fig. 17-55 

Halt Command 

Fig. 17-56 

Move Absolute 
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In addition to the discrete instruction listed above, a command table may be used to store the 

commands of a sequence of move commands for the Siemens processor.  The same command 

table can be generated for Allen-Bradley although this feature was never completely made to 

work by the instructor or lab tech in the course to date.  It would be a challenge for a student to 

execute the command sequence for both drives using that feature from the manufacturer’s 

software. 

Allen-Bradley’s Kinetix 350 Single-axis Servo Drive 

The focus changes to A-B and a motion application with servo drives.  The information that is 

condensed here is found to a large part in the User Manual for this product.  Information such as 

parameter lists will be deferred to the manual and not duplicated here. 

Some tables will be repeated here for ease of start-up: 

Table 30 – Status Display Information 

Status Indicator Description 

Hx.xx Hardware revision.  For example H2.00 

Fx.xx Firmware revision.  For example F2.06. 

dHCP Ethernet DHCP Configuration: 0 = dHCP is disabled;  1 = dHCP is enabled 

IP_1 Allows modification of the first octet of the IP address 

IP_2 Allows modification of the second octet of the IP address 

IP_3 Allows modification of the third octet of the IP address 

IP_4 Allows modification of the fourth octet of the IP address 

nEt1 Allows modification of the first octet of the netmask 

nEt2 Allows modification of the second octet of the netmask 

nEt3 Allows modification of the third octet of the netmask 

nEt4 Allows modification of the fourth octet of the netmask 

gat1 Allows modification of the first octet of the gateway 

gat2 Allows modification of the second octet of the gateway 

gat3 Allows modification of the third octet of the gateway 

gat4 Allows modification of the fourth octet of the gateway 

  
 Table 32 – Module State Status Indicator 

Status Indicator State 

Off Power off 

Flash red/green Drive self-testing 

Flashing green Standby 

Solid green Operational 

Flashing red Major recoverable fault 

Solid red Major unrecoverable fault 
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 Table 33 – Axis State Status Indicator 

Status Indicator State 

Off Off 

Flash red/green Self-test 

Off Initialization – bus not up 

Flashing green Initialization – bus up 

Off Shutdown – bus not up 

Flashing amber Shutdown – bus up 

Off Pre-charge – bus not up 

Flashing amber Start inhibit 

Flashing green Stopped 

 Stopping 

Solid green Starting 

 Running 

 Testing 

Flashing red Aborting 

 Major fault 

Solid red Aborting 

 Major fault 

The axis and the drive define minor fault conditions.  While a minor fault does not affect the 

drive status indicator, it does affect the axis status indicator.  When a minor fault condition is 

detected, a normally solid green status indicator indication changes to alternating red-green-red-

green, a normally flashing green status indicator indication changes to alternating red-off-green-

off, and a normally flashing amber indications changes  to red-off-amber-off. 

The drive also defines alarm conditions.  When an alarm condition is detected, a normally solid 

green status indicator indication changes to alternating amber-green-amber-green while a 

normally flashing green status indicator indication changes to alternating amber-off-green-off. 

 Table 34 –Network State Status Indicator 

Status Indicator State 

Steady off Not powered, no IP address 

Flashing green No connections 

Steady green Connected 

Flashing red Connection time-out 

Steady red Duplicate IP 

Flashing green and red Self-test 

 

Fig. 17-57 

The A-B Kinetix Drive 
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Fig. 17-58a The L30 Processor is Chosen to Drive the Single Axis Servo 

 

From A-B, “The IP address of the Kinetix 350 drive is composed of four sub-octets that are 

separated by three dots to conform to the Class C Subnet structure.  Each sub-octet can be 

configured with number between 1 and 254.  As shipped from the factory, the default IP address 

of a drive is 192.168.124.200.” 

 

The present IP address can be obtained from the drive’s display using the up-down keys and 

reading the address one sub-octet at a time.   

 

A-B states that the drive can be assigned either using DHCP (dynamic IP address) or statically.  

The drive must be configured statically for our application.  You must check that the IP address 

is already set or ping the address to check if it is operating.  There should be an address label on 

the drive.  If checking the drive, use the up-down arrow keys to locate the DHCP parameter and 

verify that it is set to 0.  If not, set to 0 and cycle power. 

When using the file given for the course, the controller is configured and ready to run except for 

the drive’s IP address.  Configuration of the drive has been accomplished.  The next few pages 

lead one through the process of defining the drive during the configuration process in preparation 

for the move command programming to follow. 
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A-B Servo Motor

Servo Motor with Encoder Shown
This is an Incremental Encoder

  

Fig. 17-58b 

Fig. 17-58c 
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Servo Motor with rotor shown
Notice the field is electrically wound 
and the armature is magnets.

 

If the controller is not configured, first follow the procedure below: 

 

Notice that the controller must be at revision 20 or higher.  Under the controller properties dialog 

box, click the Date/Time tab and enable Time Synchronization.  

Fig. 17-59 

Fig. 17-58d 
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Configure the Kinetix 350 Drive.  Right click to create a New Module.  Clear the module type 

filters and check the Drive and Motion categories.  Select the appropriate drive. 

 

Configure the New Module using the following dialog box.  The etnernet address must match the 

address set for the drive.   

 

Fig. 17-60 

Fig. 17-61 

Fig. 17-62 
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Under Change Module Definition, change the following: 

 

Under the Associated Axes tab, click ‘new axis’ and add information: 

 
 

Finish by checking ‘create’.  Next configure the Motion Group.  In the Controller Organizer, 

right click Motion Groups and choose New Motion Group.  Assign the axis just created to this 

motion group. 

 

Fig. 17-63 

Fig. 17-64 

Fig. 17-65 
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Right click on the axis in the Controller Organizer to change properties of the drive.  For the 

motor: 

 

 

 

To Configure the Motor   Fig. 17-68 

Fig. 17-66 

Fig. 17-67 
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Use the scaling and loads appropriate for the application: 

 

 

 

Actions and Parameters: 

 

Fig. 17-69 

Fig. 17-70 

Fig. 17-71 
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Download the application and test and tune the axes.  

 

 

Fig. 17-72 

Fig. 17-73 
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           Auto-tune the Drive        Fig. 17-74 

 

Axis Properties for our application: 
 

 
 

           General Axis Properties       Fig. 17-75 
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         Motor Device Specification Properties       Fig. 17-76 
 

 

 

 
 

        Motor Model Phase to Phase Properties      Fig. 17-77 
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        Motor Feedback Device Specification Properties    Fig. 17-78 
 

 

 

 
 

Scaling Parameters         Fig. 17-79 
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             Test Motor Screen         Fig. 17-80 

 

 
 

 
 

            Test Polarity Screen          Fig. 17-81 
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             Tuning Parameters         Fig. 17-82 

 

 
 

 
 

            Motor Load Characteristics      Fig. 17-83 

 



 Ch 17 Motion 64 

 

 
 

             Backlash Compensation       Fig. 17-84 

 

 

 
 

            Compliance Compensation      Fig. 17-85 
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             Position Loop Properties       Fig. 17-86 

 

 

 

 
 

            Velocity Loop Properties        Fig. 17-87 
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            Torque/Current Loop Properties      Fig. 17-88 

 
 

 

 
 

              Motion Planner         Fig. 17-89 
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                Homing           Fig. 17-90 

 

 

 
 

Actions to Take Upon Conditions       Fig. 17-91 
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Drive Parameter List        Fig. 17-92 

 
 

 

 
 

More Drive Parameters        Fig. 17-93 
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Motion Status Screen        Fig. 17-94 

 

 

 

 
 

Faults and Alarm Log Screen       Fig. 17-95 
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Tag Properties         Fig. 17-96 

Note:  

Under Drive Parameters, Feedback1BatteryAbsolute, set to ‘No’ or 0.  Otherwise, the hardware 

will generate a fault and you will not be able to run the axis. 

Sample Commands for the A-B Application 

 
            Setting Up a Sequence       Fig. 17-97 
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Fig17-98 Example of Sequencer  
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Fig. 17-99  Sample Program for A-B Single Axis Servo 
 

 

 

The program given above is a sample program for download.  It is to be used to provide a 

starting point for the single axis lab described at the end of the chapter.  An HMI similar to that 

described for Siemens may also be built which allows the various contacts to be toggled from a 

screen.  To begin, the control bits may be toggled from the Studio 5000 ladder program while in 

the run mode. 

 
 

While we mainly only discuss single axis motion, the following description of a vendor’s two-

axis motion control card is useful to describe the motion command instructions for the next step 

in moving from single-axis to multiple axis control: 
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AMCI’s 3602 – Synchronization of Two Axes 
 

The 3602 is the second servo/stepper controller for the CompactLogix and MicroLogix 1500 

platforms.  

 

 
The module offers two independent motion control axes that function in an open-loop 

configuration. Each axis can be used to drive a stepper or a servo with step/direction input 

capability. The 3602 can also synchronize the two axes, giving you the ability to control linear 

and circular motions in an XY plane. 

 

The 3602 requires sixteen input words and sixteen output words from the PLC. Power draw from 

the PLC is 250mA from the +5Vdc supply.  Each axis of the 3602 offers a full 32 bit (±2 

billion+) motor position register, move lengths of up to 231 (±1 billion+) counts, programmable 

S-curve acceleration types, five discrete inputs for various control functions and a differential 

encoder input.  The 3602 uses a Rockwell Automation 18-pin Removable Terminal Block for all 

of its I/O connections.  

 

The 3602 has the following I/O connections for each axis: 
 

 Single ended outputs to servo or stepper driver. Maximum output frequency is 150 KHz. 

 Home Input. This single ended input is typically used when defining the home position on 

the machine. 

 CW Limit and CCW Limit Inputs. These single ended inputs are used to define the 

maximum clockwise and counter-clockwise positions on the machine. If one of these 

inputs becomes active while traveling in that direction, the 3602 will immediately stop 

the move. 

 Emergency Stop Inputs. If one or both of the CW and CCW Limits are not required, then 

the input can be configured as an Emergency Stop input. The 3602 will immediately stop 

the move if an Emergency Stop input becomes active. 

 Capture Input. This single ended input can be used to capture the motor position during a 

move. This is useful in applications where you must capture the position value and the 

event is too short to be captured by the PLC. 

 External Input. A single ended input that can be used to bring moves to a controlled stop 

or to bring a servo controller’s Move Complete output back into the PLC. 

 General Purpose Output. This single ended output is controlled through a bit from the 

PLC. 
 

Fig. 17-100 
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Front Panel LED’s 

 

The 3602 has three LED’s to indicate the status of the module and each of its axes.  The 

MODULE LED shows the status of the module while AXIS 1 and AXIS 2 LEDs show you the status 

of the axis.  

 

 
 

 
The X-Y Plane 
 
Its easiest way to explain the interpolated move types is in terms of motion in the X-Y plane 

defined by the two axes.  His plane is shown in the figure above. 

 

 A move that results in increasing counts on the axis will cause CW pulses on the outputs 

of the axis.  Likewise, a move that results in decreasing counts on the axis will cause 

CCW pulses on the outputs of the axis. 

 The +/-2 billion+ counts at the ends of each axis represent the minimum and maximum 

values of the current position register for the axis, which is a signed 32 bit value.  These 

values are not hard limits.  If you are performing a relative move in a CW direction that 

exceeds 2,147,483,647 counts, the current position value will roll over to its maximum 

negative value. 

 The colored square with limits of +/- 1,073,741,823 counts represents the limits of 

absolute coordinates, when programming an absolute move, the starting position can be 

outside this range, but all positions defined by the command must be within these limits.  

In the case of circular interpolated moves, the move can travel beyond these limits while 

running. 

Fig. 17-101 
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Linear Interpolated Moves 
 
Conceptually, a linear interpolated move is performed by travelling the shortest distance between 

two points on the X-Y plane defined by the two axes of the 3602.  The start point is the current 

position defined by the two axes.  The end point can be programmed with relative or absolute 

coordinates.  In the figure above, the relative coordinates are shown in parentheses. 

 

Relative Linear Move 
 

When programming a move with relative coordinates, you program the number of steps or offset, 

you want each axis to travel.   

 
Absolute Linear Move 
 
Absolute coordinates treat the end point as an actual position on the machine.  Note that you 

must set the home position for both axes of the machine before you can run an absolute linear 

move.   

 

Required Parameters 
 

Five parameters are required to define a linear interpolated move: 

 End point X (Axis 1) coordinate (Absolute or Relative) 

 End point Y (Axis 2) coordinate (Absolute or Relative) 

 Interpolated Target Speed 

 Interpolated Acceleration 

 Interpolated Deceleration 

 

Note that the target speed, acceleration and deceleration define the vector for the path as a whole, 

not the individual axes, so they are programmed only once.  

 

Circular Interpolated Moves 
 

Conceptually, a circular interpolated move is performed by traveling between two points in the 

X-Y plane along an arc of a circle defined within the plane.  As with linear interpolated moves, 

the start point of every move is the current position of the two axes.  The other points can be 

programmed with absolute or relative coordinates. 

 

For non-interpolated, single axis moves, the terms clockwise and counter-clockwise refer to 

whether or not the motor position value reported back to the PLC will increase or decrease as a 

Fig. 17-102 
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result of the move.  For circular interpolation moves, the terms clockwise and counter-clockwise 

refer to the direction of travel when looking down at the X-Y plane.  

 

There are three methods to specify a circular interpolated move: 

 

Center Point Method 
 

The center point method is shown in figure 3-4.  In addition to the end point, this method defines 

the center point of the circle.  The 3602 verifies that the length from the center point to the start 

point is equal to the length from the center point to the end point before running the profile.  Both 

lengths are radii of the circle and must be equal.  Even though these three points completely 

define the circle, they cannot define the direction of travel along the circle to move from the start 

point to the end point.  Because of this, the 3602 has two commands for use with the center point 

method.  One command causes CW motion along the circle path while the other causes CCW 

motion.  Note that the CW and CCW motion in this case refers to the direction of travel in the 

X0Y plane.  It does not refer to the state of outputs during the move.  Depending on the size and 

location of the circular path, each axis may output both CW and CCW pulses during the move. 

 

 
The center point and end point cam be specified with relative or absolute coordinates and the two 

points must use the same coordinate system.  This is the only method that allows you to set the 

end point equal to the start point and travel along the entire circular path in the X-Y plane.  All 

other methods only allow you to travel over an arc of the defined circle. 

 

Radius Method 
 
The radius method is shown below.  In addition to the end point, this method defines radius of 

the circular path.  These three pieces of information actually define two circles in the plane, so an 

additional piece of information is used to define the move path.  This piece of additional 

information is the sign of the radius value.  If the radius is positive, the move will travel the 

shortest arc between the two points.  If the radius is negative, the moves will travel the longest 

arc between the two points. 

 

In order to determine the direction of travel, clockwise or counter-clockwise, the 3602 has two 

commands for use with the radius method.  One command causes CW motion along the circle 

path while the other causes CCW motion.  Note that CW and CCW motion in this case refers to 

the direction of travel in the X-Y plane as shown in the figure.  It does not refer to the state of the 

outputs during the move.  The bottom half of the figure shows the four available moves based on 

the sign of the radius value and the move direction. 

 
   

Fig. 17-103 
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Path A: CW move, Negative radius 
        Path B: CW move, Positive radius 
        Path C: CCW move, Positive radius 
        Path D:  CCW move, Negative radius   
 

The end point can be specified with relative or absolute coordinates. 

 

 
 
Via Point Method 
 
The via point method defines a third point on the circular path that the move will pass through 

while traveling from the start point to the end point.  This method only has one command 

associated with it because the 3602 can determine the direction of travel for the move with the 

three given points.  The via point and end point can be specified with absolute or relative 

coordinates and the two points must be use the same coordinate system. 

 

 
 
 

 

Fig. 17-104 

Fig. 17-105 
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G Code – Synchronization of Many Axes  

What would one expect next as a strategy to control multiple axes?  G Code is an answer.  The 

example here shows the instructions for cutting an upside A from metal: 

Well it is an upside down letter the capital A. Obviously it would be difficult to hand code in a 

lot of letters and also support scaling but there are a couple of freeware utilities that will produce 

GCODE from TrueType fonts.  

        % 

        G00 Z 0.2 (raise bit)  

        G00 X1 Y1 (move to start) 

        G01 Z -0.2 F5 (plung bit) 

        G01 X2 Y3 F11 (draw one leg from top to bottom) 

        G00 Z 0.2 (raise bit)G00 X1 Y1 (air move) 

        G01 Z -0.2 F5 (plunge bit) 

        G01 X0 Y3 F11 (draw one leg top to bottom to top) 

        G00 Z 0.2 (raise bit) 

        G00 X 0.5 Y1.8 (air move) 

        G01 Z -0.2 F5  (plunge)G01 X 1.5 (cross on the A) 

        G00 Z 0.2 (raise the bit) 

        % 

 

Fanuc Robots 

 
 

The Fanuc Robot above is a mechanical unit with six servo motors.  It is the logical next step 

with coordinated axis control for automation of a process.  The choice between a coordinated 

axis system using programmable axes from either the single axis or multi-axis methods or with a 

robot many times is made by others with the electrical programmer an implementer.  However, 

choosing between type of robot or type of electrical drive may be your decision.  The robot 

section is continued in Hybrid Lab Text – Ch. 29. 
 

Fig. 17-106 
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The following are the motion commands for the Siemens 1200’s and 1500’s.  They are much 

more expansive than the ones listed earlier: 
 

 

 

 

 

Fig. 17-107 
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On the next page are several Motion Videos from RealPars: 

Fig. 17-108 
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Summary 

 

In this chapter a very broad subject, motion control, has been introduced and discussed.  Some 

areas are just introduced and then left to the reader to expand upon later.   

 

It is the hope that the experiences of these next two labs will give some measure of experience 

and give the student a desire to continue the discussion and have a healthy curiosity with respect 

to motion and motion control applications. 

 

As they say, after writing a program for the shrink wrap “that’s a wrap”.  Or for the grinder, 

“What a grind”.  Oh well…. 
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Lab 17.1  Program the Stepper Application using the Siemens PLC, Stepper Module and 

Siemens HMI to control the dial for a variable number of complete turns either forward (CW) or 

reverse (CCW) at a various number of speeds. 

To design the HMI panel, use the description above Fig. 17-25.  The description there describes a 

simple single-axis machine.  As an automatic sequence, use at least two different rotations.  One 

could be of 4 turns followed by a dwell followed by a second 4 turns followed by a dwell 

followed by a return to home.   

Notice the switches on the PLC.  They are attached to inputs which set up the motion application.  

They may be used for all inputs except those specific to the operation of the machine such as the 

auto-manual, jog forward, jog reverse, halt and resume commands.  Other commands such as 

‘home’, ‘reset’ and ‘power’ can remain as switches instead of being incorporated into the HMI. 

The following state diagram is a partial state diagram for building the assigned program above: 

Initialize Step 0
(off)

Resting

Step 1
Move F

Step 2
Dwell

Move 
Forward 

Cont

Step 3
Move R

Step 1
Move 
Stop

Step 3
Move 
Stop

Auto

Manual

Halt Resume Halt Resume

Move 
Reverse 

Cont

Jog F

Jog F Release
Jog R

Jog R Release

Start

 

       Fig. 17-109  State Diagram of Motion Application 
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The program given allows the user to toggle the various switches and rotate the motor.  Some of the 
commands will be modified in the actual program.  Notice that there is a command table that may be 
used.  It is not usable if the pause and resume are to work properly.  Try the toggle switches with the 
command table and then halt the motion.  Then resume the motion.  Notice that the motion is reset 
and starts again.  The problem associated with the reset action requires the additional programming.  
Follow the commands below in this order to begin the Siemens stepper application. 

I0.0-I0.7

Starting Point

Turn on Power Switch 

and Leave On (I0.1)

Toggle on and then off 

Reset (I0.0)

Toggle on and then off to 

set Home Position (I0.0)

 

Fig. 17-110  Toggle Switch Settings for Siemens Stepper 
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The program given here is the program given on the website.  It serves as a starting point for the 

program on the following pages:  

This block is attached to 

switch 0 and resets the motor 

controller.  This switch is to be 

turned on and then back off.

This block is attached to switch 

1 and is the first switch to be 

turned on.  It is to remain on.

This block is attached to switch 

2 and establishes a home or 

zero position when the switch is 

turned on and then back off.

This block is attached to switch 

3 and starts the motor moving 

at a constant velocity.

 

Fig. 17-111 
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This block is attached to switch 4 
and is not used for the lab since 
absolute moves are needed.

This block is attached to a 
programmed switch which will 
halt the motion.

This block is attached to programmed 
points per the attached program 
below.

This block is attached to  switch 
5 but should not be used since 
the program controls 
movement, not this Command 
Table.

Fig. 17-112
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The MoveAbsolute Block Defined 

MC_MoveAbsolute: Absolute positioning of axes V1...3 
 
Description 
 
The "MC_MoveAbsolute" Motion Control instruction starts an axis positioning motion to move it to an 
absolute position.  
 
Requirements 

 The axis technology object has been configured correctly. 
 The axis is enabled. 
 The axis is homed. 

 
Override response 
 
The MC_MoveAbsolute command can be aborted by the following Motion Control commands: 

 MC_Home command Mode = 3 
 MC_Halt command 
 MC_MoveAbsolute command 
 MC_MoveRelative command 
 MC_MoveVelocity command 

 MC_MoveJog command 

 MC_CommandTable command 
 
The new MC_MoveAbsolute command aborts the following active Motion Control commands: 

 MC_Home command Mode = 3 

 MC_Halt command 

 MC_MoveAbsolute command 

 MC_MoveRelative command 
 MC_MoveVelocity command 
 MC_MoveJog command 
 MC_CommandTable command 

Below is the Move Command from the Command Table Program (not used in this program) 

Fig. 17-113
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           Fig. 17-113 

 

There should be three objects on the screen for auto/manual.  There are two buttons and one 

indicator.  The program would be linked to these devices with tags developed in the Ladder 

Program similar to the diagram below: 

 

   Fig. 17-114 



 Ch 17 Motion 90 

 

The program per the State Diagram (partial):

This moves through 
the sequencer when a 
Move is done

Buttons tied to Auto 
and Manual buttons
Indicator tied to 
Auto_Manual tag

Initiates move to 
position 1.  Both pulse 
to initiate move and 
length of the move

This starts the Move 
Absolute command

 

            Fig. 17-115 
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Fig. 17-116 
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For Manual jog forward or reverse, add the following:

Notice the positive number

Notice the positive number

This contact enables this block

This contact enables this block

 
Fig. 17-117 
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For halting the motor in auto or reverse, add the following: 

 

 
           Fig. 17-118 

Logic for homing the drive is not added here but should be considered.  There are two homing 

events to be considered.  First, homing is considered to establish a base home point.  This is 

shown in the figure below immediately after initialize.  Then a re-establishment should be 

inserted before the automatic operation is to proceed.  This is shown after the start command is 

issued.  

 

Establish 
Home

Step 0
(off)

Resting

Step 1
Move F

Step 2
Dwell

Move 
Forward 

Cont

Step 3
Move R

Step 1
Move 
Stop

Step 3
Move 
Stop

Auto

Manual

Halt Resume Halt Resume

Move 
Reverse 

Cont

Jog F

Jog F Release
Jog R

Jog R Release

Start
Initialize Return to 

Home

Home Actions 
Added

 
       

            Fig. 17-119 
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Lab 17.2  Program the Servo Application using the A-B PLC, Kinetix 350 Servo and the HMI 

software to control the dial for a variable number of complete turns either forward (CW) or 

reverse (CCW) at a various number of speeds. 

Again, design the HMI panel using the description above Fig. 17-25.   

Again, design the program similar to Siemens’ to allow for an auto and a manual move.  In auto, 

provide for a sequence that may be interrupted with a pause and re-started with a resume button.  

In manual, provide a jog button for both forward and reverse operation. 

 

Access for the position tag is found in the tag table as:  Axis2.ActualPosition 
 

The Auto/Manual Button may be programmed similarly to Siemens or with the following: 

Definition of the MultiState 

Button in State 0 - Manual

Definition of the MultiState 

Button in State 1 - Auto

The state of the Auto-

Manual Bit is displayed in 

the Indicator Tag Definition

 

Fig. 17-120 
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The Motion Axis Move instruction is defined in part by the following table: 

 

 

            Fig. 17-121 
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Lab 17.3 

Demonstrate a simple Fanuc program from the youtube videos or other video you found. 

You may want to explore some of the youtube videos from Tim Mehring or Adam Willea. 

Lab 17.4 

From the more expansive programming statement list and using an appropriate 1500, write a 

program using some of these advanced programming statements. 
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Problems 

1. Why is the EVAL board necessary in the control of the stepper motor? 

 

2. How does one control the direction of travel for the stepper motor, the servo motor? 

 

3. Describe the process of “homing”.  Is this process necessary 

 

4. List the homing modes for a Siemens motion controller, for an A-B Servo controller. 

 

5. Show by drawing a string of pulses how the stepper accelerates, decelerates. 

 

6. How does A-B accomplish the task similar to Siemens’ Command Table? 

 

7. What is synchronization and when is it necessary?  Determine which of the applications in 

Figs. 17-13 to 24 require synchronization. 

 

8. A relative move and an absolute move both start from a known position (0).  Each moves + 5 

and then each moves -5.  What is the total movement of each and where do they end relative 

to each other? 

 

9. What are the main criteria used when determining whether to use a servo or a stepper for a 

motion application?   Describe the advantage for using each for the various criteria. 

 

10. In a motion command string, if the axis is not returned to zero speed before moving to the 

next position, what is this called? 

 

11. Use either the A-B or Siemens motion command (either relative or absolute) to control the feed 
action of the screw feed controlling the knife shown below. Write a program to provide this 
function: 

 

Log Drive

Log Drive

Knife Drive

Constant 
Speed 

Conveyor
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12. The motion application at right is different from the one at left.  What term is used to describe the 

profile on the right:  

 

 
 

 

 
13. Identify the following speed patterns from the pulse trains for the stepper motor.  Choose from 

(slow, fast, moderate, accelerating, decelerating) 
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14. Use the Siemens motion commands below to control the feed action of the two conveyors 
shown. Write a program to provide this function.  Notice the photo-eye switches which are 
used to properly align the box with the hat.  Assume the drive has been previously reset and 
is enabled. 
 

Sensor for Hat

Hat Conveyor

Sensor for Box

Box Conveyor
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Delivery release: Motion Control V8.0 in TIA Portal V19 and the S7-1500 firmware version V3.1 

 Entry 
 Associated product(s) 

With TIA Portal V19 and the firmware version V3.1 the new Motion Control function library is 
released for delivery in version V8.0 

The following motion control functions are new or changed with TIA Portal V19 and the 
SIMATIC S7-1500(F) / S7-1500T(TF) CPUs with firmware version V3.1: 

Axis functions 

Measuring gear box for technology objects positioning axis and synchronous axis 
A measuring gear box is available for encoders of the technology objects positioning axis and 
synchronous axis. 

Torque precontrol 
A torque precontrol can be configured to execute complex motion sequences faster and more 
precisely, which leads to a reduction of the following error in acceleration and deceleration 
phases. The CPU calculates the required feedforward torque from the acceleration of the axis, 
the configured inertia values of the motor and load, and the mechanical gearing ratio.  

Configurable response to TO alarms 
For technology alarms with reaction "Remove enable", in addition to the standard reaction of 
the Quick Stop (OFF3), the reactions Coast down (OFF2) and Delay ramp (OFF1) can also be 
configured. 

Virtual axis 

The axis is operated in virtual mode with improved runtime behavior. The setpoints are 
transferred as actual encoder value with a delay of one application cycle. One further 
application cycle later, the transfer to the actual value of the axis takes place, analog to the real 
axis. Further configurations have no influence on the calculation of the actual values. The new 
mode replaces the already existing behavior of the virtual axis. 

Measuring probe 

 Use one measuring input for several axes (monitoring measuring probe) 
When measuring via Timer-DI or via SINAMICS (central measuring probe) actual 
positions at several axes can be determined. 

 Cyclic measurement via SINAMICS (central probe) 
With central measuring probes, the times of the signal changes are precisely recorded 
and then transmitted to the controller via telegram 39x. The measurements can now be 
continued cyclically, taking into account the time boundary conditions, until they are 
terminated by using a function command. 
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Axis control panel 

 Absolute encoder adjustment 
The axis control panel offers the new absolute encoder adjustment absolute and 
absolute encoder adjustment relative operating modes. 

 Display and adjustment of speed override 
The axis control panel includes two new controls for adjusting the speed override. A 
slider replaces the controls for starting and stopping axis movement. 

Synchronous operation functions (S7-1500T) 
 

Fast reading of the following value from a cam profile 
The "MC_GetCamFollowingValueCyclic" motion control instruction can be used to cyclically 
read the following value from a cam that is defined for a leading value of the same application 
cycle. Scaling and offset of the cam can be specified without changing the cam technology 
object. Job processing is done synchronously so that the result is output directly. 
  
Extension of the function for reading the following value from a cam  
The "MC_GetCamFollowingValue" motion control instruction has been extended by parameters 
for specifying scaling and offset of the cam. The cam technology object is not altered in the 
process. 
 
Extension of the function for reading the leading value from a cam 
The "MC_GetCamLeadingValue" motion control instruction has been extended by parameters 
for specifying scaling and offset of the cam disc. The cam technology object is not changed in 
the process. In addition, the approach direction for the leading value being searched for can be 
specified. 

Kinematics functions (S7-1500T) 

Conveyor Tracking 

 Blending behavior 
Blending is possible for the following movements: 

o From a motion in the tracked OCS to a motion job that desynchronizes the TCP 
o From a motion job that synchronizes the TCP with the tracked OCS to the 

subsequent motion job in the tracked OCS 
o To blend the intermediate point in the WCS during a movement from one 

tracked OCS to another tracked OCS, you can also only issue the synchronization 
job during desynchronization "TrackingState" = 4.  

To maintain compatibility with technology version ≤ V7.0, parameterize the motion transition 
on the following job with "BufferMode" = 1. The current motion job is then not blended. 

 Dynamic adaptation 
The dynamic adaptation (for motion jobs) can be activated in all phases of the conveyor 
tracking. In order to keep the dynamic limits of the kinematics and the kinematic axes 
when changing the belt dynamics and the working area, the dynamic reserve  
"<TO>.Conveyor.DynamicReserve" has been introduced. 
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Remark: 

For export reasons, the software package "S7-1500T Motion Control KinPlus" and a special 
SIMATIC Memory Card are required for the interpolation of 5 or 6 axes. These must be ordered 
separately. 

This extension is only available for the SIMATIC CPU 1518T/TF and the SIMATIC Drive Controller 
CPU 1507D TF. 

Description   Order number  

 S7-1500T Motion Control KinPlus (Download)  6ES7823-0KE01-1AA0 

 S7-1500T Motion Control KinPlus (USB stick)  6ES7823-0KU01-1AA0 

 SIMATIC Memory Card S7-1500T Motion Control KinPlus 2 GB  6ES7954-8LP80-0AA0 

 SIMATIC Memory Card S7-1500T Motion Control KinPlus 32 GB  6ES7954-8LT80-0AA0 

 

SIMATIC Motion Interpreter (S7-1500T) 
 

The SIMATIC Motion Interpreter of the S7-1500T CPU can be used to create motion jobs for 
single axes and kinematics with up to 6 interpolating axes. The interpreter executes a series of 
serial instructions. With the SIMATIC Motion Interpreter, the interpreter program and the cyclic 
user program of the CPU for controlling and operating the machine are separated from each 
other. Thus, the interpreter program can be used to implement the technological production 
process of a machine without affecting the programmed PLC logic of the machine. The 
interpreter program is programmed using the new MCL (Motion Control Language). The 
simulation and validation of the interpreter program can be done completely without the use of 
a CPU.  
 
Three new technology objects are available: 

TO_Interpreter 

 
The SIMATIC Motion Interpreter is realized as technology object Interpreter and has the 
following tasks: 

 Technology- and time-optimized execution of the interpreter program. 
 Execution of the motion tasks 

TO_InterpreterProgram 

 
An interpreter program is created in the technology object interpreter program. The interpreter 
program contains the motion jobs for the kinematics. The interpreter program is loaded into 
the Interpreter technology object at runtime and interpreted. The interpreter program does not 
have to be translated in TIA Portal. 
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The Interpreter program technology object contains an editor for creating an interpreter 
program in the Motion Control Language (MCL) programming language. Several instances of the 
interpreter program technology object can be created. 

TO_InterpreterMapping 

 
With the technology object interpreter mapping you define an assignment of objects in the 
interpreter program to objects in the user program. Thereby you define which objects of the 
CPU can be accessed from an interpreter program. 

You can map the following objects of the CPU for access from the interpreter program: 

 Technology objects of type speed axis, positioning axis and synchronous axis. 

 Variables of global data blocks 

Several instances of the technology object interpreter mapping can be created.  

Motion Control Language 

A wide range of technological tasks can be created textually for the interpreter in the Motion 
Control Language (MCL) interpreter language: 

 Support of SCL language constructs and data types. 

 Logical operations, operations with variables and mathematical functions 

 Adaptation of the language to interpretative processing by the interpreter 

 Sequential programming in an interpreter program 

 Enabling, locking and referencing axes 

 Simple programming of motion orders on single axes 

 Activation/deactivation of force and torque limitation and fixed stop detection 

 Simple programming of complex motion jobs on kinematics, e.g. for a pick-and-place 
cycle 

 Linear, circular and synchronous "point-to-point" movements with absolute and relative 
position specification 

 Defining tool and object coordinate systems 

 Defining, activating and deactivating workspace zones and kinematic zones 

 Setting of modal parameters, e.g. dynamic parameters 
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The SIMATIC Motion Interpreter functionality is included in the firmware of the technology CPU. 

Programming with STEP 7 in TIA Portal V19 
 

Folders for technology objects 
For a better project overview, technology objects can be sorted into folder structures. 
 
Motion control OBs within software units 
With the help of software units you have the option of dividing your user program into 
individual program units that you can edit and load independently of each other. Motion 
control specific OBs can be part of these program units. Thus namespaces and named values 
can be used within Motion control OBs. 
 
Named values for software units 
Named values are values that are assigned a unique and understandable name. Named values 
can be referenced in the program and increase readability and maintainability. The concept of 
named value data types is comparable to the concept of enumerations according to IEC 61131-
3. 
 
Live monitoring 
The recorded values can now be displayed directly in the trace chart and the user can perform 
any analysis there while the data is recorded in the background. 
 
Long-term project trace 
Simultaneous recording and display of signals from different PLCs in a network is possible via 
the long-term project trace. 
 
Superimposed measurements 
In addition to the standard trace, the possibility to superimpose measurements is now also 
offered for the long-term trace. The time bases can be synchronized. 
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