Chapter 19 Programming the PID Algorithm

Introduction

The PID algorithm is used to control an analog process having a single control point and a single
feedback signal. The PID algorithm controls the output to the control point so that a setpoint is
achieved. The setpoint may be entered as a static variable or as a dynamic variable that is
calculated from a mathematical operation.

For many years, the PID algorithm was not accepted as a function suitable for a PLC. It was
included in a DCS (Distributed Control System) or configured from a number of stand-alone PID
controllers. However, as PLC prices continued to fall during the 1980’s and later and more
economical HMI systems were developed for the PLC, PLCs became more accepted as PID
controllers. In fact, because PLCs have undercut the cost of competing systems, DCSs and other
PID controllers have been forced to drop prices dramatically or no longer remain competitive.
An early hybrid design was introduced into the Allen-Bradley 1771 I/O family including 2 PID
stand-alone controllers attached to a single 1/0 slot and executing the PID algorithm from the
controller in the 1/0O slot. Newer control schemes have the PID algorithm executing in the PLC
with other programs and controlling complicated processes with good success.

Chapter 19 uses the PID block to control a simple process. Then, it discusses more complex
operations capable of being programmed by the PID control block. The chapter describes the
SLC PID block followed by the CompactLogix processor as well as the Siemens 1200 and their
implementations of the PID function. Using these various PLC configurations demonstrates
differences between the newer PID blocks and the SLC PID block. The SLC processor uses an
integer-based PID block. Integer-based blocks have the disadvantage that scaling must be used
to convert numbers to more meaningful real values. Scaling adds complexity to the program that
becomes transparent with a floating-point PID block. More sophisticated PID blocks such as is
available in the PLC/5 and ControLogix processors as well as Siemens allow floating-point
calculations. These more robust PID blocks also provide more sophistication in their
functionality. All PID blocks are not created equal.

Fundamentals of Closed Loop Control
Closed Loop Control Tasks

"Closed loop control is a process where the value of a variable is established and maintained
continuously through intervention based on measurements of this variable. This generates a
sequence of effects that takes place in a closed loop -the control loop- because the process runs
based on measurements of a variable that is influenced in turn by itself.” This variable that is to
be controlled is measured continuously and compared with another specified variable of the same
type. Depending on the result of this comparison, an adaptation of the variable to be controlled
to the value of the specified variable is performed by the control process.

Proportional Controller (P-Controller)

In the case of P-controllers, the manipulated variable is always proportional to the recorded
system deviation. The result is that a P-controller reacts without a delay to a deviation and
generates a manipulated variable only if the deviation (error) is present. The proportional
pressure regulator sketched in the figure below compares the power Fs of the setpoint spring with

Ch 19 PID Block 1

the power Fg that the pressure P, generates in the spring-elastic metal bellows. If the forces are
off balance, the lever rotates around the pivot point D. The valve position changes and
accordingly the pressure P, to be regulated until a new balance of forces is established.

The behavior of the P-controller if a system deviation suddenly occurs is shown in the figure
below. The amplitude of the manipulated variable jump y depends on the level of the deviation e
and the amount of the proportional coefficient Kp:

To keep the deviation low, a proportionality factor as large as possible has to be selected.
Increasing the factor causes the controller to respond faster. However, a value that is too high
may cause overshooting and a large hunting tendency on the part of the controller.

‘\F’]

Metal bellows

~B2

Setpoint spring

Fig. 19-1

Actual Flow = /P, — P,

e(error) = Flow (Actual) — Flow (Set Point)

y(output) = K,

The diagram below shows the behavior of the P-controller:

Control
variable

A
Setpoint

e

Actual |
value

Deviation

Fig. 19-2

Ch 19 PID Block

\j

time

The advantages of this type of controller consist on the one hand of its simplicity (electronic
implementation can, in the simplest case, consist of merely a resistor), and on the other hand its
prompt response in comparison to other controller types. The main disadvantage of the P-
controller is the continuous deviation; the setpoint is never completely attained, even long term.
This disadvantage as well as the not yet ideal response speed can be minimized only
insufficiently with a larger proportionality factor, since otherwise the controller will overshoot.
In the most unfavorable case, the controller will enter a state of continuous oscillation. This
causes the controlled variable to be periodically moved away from the setpoint, not by the
influencing variable but by the controller.

The problem of continuous deviation is solved best with an integral controller.
Integral Controller (I-Controller)

Integrating controllers are used to completely correct system deviations at each operating point.
As long as the deviation is unequal to zero, the manipulated variable continues to change. Only
when the reference variable and the controlled variable are equal is the control system in a steady
state.

The mathematical formulation of this integral behavior is as follows:

1

n

How fast the manipulated variable rises (or falls) depends on the deviation and the integration
time.

e

Fmax Fig. 19-3

i] i =f: Block diagram

t2
e Y
L ——— —————
yITIEIP(
I I ——
h ty t

Pl-Controller

The Pl-controller is a type often used in practice. It results from connecting a P-controller and an
I-controller in parallel. When laid out correctly it unites the advantages of both controller types
(stable and fast, no permanent system deviation), so that their disadvantages are compensated at
the same time.

Ch 19 PID Block 3

eITII:lX

Block diagram

12
-
¥ — — ———
}(IIT‘ICIX

- Fig. 19-4

The behavior with respect to time is identified by the proportional coefficient Ky and the reset
time Tn. Because of the proportional component, the manipulated variable responds immediately
to every system deviation e, while the integral component takes effect only in the course of time.
Tn represents the time that passes until the I-component generates the same amplitude of flow as
occurs immediately because of the P-component (Kp). As in the case of the I-controller, the reset
time Tn has to be decreased if we want to increase the integral component.

Differential Controller (D-Controller)

The D-controller generates its manipulated variable from the rate of change of the system
deviation, and not, as the P-controller, from its amplitude. For that reason, it responds
considerably faster than the P-controller. Even if the deviation is small, it generates (looking
ahead) large amplitudes of flow as soon as an amplitude change occurs. However, the D-
controller does not detect permanent deviations, because no matter how large it is, its rate of
change equals zero. For that reason, the D-controller is used only rarely by itself in practice.
Rather, it is used jointly with other control elements, usually in connection with a proportional
component.

PID Controller
If we expand the PI controller with a D-component, the universal PID controller is created. As in

the case of the PD controller, adding the D-component has the effect that, if laid out correctly,
the controlled variable reaches its setpoint sooner and its steady state faster.

Ch 19 PID Block 4

Block diagram

\ . r
_.?' e e —
Frmax l '

-1

d . K;
y=Kp-e+Kife-dt+KDd—i with Ki=T—:,KD=Kp-Tv

Fig. 19-5 PID Diagrams and Equations

Objectives of Control System Setting

For the control result to be satisfactory, selecting a suitable controller is an important aspect.
However, even more important is setting the suitable controller parameters Kp, Tn and Ty, that
have to be adjusted to the controlled system behavior. Usually, we have to compromise between
a very stable but slow control system or a very dynamic, more unsettled control performance
which under certain circumstances has a tendency to oscillate and can become unstable.

In the case of non-linear systems that are always to process at the same operating point

-such as fixed setpoint control- the controller parameters have to be adjusted to the controlled
system behavior at this working point. If, as in the case of servo controls, a fixed working point
cannot be defined, a controller setting has to be found that supplies a sufficiently fast and stable
control result over the entire working range.

In practice, controllers are usually set based on values arrived at through experience. If these are

not available, the controlled system behavior has to be analyzed exactly, in order to subsequently
-with the aid of theoretical or practical layout procedures - specify suitable controller parameters.

Ch 19 PID Block 5

An Example SLC PID Function

In its simplest form, the SLC PID block is used as a single block with no input contacts and
surrounded by only two SCP blocks. This PID instruction is located in Ladder 2. The SCP block
is configured to retrieve a numerical value from the analog input channel, linearly scale the input
and move the resultant value to the PID block. The input is a 4-20 mA signal from a flow
transmitter. The output is a 4-20 mA signal to a variable flow valve.

SCP - Scale with Parameters
Input

Input Min

Input Max

Scaled Min

Scaled Max

Ouptut

PID

Control Block
Process Variable
Control Variable
Control Block Length

SCP — Scale with Parameters
Input

Input Min

Input Max

Scaled Min

Scaled Max

Output

Fig. 19-6 Simple Program of PID for SLC Processor

In the first SCP instruction, values found in the Input Min and Input Max of the SCP instruction
are from the 1/0O card. The engineer must first decide which 1/O card to use and then find the
proper lower and upper limits from the literature on the card to enter values in the SCP
instruction.

In this case, the analog card selected is the 1746-N1041 Ser. A. This card is a combination card
with 2 analog inputs and 2 analog outputs. From the web, select 1/0O Analog Modules, Analog
I/0 Modules for SLC 500 Programmable Controllers — Technical Data. Then select 4 Channel
Module Configuration, 4 Channel Module Wiring, and 4 Channel Module Specifications to find
the choices available for Analog Inputs and Analog Outputs.

Ch 19 PID Block 6

In the section describing 4 Channel Module Specifications are found the following Channel Data

sheets:

Input Type | Signal Range Engineering Units EU Scale
+/- 10 Vdc -10.25to + 10.25 Vdc | -10250 to + 10250 1 mV/step
0to 5V dc -0.5to +5.5 Vdc -500 to +5500 1 mV/step
lto5Vdc 0.5t0 5.5 Vdc 500 to 5500 1 mV/step
0to 10 Vdc | -0.5t0 +10.25 Vdc -500 to +10250 1 mV/step
0to 20 mA -0.5t0 +20.5 mA -500 to +20500 1.0 uA/step
4t020mA | 3.5t020.5mA 3500 to 20500 1.0 uA/step
+/- 20 mA -20.5 to +20.5 mA -20500 to +20500 1.0 uA/step
0to1 mA -0.051t0 1.05 mA -50 to + 1050 1.0 uA/step

Channel Data Word Values for Engineering Units

Input Type | Signal Range NI4 Data Format

+/- 10Vdc -10.00 to +10.00 Vdc -32768 to +32767

0 to 5vdc 0.0 to 5.00 Vdc 0to 16384

1to 5 Vdc 1.00 to 5.00 Vdc 3277 to 16384

0to10Vdc | 0.0to 10.00 Vdc 0to 32767

0to 20 mA 0.0to 20.0 mA 0to 16384

4to 20 mA 4.0 t0 20.0 mA 3277 to 16384 +—

+/- 20 mA -20.0 to +20.0 mA -16384 to +16384

0to1mA 0.0to 1.00 mA 0 to 1000

Channel Data Word Values for Scaled Data

Using the value 4 to 20 mA from the Input Type column, the value in Engineering Units is 3277
min to 16384 max. These values are entered in the SCP instruction to scale the variables

correctly.

Fig. 19-7

Input

Input Min
Input Max
Scaled Min
Scaled Max
Ouptut

SCP — Scale with Parameters

3277
16384

The scaled min and max values that are sent to the PID’s process variable are found in the setup
documentation of the PID block. The min value is 0 and the max value is 16383. A location
must be selected. In this case, the process variable or PV is selected to be N10:28. Itis
advisable to keep the PID block data separated from other integer data. In order to do keep the
data for the PID separated, the data file N10 was created to handle the PID data.

The input address may also be selected. Remember the value is I:s.w where s is the slot number
and w is the relative word address down the card. In this case, the slot address chosen is 1 and
the w or word address is 0, the first analog input point on the card. The other option for the input
inslot 1isI:1.1.

Ch 19 PID Block 7

SCP — Scale with Parameters

Input [:1.0
Input Min 3277
Input Max 16384
Scaled Min 0
Scaled Max 16383
Output N10:28
PID

Control Block /
Process Variable N10:28
Control Variable

Control Block Length 23

Fig. 19-8 Moving the Process Variable into the PID Block

The control block address is chosen. This address requires 23 contiguous words reserved in an
integer table. The block N10:0 (through N10:22) was chosen. Also reserve a location for the
control variable or output of the PID function. N10:29 was chosen.

This control variable or output is then sent to the analog output card. Scaling again must be
chosen. The min for the PID output is 0 and the max is 16383. These are the same values as are
used for the PID input. To use the entire range of values for a PID input or output, choose the
range 0 to 16383. Always strive to use the entire range of the PID block when programming an
integer PID block. This gives the greatest accuracy.

The scaled output must be ranged to fit a 4 to 20 mA analog output card. Use the values as were
found in the reference manual, 6,242 min and 31,208 max. Use the first output point on the same
card as the input. Its slot number is 0:1.0. Now, the PID and two SCP blocks can be finished.

SCP — Scale with Parameters
Input 1:1.0
Input Min 3277
Input Max 16384
Scaled Min 0
Scaled Max 16383
Output N10:28
PID

Control Block

Process Variable N10:28 /
Control Variable N10:29 |
Control Block Length 23

SCP — Scale with Parameteg/

Input N10:29
Input Min 0
Input Max 16383
Scaled Min 6242
Scaled Max 31208
Output 011

Fig. 19-9 Moving the Variables Into and Out of the PI
Ch 19 PID Block 8

Wiring a 4-20 mA Current Loop

Handling wiring and other hardware issues is found from information in the instruction manual
for the module. In the case above, the card used was the 1746-N1041 module from Allen-
Bradley. Look specifically in the chapter on installation and wiring.

In addition to the actual wiring diagram for the application, important information including dip
switch settings should be noted. If possible, all dip switch settings should be copied to the
installation drawing for the card or added as notes to the schematic drawings. In the case of the
1746-N104I card, no dip switches were found.

To wire a 4-20 mA control circuit for a PLC input, wire a loop with the power supply,
transmitter, and PLC input. To wire a 4-20 mA PLC output, wire a power supply, valve and
output. From the manufacturer's diagram, it should be noted whether the 4-20 mA output
requires loop power or the analog output card provides loop power.

For the analog input, the transmitter varies the resistance to the PLC input so that the current
ranges from 4 mA for no flow to 20 mA for maximum flow. The transmitter “borrows” enough
voltage from the 24 V dc to activate electronics inside the transmitter. The voltage drop across
the transmitter does not affect the current range of the loop. The PLC analog output varies the
resistance to the control valve in a similar manner.

Transmitter-
Variable Resistor

PLC
24V dc — _— Analog
Input

4-20 mA Analog Input — Current Loop

PLC Analog Output

24V dc Control
(may be —__ Element
external) (valve)

Ch 19 PID Block

or

24 V dc PLC Analog Output

(may be 4-20 mA

internal) | | W

| ﬂ

Control
Element
(valve)

Fig. 19-10 4-20 mA Analog Output — Current Loop

In the case of output cards, care must be taken to find whether or not the 24V dc power supply

should be added to the loop. The drawing from the installation manual provides direction here.

From the figure below, note that there is no power supply needing to be added in the output
current loop diagram for this specific card (N1041).

The figure below shows the catalog information for wiring this card. In fact, the analog output

does not need a power supply since the output furnishes this power internally. The term "analog

source" for the input implies inclusion of the 24V power supply. Load for the output implies no

external power supply. Note the jumpers installed for inputs not used.

+

analog o O
source 1 0
) 2 O
: 3 O

jumper
unused 4 O
inputs 5 O
6 O
do not jumper 7 O
unused outputs 8 O
9 O
Load 10 O
(valve) 11 O

In O+

In O-

ANL COM
In 1+

In 1-

ANL COM
not used
OutO
ANL COM
not used
Out 1l
ANL COM

Fig. 19-11 4-20 mA Analog I/O — Current Loop (NI1041)

Ch 19 PID Block

10

Configuring the SCP and PID Instructions for the SLC

The description of the SCP instruction mentions that the inputs may be integer, floating point,
immediate data values, or indirect referenced values. The minimum and maximum values for
both input and output form a range over which the variables are scaled. The instruction solves
the equation y = mx + b without the user responsible to calculate actual values for ‘m’ and ‘b’.

Care must be taken to keep the program performing in an acceptable manner if the input value is
less than the card minimum value. The scaled output value should continue to solve the equation
and the output value should scale to less than the minimum value of the instruction. The same
result should also occur if the value exceeds the maximum.

In the Instruction Help description, the PID block is described:

“This output instruction is used to control physical properties such as temperature, pressure, liquid level,
or flow rate of process loops.

The PID instruction normally controls a closed loop using inputs from an analog input module and
providing an output to an analog output module as a response to effectively hold a process variable at a
desired setpoint.”

The PID instruction can be chosen to be operated in either the timed mode or the STI mode. In
the timed mode, the instruction updates the output algorithm periodically at a rate selected in the
block. In the STI mode, the PID instruction is placed in an STI (Software Timed Interrupt)
subroutine. The PID block updates the PID algorithm each time the STI subroutine is called. A-
B points out that the ST1 time interval and the PID loop update rate must be equal in order for the
equation to perform properly. The suggested time duration for the ST1 or timed mode is .1
second.

A Setup screen is provided on the PID instruction.

PID

Control Block

Process Variable N10:28

Control Variable N10:29

Control Block Length 23
setup screen

Fig. 19-12 Example PID Instruction

Ch 19 PID Block 11

From the A-B Text and the Instruction Help Screen is shown the Block Layout of the PID
Instruction:

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 EN DN PV SP LL UL DB DA TF SC RG OL CMAM T™M
Word 1 PID Sub Error Code (MSB)
Word 2 Setpoint SP
Word 3 Gain Kc
Word 4 Reset Ti
Word 5 Rate Td
Word 6 Feed Forward Bias
Word 7 Setpoint Maximum (Smax)
Word 8 Setpoint Minimum (Smin)
Word 9 Deadband
Word 10 INTERNAL USE — DO NOT CHANGE
Word 11 Output Max
Word 12 Output Min
Word 13 Loop Update
Word 14 Scaled Process Variable
Word 15 Scaled Error SE
Word 16 Output CV% (0-100%)
Word 17 MSW Integral Sum
Word 18 LSW Integral Sum
Word 19 Altered Derivative Term (Low word)
Word 20 Altered Derivative Term (High word)
Word 21 Time of Last Update
Word 22 Setpoint Old Value

The table above corresponds to n10: 0 through n10: 22 found in our example above. Word 0
(N10:0) is used for bit control storage. For example, bit 1 is the AM or Auto/Manual bit. When
bit 1 is on, the block is in manual. When bit 1 is off, the PID block is in auto. The address for
AMinisn10:0/1. Words 1 through 22 are used for constants and variables used in the solution
of the PID algorithm.

The PID Setup Screen shown below describes variables found in the table above that may be
changed from the programming software.

Ch 19 PID Block 12

Solving the PID Block and Adding the HMI

Once the analog value of the process variable is mapped from the SCP instruction to the PID
block, the PID block solves the equation for the Control Variable (CV) or Output. A more
thorough explanation of how the output is achieved may be found in a text on control systems.
Equations vary but the three most common equations are given later in the chapter.

The PID block has two analog inputs. One is the PV or process variable and the other is the SP
or setpoint. The setpoint is manually entered into the PID block. This may be done through the
PID Setup screen, through an HMI such as PanelView, or through a program statement (a MOV).
If the SP is entered manually through the program, the SP is considered static and should never
be changed by operator control since an operator is not generally considered reliable enough to
enter variables through the RSLogix500 Setup Screen.

The PID Setup screen is pictured below. The setup screen allows the engineer or technician full
capability of modifying the PID block.

PID Setup |

 Tunning Parameters———— ~ Inputs ~Flags——
Controller Gain Ko = Setpoint 5P = 1 = 1
Fiasat Ti = Setpoint M&X[Sman] = AM = i
: - tM = [0

Setpaint MIN[Smin] = —
Rate Td=[000 | = it [T 0 1
Process Variable PY = ™

Loop Update = |I].1[| | IEI | RG = i
Control Mode = [E=SP-PV | | - Dutput ~d
TF= |0

PID Cantral = |AUTO Control Output CV (%) = DA=[0]

Time Mods = Output Max TV (%) = BESIO
: UL= (D
Limit Dutput CV = OuputMn CVEI=[0__] || 1
Deadband= [0 | Scaled Error SE = sp=[p]
St E

DN = [0]

oK Cancel | Hep | EN = [0]

Fig. 19-13 SLC PLC Startup Block in RSLogix 500

The SP may be entered through the PID Setup screen. The PV is entered using the SCP
instruction.

From the A-B Instruction Reference Manual:

“Process Variable PV is an element address that stores the process input value. This address
can be the location of the analog input word where the value of the input A/D is stored. This value
could also be an integer if you choose to pre-scale your input value to the range 0 to 16383.”

The output is referred to as the CV or Control Variable. It is described in the same manual as:

“Control Variable CV is an element address that stores the output of the PID instruction. The
output value ranges from 0 to 16383, with 16383 being the 100% ‘on’ value. This is normally an
integer value, so that you can scale the PID output range to the particular analog range your
application requires.”

Ch 19 PID Block 13

The PID block is very much like a black box function with inputs entering and outputs leaving
the block. The block diagram for the PID block in auto is:

(AIIT/I?J?tt(:O) Process Variable Setpoint
FID Setup

Turining Parameters - Inputs - -~ Flags
Controler Gan Ke = [N o i E
ResetTi = [07]| | Setont MAX(Smiy) = [300_] ;‘.%
i Setpoint MIN(Sminke [T DL: —
Loop Updeiew [0 | PocteVaRbeV=l0 11| RG- (0]
Control Mode = [E=SF-Pv] |~ Output :;E: EE
PID Control = [EUTO__] | | Control Output CV (%) = DA = 0]
TimeMode= [TMED]| | QuiputMax CV(%)= @
Limit Output CV = Output M CV (%) = lﬂ'_: %‘
Deadband= [0 | Scaled Emor SE 5P = (0]
PV= 0]
DN = [0]

0K Ea'-:ull

:
=

Control Variable
or Output

Fig. 19-14 Using Setup Screen

The PID algorithm is solved while the block is in auto. Auto is determined by the status of the
AM bit. When am = 0 the operation is automatic. When amM = 1, the operation is manual.

The PID algorithm does not output a value for the PID block if the block is in manual. It is as if
the block has been manually disengaged. The PV or SP may change and the output stays at its
last value unless a new value is written into the CV location. The CV location may be over-
written in manual. In auto, the PID block constantly writes the value to the CV. The range of the
CV is from 0 to 16383. Writing to the CV allows the user to manipulate the valve in the manual
mode.

Ch 19 PID Block 14

Process Variable Setpoint may be

In Manual: may be entered entered but 1 must be written to
(AM bit = 1) but equation is not equation is not AM bit when in Auto
being executed being executed
FID Sebup
Turinireg Parameters Imputs a0
Corrolles Gain e = [T SelpotSP=[50__J| | TM =i
ResetTi= [I7] | SelportMAXSS gl =300 | x'ﬂ
Setpoint MIN(Smn 5
AueTd= 000]| | v;&w LI/ oL.f
OCEss v - =
oo Llocaie [2? 0
ContiolMode = [E-5PFv] | Output s
PID Contiol = Control Output CV [%) = DA = [0
TineMode = [TIMED]| | OutputMax CV([%]= b=
’ . UL= (D
Limt Quiput v = (€5]| | ouwpuMn cvpgsf0] | =
Deadband= [0 | ScaledEnorSEF[B0] | | spa[j
i
DN =[0]
oK Cancel | H EN = [0]
. J CV may be written to
Control Variable from the program or
or Output fram an HMI

Fig. 19-15 Additional Use of Setup Screen

Another bit that must be set correctly for the PID block to work is the Control (CM) bit. It
determines whether the error term E = SP — PV or E = PV — SP. If the CM bit is set incorrectly,
the valve will quickly go to full on (100%) or full off (0%). This bit is never to be set by an
operator. Use the PID Setup screen to set it. The bit is not to be changed after it is set in the
initial configuration of the auto mode.

The simple PID algorithm from the SLC processor demonstrates many important steps in
implementing the PID block successfully. First, the input must be correctly signal conditioned
and the output signal conditioned as well. The wiring must be correct. The PID block must be
correctly configured including all min and max values plus all tuning parameters. Then the
engineer can control the program either in manual or auto from the programming helps menu.
The PID block must be placed in a block that executes on a clocked interrupt or the PID block
itself must be programmed to execute on a timer in the main or OB1 block. Either method works
but the preferred method is to program the PID algorithm in a separate timed interrupt block.
Also the data must be guaranteed to be ‘fresh’. That is, the data that is used for the algorithm
must have been gathered recently. This may be as recent as an immediate read or from a scanned
card that reports to the main CPU on a regular basis. This data must be guaranteed to have been
read less than 10% of the time since the last execution of the PID block. This is a rule of thumb
—10%.

We will also discuss the development of a faceplate, the operator interface used for input of data

as well as manipulation of the mode of the PID block. The operator is not to be given control of

all the parameters including tuning parameters as well as max and min values for the signal and
Ch 19 PID Block 15

alarms. Faceplate design can emulate the manufacturers’ PID control panel or enhance the data
shown on the panel. They are to be intuitive and easy to use. The PID operator interface design
can vary from very simple to complex. The best faceplate design incorporates what the operator
needs to know without too many alarms or blinking lights. Historical data plots are a plus.

Design of a Faceplate for PID Block

Faceplates of some stand-alone PID controllers are shown below. These include the Red Lion
stand-alone TCU controller and the Honeywell stand-alone controller faceplates.

"j Home ywedl

Fig. 19-16

Red Lion PID Control Honeywell UDC1000/1500 PID Control
Faceplate Faceplate

Stand-alone PID controllers such as the Red Lion TCU controller solve the PID equation in a
manner similar to the PID equation solved in the PLC. The Red Lion display is referred to as the
faceplate. HMI displays are used to allow the operator to run the process from a display in a
manner similar to the Red Lion faceplate. To run the PID successfully in the PLC, several
parameters should be available on the display to adjust the process of controlling the PID
equation.

Commonly used tags in the HMI are:

Auto/Manual

Setpoint

Process Variable

Output (CV)

Error (Deviation) (May be on restricted access page.)
Deadband (May be on restricted access page.)
Gain, Reset, Rate (May be on restricted access page.)

Mode switches such as Auto/Manual are included in the SLC PID block. Other modes normally
used but not part of the SLC PID block include:

Local/Remote
Maintenance

In Local, the operator is able to change the setpoint manually and verify the output’s response
while the PID loop is in auto.

In Remote, the process (program) sets the SP and the PID loop responds to the changes. The PID
Ch 19 PID Block 16

loop is in auto mode in both local and remote modes. Remote mode is referenced as Cascade
mode by some PID controller manufacturers.

In Maintenance mode, the loop is in manual and any variable can be changed from the operator
station. This mode should be password protected.

A faceplate may be drawn on the HMI similar to the one below. This faceplate is typical for a
system of PID loops controlling a process.

Entry of Manualf&uto Entry of Local/Cascade

1l 9% =
Wﬁ;ﬁsclic;ed A - - A
1l 1% - -
Wﬁ;ﬁsclic;ed A = = A

S~ = S Flg 19-17

Sp Pv Cv
Entry of Sp Entry of Cv
Name of PID Block

The triangles on the left and right side of the bar graphs are used to add or subtract 5% or 1% of
the SP or CV. They provide a quick method to adjust SP or CV to get to a desired number. The
more exact approach is to enter a number in the data box for either SP or CV. This approach is
slower to implement than the method of touching a triangle when making small changes.

From the example of the PID Block for the SLC controller, to implement a PID Block
successfully, the PID Block must be programmed with some provision for scaling, whether
through a programming block or other means. The analog input or PV must be in an appropriate
range for the block to calculate an error based on the difference between the PV and a setpoint or
SP. In addition, the output or CV must be correctly scaled to an output.

Also, the PV and CV must be wired to analog points correctly.

Ch 19 PID Block 17

Processes in Lab

Two processes in the lab are pictured on the following page in Fig. 19-18. The one on the left is
the water valve. The one on the right is the ball-in-tube. Fig. 19-17 shows the flow sensor for

the water valve. Information on the laser, the ball’s feedback sensor, is found in the instructions
for the laser and the setup of the analog output in Fig. 19-19.

The two processes are controlled by the two plc’s in the lab, A-B’s Compact Logix processor and
the Siemens S7-1200 processor. The feedback devices are both 4-20 mA input devices. The

valve requires 4-20 mA from the CompactLogix processor to set the position while the fan motor
is controlled by a pulsed 24 V output from the Siemens PLC.

The following is a bill of material to construct the flow valve system shown below in Fig. 19-18.

Quantty | Item | ~ Description Unit Price Amount
1.00 FLO-7104 3/4" FLOW-TEK BALL VALVE 316SS FULL
PORT, NPT ENDS WITH MOUNTING
BRACKET AND COUPLING
1.00 MAX-UT-26-DA DOUBLE ACTING PNUEMATIC 1,268.00 1,268.00

1.00 ACC-A51236AT

1.00 MAR-M1FR2NHFM

ACTUATOR PN UT26
ACCORD 4-20mA POSTIONER PIN

| A51236AT SAME AS A51136AT

W/BEACON COMPLETELY ASSEMBLED
AND TESTED

0-120 PSI REGULATOR 5 MICRON P/N
M1FR2NHFM

COMPLETE CONTROL VALVE

| ASSEMBLY MOUNTED AND TESTED ‘
WITH PRESURE GUAGES PER

Fig. 19-18 Water Valve Hardware

Ch 19 PID Block

Ball in Tube Hardware

18

The valve on the wall was a first lab for EET to activate. It had been available for students from
about academic 2004. We had used it over the years with good success.

Signet 515 Rotor-X Paddlewheel Flow Sensors

Standard Integral Wet-Tap
Sensor Sensor Sensor
[with red capl

Fig. 19-19 The Flow Sensor Input

+GF+
Features

* Operating range 0.3 to
6 m/s (1 to 20 ft/s)

+ Wide turndown ratio
of 20:1

* Highly repeatable output

* Simple, economical
design

+ Installs into pipe sizes
DN15 to DN900
(V2to 36in.)

* Self-powered/no
external power required

* Test certificate included
for -X0, -X1

The flow sensor is a paddle wheel placed in the flow of water. There is a calibrated readout for
the flow meter that displays the flow in gallons per minute. Included with the flow sensor is a
flow instrument read-out. This read-out is separate from the PLC and HMI and is used by
personnel in the field to read the 4-20 mA reading from the transmitter to the PLC input. Itisa
useful instrument in that it verifies externally from the PLC a value that can be seen in the

program.

System Overview

Panel Mount IP'\pe. Tank, Wall Mount Integral Mount
Signet 8550 Signet 8550 Signet 8550
Flow Flow Transmitter Flow Transmitter
Instrument

[Includes

mounting

bracket and
panel gasket)

e @

MEASURING EQUIPMENT
il

il Signet Universal Signet Integral
l Adapter Kit [3-8050] @@ Adapter Kit [3-8051)
e [sold separately] (I

[sold separately]

Signet Flow Sensor Signet Flow Sensor ~ (AB&, Signet Integral
[sold separately) [sold separately] Mount Flow Sensor
515 2507 2540 515 2507 2540 [sold separately]

525 2534 2551

2000 2552
2100

525 2536 2551 3-8510-XX
2000 2552 3-8512-XX
2100

=

7 — = ™ B p=—}
Signet Fittings = : —
[sold separately] il Eﬁ@ @ /

Fig. 19-20 Signet Flow Instrument as seen in Lab

The valve has been discontinued as an active lab due to the possibility of water flooding the

downstairs. What had been a good lab is no more.
Ch 19 PID Block

19

The ball-in tube lab was built over the 2013-14 academic year. It has served students well.

The laser is the feedback device for the ball-in-tube experiment. The laser gives an accurate
position of the top of the ball. Specifications for the laser are given in the following figure.

Installation Instructions
45LMS Laser Measurement Sensor

IMPORTANT: SAVE THESE INSTRUCTIONS FOR FUTURE USE.

Description

The 45LMS family of long distance laser sensors is available in a
variety of measuring ranges. The 8 m diffuse and 50 m
retroreflective models use a Class 1 visible red laser and the

15 m diffuse models use a Class 2 visible red laser. The discrate
and analog outputs can be easily set using the 5-step rotary
switch and the push button. Potential applications include object
position (analog output) and object detaction (background
suppression with discrete output),

This sensor utilizes the Time of Flight (ToF) principle and has a
relatively small beam spot even at 15 m away. The sensor is
completely self-contained and does not require any external
control devices which add cost and require additional mounting
space.

The 45LMS is easily set up by mounting the sensor such that the
target is within the operating range of the sensor and teaching in
the appropriate set-points required for the application. All

General Specifications

Certifications

UL, cULus, and CE marked for all applicable
directives

Operation

Sensing Beam

Class 1 laser, visible red 660 nm (for 8 m & 50 m
models)
Class 2 laser, visible red 660 nm (for 15 m model)

Spot Size

Sensing Distance

< 10 mm (0.39 in.) at a distance of 8 m (26 1)
at 20°C (68°F)

<15 mm (0.59in.) at a distance of 15 m (49 ft)
at20°c (68°F)

<50 mm (2 in.) at a distance of 50 m (164 ft)
at 20°C (68°F)

0.2...8 m (0.66...26.25 ft) diffuse

0.2...15m (0.66...49.21 ft) diffuse
0.2...50 m (0.66...164.04 ft) retroreflective

sensors in this family have one discrete output with one analog Absolute Accuracy |+ 25 mm (+ 0.98 in.)
output. The discrete output can be wired for either Light Operate Repeatability <5mm (0.201n.)
(L.0O.) or Dark Operate (D.0.) and the analog output is n e
automatically scaled between the selected set-points with either Angle Deviation 22" max

a positive or negative slope. Reference Target Kodak white {90%)
The 45LMS is an excellent solution for long range detection and Temperaturs Influence |< 0.25 mm/K tp.
measurement applications including: distance measurement, Electrical

verifying material position, stack level, thickness measurement, 10...30V OC

roll diameter, positioning fixtures, error proofing inspection, long
standoff distance, level monitoring, crane crash protection and
other difficult applications that exceed the capabilities of
standard diffuse or background suppression photosensors.

Features

* Eye Safe Class 1 or Class 2 laser (by model)
* 8m(261ft.), 15 m (49 ft.) or 50 m (164 ft.) sensing

Operating Voltage

(18...30V DG when operating in 10-Link maode)

Current Consumption

Discrete Output Type

=70 mA @ 24V DC

1 NPN/PNP output, shori-circuit protected, reverse
polarity protected

Discrete Output Rating

30V DC max. / 100 mA max.

Analog Output Type

1 analog output 4.._20 mA, short-circuit/overload
protected

range, dependent on model Switching Frequency |50 Hz
* One discrete output (1 x NPN/PNP) and one analog Response Time 10 ms
output (1 x 4...20 mA) Mechanical
« Easy setup of switch points or analog scaling using Housing Materil Blastio ABS
programming buttons
Optical Face Material | Plastic pane

s |P65 enclosure
* Self-contained sensor

This installation instruction should be read and
LRI MUY | understood before operating the sensor.

The 45LMS sensor should only be installed by
é qualified personnel.

The 45LMS is not a safety component as described
by the EU machinery directives.

Gontrol Inputs

LED Indicators

5-step rotary switch for operating modes selection
Push button for set-point teach

Green: Power

Yellow: Output switching states

Green/Yellow Flashing 2.5 Hz: Teach indication
Green/Yellow Flashing 8.0 Hz: Teach error

Connection Type

4-Pin DC Micro (M12)

Supplied Accessories | None
Environmental
Operating Environment][IP65

Vibration

10...55 Hz, 0.5 mm amplitude; 3 planes; meets or
exceeds IEC 60068-2-6

Shock

Operating Temperature

30 g; 11 ms; 3 planes: meets or exceeds
IEC 60068-2-27

-30...50°C (-22...122'F)

Storage Temperature

-30...70°C (-22...158°F)

Fig. 19-21 Instructions for Laser for Ball-in-Tube Lab
Ch 19 PID Block

20

Calibration of the analog output for the laser is described in the following figure. This
calibration may be ignored, however, due to the programming techniques used.

Setting the analog output: Q2

The 4...20 mA output can be defined as any range within 200 mm
to the maximum range of the sensor, as either a rising or falling
slope, as described below. The default analog output setting for
Q2is A =200 mm (8 in.) and B = 5,000 mm (16 ft) for all sensor
models. Minimum window for setting the analog span is 21 mm
(0.831in.)

Positive Slope

20 mA=

L

Fig. 19-22

~39mAl] : :
02m Q2A Q28 MAX

In the Positive Slope mode (also called Rising Slope) a target
positioned at the closer set-point results in an analog output of

4 mA while a target at the farther set-point results in an output of
20 mA, with the analog output scaled linearly in between. In this
mode, the sensor will output 20 mA when the target is outside of
the operating range, which is 0...200 mm (0...8 in.) and anything
greater than the maximum sensing range.

1. Place a target at the minimum Teach-point.
2. Move the Rotary Switch to position Q2-A.

3. Press and hold the SET button until the Green and Yellow
LEDs flash simultaneously’.

4. Place a target at the maximum Teach-point.
Move the Rotary Switch to position Q2-B.

6. Press and hold the SET button until the Green and Yellow
LEDs flash simultaneously’.

7. If the Teach is successful, move the Rotary Switch to RUN.

@

The calibration can be ignored with the program as written. When the program initializes, the
ball is sent to the top of the tube and stays there for a short period of time. The laser output at
this value becomes the 100% value. When at rest at the bottom, this value is the 0% value.
While the calibration may vary for different lasers installed, this process sets the limits of the

process from which values for the high and low limits may be set. If this kind of self-calibration

is possible with your process, the calibration set-up becomes very easy.

Ch 19 PID Block

21

Tank over Tank Level Control Lab

This lab was an effort to mimic a lab from a major educational equipment manufacturer. The
first attempt is pictured below. The later design is pictured further below. The number of
different sensors used in the design is significant. What first seemed to work may not work in
the final design. This was found to be the case in both the level and flow sensors.

Level Control
of Upper Tank
with Multiple
Drains and
Feedback from
Level Sensor

Fig. 19-23

The first system used a cheap level sensor before settling on the sonic sensor (yellow) seen
below. The flow sensor changed from a cheap $10 sensor to a $110 sensor and finally a better
$160 sensor. These changes were seen as necessary to control the process accurately.

Fig. 19-24

Ch 19 PID Block 22

The pump control was from a digital output to a drive control module and finally to the pump
motor. The drive control module is shown below as attached to the system. The actual
device is shown below as well. The pump is a submersible bilge pump selected by the
plastics manufacturer known by him since his experience had been with boats and boat
construction.

Fig. 19-25

Cytron 20Amp Bi-Directional 6V-30V DC Motor Driver Speed
Controller 60A Peak

AAKAH 12
#19% Fig. 19-26

FREE Shipping
Only 14 left in stock - order soon.

Fig. 19-27

The level control selected first had been one that was attached to the Arduino
microprocessor. That level control failed. It is not even on the pages of Arduino sensors at
this time. Seems as if more than one discovered that it didn’t work. This is a common story
with low-cost sensors. Many will work for a while. Some do not work at all. The level
sensor below is an industrial sensor and is guaranteed to work long-term. It does cost

Ch 19 PID Block 23

significantly more but is worth the money.

Fig. 19-28

The price of the sensor is approximately $250.

Compact ultrasonic sensor in straight
or right-angle housing.

e Senses from 30 to 300 mm

e Available in analog or discrete
models

e Features minimal dead zone and
eliminates dead zone if used in
retrosonic mode

e Ideal for material handling and
packaged goods applications, such
as bottling or liquid level detection
and control for small containers

e Available in straight or right-angle
versions with a wide variety of
mounting hardware for enhance
sensing versatility

e Offers programmable background
suppression

e Compensates for temperature, for
greatest sensing accuracy

e Simplifies setup with push-button
and remote TEACH-mode
programming

e Shows status during setup and
operation, using highly visible LEDs
indicators

Fig. 19-29

Ch 19 PID Block 24

https://cdn-shop.adafruit.com/1200x900/464-00.jpg

S18UUAQ BANNER ENGINEERING ULTRASONIC, VOLTAGE QD SENSOR

- Sl
EANINEXE
Manufacturer SKU: S18UUAQ

Manufacturer ID: 02700

«~ This item qualifies for
FREE SHIPPING over $300!

~ Availability: Usually Ships in 3 to 5 Business Days
Part Number: S18UUAQ
o Qty: 1
ADD TO CART

The yellow ultrasonic level transmitter is shown above. It worked very well and gives a
stable accurate signal to the PLC from the tank level. The output of this device is 4-20 mA.

S18UUAQ

We now look at the flow sensors tried. The first again was a low-cost sensor. It worked for a
little while (about an hour or so) only to fail. We purchased a number of these and they all
failed in a short while. The electronics was not robust and the signal stopped shortly after
initially running.

DIGITEN G3/4" Water Flow Sensor, Food-Grade Hall Effect Sensor
Flow Meter Flowmeter Counter 1-60L/min - Arduino, Raspberry Pi,...

) & & & okl

$1199

FREE Delivery by Wed, Apr 13 for Prime
members

Only 8 left in stock - order soon.

The flow sensor shown here is the second. The third device is shown further below. At the
bottom is a fourth which was held in reserve but may be used in the future. This sensor
worked (but was not accurate). We looked at it because we wanted something that would
work. It worked but if we want an accurate signal across the range, it lacked a great deal.

Gems Sensors 155481 RFO Series $110.00

Flow Rate Monitoring Sensor prime g FREE Returns
Brand: Gems Sensors deli . d il
Ak KAy v 1 rating FREE delivery: Tuesday, April 13

Order within 3 hrs and 22 mins

Price: $110.00 vPrime g FREE Returns Qetals
e Body Material: Polypropylene i
e Port Size: 1/2" NPT Female Only 13 left in stock
o Flow Range (GPM): 1.5-20.0 (more on the way).

e Low Flow Accuracy: +/- 7%

Qty: 1 v
e Standard Flow Accuracy: +/- 15%

Ch 19 PID Block 25

The sensor below is the third flow sensor and is the best so far. It is more costly but is accurate

across the range.

FLOW SWITCHES & SENSORS

FT-110 SERIES TURBINE FLOW SENSOR

Part Number: 173934-C

PRODUCT DESCRIPTION:

FT-110 Series Turbine Flow Sensors are ideal for OEM
applications involving low flow liquid monitoring. FT-110
mount in any orientation, have accuracy +3% of reading and
low flow rates of 0.5 to 30 L/Min (0.1 to 8 GPM).

» Low Flow Rates of 0.5 to 30 L/Min (0.1 to 8 GPM)
«+ Accuracy +3% of Reading
« Mounts in Any Orientation

This meter was found and is possibly a useful flowmeter for this project. Its cost is significantly
less than the two above but has not been validated yet. The cost is significantly less. The one

above is about $160 and this one is about $60.

% VISIOI\ Vision Turbine Meter

Models BV1000, BV2000 and BV3000

Turbine Flow Meters

for Low Viscosity and Non-Aggressive Liquids NSF/ANSI Standards 61 and 372 Certified

DESCRIPTION

The Vision Turbine Meters comply with the lead-free provisions
of the Safe Drinking Water Act. Available models include meters
that are:

Bisphenol A (BPA)-free

Certified to NSF/ANSI Standards 61 and 372
The meters are designed for flow measurement of low-
viscosity, aggressive and non-aggressive liquids alike, including

demineralized water, alkaline solutions, oils, salad oil, fuel/fuel
consumption, beverages, water solutions and coolants.

The BV1000 flow range is 0.026....0.65 gpm (0.1...2.5 Ipm)
The BV2000 flow range 0.13...9.2 gpm (0.5...35 Ipm)
The BV3000 flow range 1.32...17.17 gpm (5...65 lpm)

The meter is especially suitable for washing machines, dishwashers,

coffee machines, laser cooling plants, solar solutions, bakery
machines, steam cooking machines in large kitchen plants, and
CD or DVD cleaning.

Ch 19 PID Block

7

\

26

Tape Rewind Machine

The design shown below gives speed control for the two dc motors with tension control between
the two.

Later Motor Speed
and Position
Control Design

Fig. 19-34

Fig. 19-35

In this design, two motors are involved with a tensioner between. The motors cannot both run at
constant speed. One can run at constant speed or at a ramped speed. The second follows the first
based on the angle of the dancer roll between the two. The tension on the second can be changed
based on the angle of the tension arm. Weight can be added to the arm if additional tension is
desired.

Combining of two speed/position-controlled motors results in a lab similar to the one above in
Fig 19-83. This lab is inexpensive and provides a pair of PID loops to control the two dc motors
and a third PID loop to control the tension between the two. The third loop uses the dancer roll
potentiometer as a feedback device. This lab concentrates on loop-in-loop control. Also

important are start-up control issues. The lab also asks the question of which loop is the master.
Ch 19 PID Block 27

For instance, should the right loop be constant speed? Should the left loop be constant speed?
Or should the speed be constant across the dancer roll? The program is written differently for
each. Also, a sensor must be added if the dancer roll is to be constant speed. This project has
many different possible results depending on where the design starts. The advances from the
earlier toilet paper lab to the present design are many and include the addition of 80-20 extruded
aluminum instead of the cheaper erector-set metal construction. This one addition gave added
stability to the machine from the earlier design.

All present labs use the Siemens PLC due to the flexibility of the 1/0 to control analog quantities.

Siemens Analog Inputs and Outputs

The Siemens’ PID implementation is used in all the active applications shown above. First, the
address of all 1/0O is required as well as the wiring diagram for each analog point. The S7-1200
has two analog inputs located on the controller.

Addressing for the two analog input channels is found below: IW64 and IW66. The two analog
inputs are wired to these two points and programmed with these addresses.

General

General
» Channel)

b Digital inputs
b Digital cutputs
1D addresses T
Hardwars identifier
- A2
General =
w Analog inputs Smoothing: | Weak (4 oycles)

Channell

[+ Enable cverflow diagnostics
I addresses BE

Hardware identifier

General

Ganeral
» Channell

3 Ulgll;ul inputs

» Digital cutputs
D addresses
Hardwea re identifier

- Al2

{]]

General |
- Analag inputs l 'Smuqthing: Weak (4 cycles)
Channeld

Iwf] Enable overfiow diagnostics
O addresses

Hardwa re identifier
Fig. 19-36

To read or write an analog value, use the immediate read or write instruction as shown below:

Ch 19 PID Block 28

Tahle 4-4 Memary areas

kermory area Description Force Retentive
| Copied from physical inputs at the beginning of the scan Mo Mo
Process image input cycle

| P! Immediate read of the physical input paints on the CPU, Yes ([x]
(Physical input) SE, and Shd

Q Copied to physical outputs at the beginning of the scan Mo Mo
FProcess image output cycle

G_P1 Immediate write ta the physical output paints on the Yes ([x]
(Physical outpuf) CPL, SBE, and Shd

Ml Contral and data memory Mo es
Bit memary {optional)
L Termparany data far a block lacal ta that hlock (] Mo
Temp memory

()= Data memory and also parameter memory for FBs Mo es
Data block {optional)

U Toimmediately access (orto force) the physical inputs and physical outputs, append 5" P" to the address or tag (such

as 10.3:P, 91.7:P, or"Stop:P").

Use a cyclic interrupt event to house the PID function. The event is defined as an OB or Object
Block. We will use OB 30 for the program containing the PID Block for the present

applications.

Analog values are available from high-speed digital input pulses. Analog output values may be

realized through PTO or PWM signals from digital outputs. An example is the Tank over Tank
problem discussed in Chapter 25 of the Hybrid Lab Text. The configuration of the pulse input is

as follows:

w HSC1
Functicn
Reset to initial values
Event configuration
Hardware inputs
1iO addresses

P HSC2

P HSC3

» HSC4

P HSC5

P HSC6E

Pulse generators (PTO/PWM)

Enable

[w) Enable this high speed counter

Project information

Name: |HSC_1

Comment:

Under the Function tab, choose single phase unless quadrature is to be used:

w HSC1
General
Reset to initial values
Event configuration
Hardware inputs
1i0 addresses

» HSC2

» HSC3

» HSC4

» HSC5

Type of counting: Count

Operating phase: Single phase

Counting direction is specified

Fig. 19-37

by: | Userprogram (internal direction control)

Initial counting directicn: Count up

Ch 19 PID Block

29

Here, 0 and O are fine:

* HSC1
General

Event configuration
Hardware inputs
/0 addresses

» HSC2

» HSC3

b HSC4
» HSCS
» HSC6

No need to choose an interrupt. The interrupt should be the cyclical interrupt executing the PID

function:

Next, identify the actual input addressed as the hsc (high speed counter) input:

v HSC1
General
Function
Reset to initial values
e vent configurationd
Hardware inputs
1i0 addresses

P H5C2

w HSC1
General
Function
Reset to initial values

Event configuration
110 addresses —

Then, identify the input address 1D:1000-1003:

* HSC1
General
Function
Reset to initial values —— s
Event configuration _ _
Hordware inputs
/0 addre::e:

The address of the input used is IW1002. It is used in the following statement as the rolling
value of the input count. This logic executes each time period and calculates the pulses in the
last scan:

EN — ENO EN ENO EN — ENO —
WW1002 WwW180 WwWI180 D96 WW1002 w78
"Pulse_Raw_Cnt" — N1 OUT — “Pulse_This_Scan® “Pulse_This_Scan® — |N ouTt — “Flow_PV* "Pulse_Raw_Cnt" — |N 3£ OUT1 — "Pulse_Raw_Last™

MW 78
“Pulse_Raw_Last" — N2

Ch 19 PID Block 30

The address of the output is QW1000. It is used in the following statement as the value of the
output count.

NORM_X SCALE_X
Real to Real Real to Int
EN EN
0.0 MN WDB0 G MIN “WQW1000
YID66 ouT — “Level_O_Norm* YAD8O OuT — "Level_PWhT
“Level_Output® VALUE “Level_O_Norm* VALUE
00.0 MAX 0000 MAX

The configuration of the PWM output for control of the bilge pump for the Tank lab as well as
the gear motor lab is a single PWM 24 V output that turns on a dc motor controller input:

+ PTO1/PWMI
[Enable this pulse generator
Parameter assign...
Hardware outputs

Project information
/O addresses

b PTO2IPAM2 Name: |Pulse_]

b PTO3IPWMS . -
Comment:

b PTO4IPWNK

F

The pulse width modulated output is set up in microseconds. Other constants in the set-up
include the overall pulse duration. The pulse length is 10 msec with a base of 10,000 counts:

¥ Pulse generators (PTO/PWM) Pulse options
w PTO1/PWMI1
General Signal type: VM
Time base: Microseconds

Hardware outputs

) Pulse duration format: | Ten thousandths
/O addresses -

» PTO2/PWM2 Cycle time: | 1000 us 1]
b PTO3/PWAB s Initial pulse duration: | 100 Ten thousa... |9
b PTO4IPWK

The following statement identifies the output to be pulse modulated:

w Pulse generators (PTO/PWM)
~ FTO1/PWMI Pulse output: :’-=QD,D _| 100 kHz on-board output
General
Parameter assign...
I/O addresses
» PTO2/PWNM2

m

The following address gives the output address to load the pwm time into QW1000:

Ch 19 PID Block

31

ol |

w Pulse generators (PTO/PWM) Output addresses

v PTO1/PWM1
General Start address: | 1000 0]
Phramator assige. End address: | 1001 7|
Hardware outputs il — —
Organization block: |--- (Automatic update)

» PTO2/PVIM2 Process image: | Automatic update

» PTO3/PVWIN3 r|

The following views of the output show various PWM settings. The first one is approximately

75% or a value in QW1000 of 7,500:

1 200¥/ 2 0.0s 5.0002/ Ao £ 1 -B75%
' KEYSIGHT |

TECHNOLOGIES |

Normal
10.0MSa/s

_ +5.220000000ms
1/AX: [

+191.67Hy |

1 200v/ 2 ! 5.0008/ 1 -87.5¢%
KEYSIGHT
TECHNOLOGIES
Acquisition
Normal
10.0MSa/s

B

|

+5.220000000ms
AX:

+191.57Hz
AY(1):

LS. SEt ST SN 5T

+6.32500v

Learn About
30-day Trial

Ch 19 PID Block

Fig. 19-39

Fig. 19-40

32

A list of hardware identifiers for the various 1/0 points is found in the list of system constants

under the system constant tab:

| General

|| 10 tags

System constants

| Show hardware system consta mi =

Name

& Local~Common
Local~Exec

Local
Local~PROFINET_interface_1
Local-Al_2_AQ_2_1
Local~DI_14_DQ_10_1
Local~Pulse_1
Local~Pulse_2
Local~Pulse_3
Local~Pulse_4
Local-HSC_1
Local-HSC_2
Local-HSC_3
Local~HSC_4
Local-HSC_5
Local-HSC_6

LR R R RR R R R R R R R RR

Local~PROFINET_interface_1~Port_1
Local~PROFINET_interface_1~Port_2

|| Texts ‘
Type Hardware identi. Used by
Hw_SubModule 51 PLC_1
Hw_SubModule 50 PLC_1
Hw_SubModule 52 PLC_1
Hw_SubModule 49 PLC_1
Hw_Interface 64 PLC_1
Hw_SubModule 263 PLC_1
Hw_SubModule 264 PLC_1
Hw_Pwm 257 PLC_1
Hw_Pwm 258 PLC_1
Hw_Pwm 259 PLC_1
Hw_Pwm 260 PLC_1
Hw_Hsc 261 PLC_1
Hw_Hsc 262 PLC_1
Hw_Hsc 265 PLC_1
Hw_Hsc 266 PLC_1
Hw_Hsc 267 PLC_1
Hw_Hsc 268 PLC_1
Hw_Interface 65 PLC_1
Hw_Interface 66 PLC_1

The final set-up of the pwm and hsc devices includes a DB for each. This is found in the OB1
code. The hardware identifier is found in this instruction and ties the device to the action:

Ch 19 PID Block

%B2
*CTRL_PWM_DB"
CTRL_PWM
EN ENO
257 — PWM BUSY —ifalze
| = ENABLE STATUS 650
B4
“Pulses_In"
CTRL_HSC
EN ENO ——
26 HSC BUSY —iFalse
False — DIR STATUS 650
F —icy
€ — RV
False — PERIOD
) — NEW_DIR
W O Fig. 19-41
NEW_RV
NEW_PERIOD

33

PID control

STEP 7 provides the following PID instructions for the S7-1200 CPU:

The PID_Compact instruction is used to control technical processes with continuous input and
output variables. The PID_3Step instruction is used to control motor-actuated devices, such as
valves that require discrete signals for open- and close actuation.

Both PID instructions (PID_3Step and PID_Compact) can calculate the P-, I-, and D components
during startup (if configured for "pretuning™). You can also configure the instruction for "fine
tuning" to allow you to optimize the parameters. You do not need to manually determine the
parameters.

Note: Execute the PID instruction at constant intervals of the sampling time (preferably in a cyclic OB).
Because the PID loop needs a certain time to respond to changes of the control value, do not
calculate the output value in every cycle. Do not execute the PID instruction in the main program
cycle OB (such as OB 1).

The sampling time of the PID algorithm represents the time between two calculations of the
output value (control value). The output value is calculated during self-tuning and rounded to a
multiple of the cycle time. All other functions of PID instruction are executed at every call.

The PID (Proportional/Integral/Derivative) controller measures the time interval between two
calls and then evaluates the results for monitoring the sampling time. A mean value of the
sampling time is generated at each mode changeover and during initial startup. This value is
used as reference for the monitoring function and is used for calculation. Monitoring includes
the current measuring time between two calls and the mean value of the defined controller
sampling time.

The output value for the PID controller consists of three components:

P (proportional): When calculated with the "P" component, the output value is proportional
to the difference between the setpoint and the process value (input value).

| (integral): When calculated with the "I" component, the output value increases in
proportion to the duration of the difference between the setpoint and the process value
(input value) to finally correct the difference.

D (derivative): When calculated with the "D" component, the output value increases as a
function of the increasing rate of change of the difference between the setpoint and the
process value (input value). The output value is corrected to the setpoint as quickly as
possible.

Link to S7-1200/1500 PID Manual:
https://support.industry.siemens.com/cs/us/en/view/108210036

The tuning rules are found on pgs. 265 - 266 under the descriptions of operating modes
"Pretuning” and "Fine tuning" in the 1200.

Ch 19 PID Block 34

The PID controller uses the following formula to calculate the output value for the
PID_Compact instruction.

- K b - . . 1,8 _

y=K [ow-gsw-nr o w-n)]

¥ Output value x Process value

w Setpoint value s Laplace operator

Ke Proportional gain a Derivative delay coefficient
(P component) (D component)

T4 Integral action time b Proportional action weighting
(I component) (P component)

To Derivative action time C Derivative action weighting
(D component) (D component)

The PID controller uses the following formula to calculate the output value for the PID_35tep
instruction.

T,:s

Ay =K, s [."b w-x)+ T s (w-x) +m(’c w-x)]

¥ Output value x Process value

w Setpoint value s Laplace operator

Ke Proportional gain a Derivative delay coefficient
(P component) (D component)

T4 Integral action time b Proportional action weighting
(I component) (P component)

To Derivative action time c Derivative action weighting
(D component) (D component)

To set up a PID block in your program, choose ‘Technology’ from Instructions and then ‘PID
Compact’. See below:

Options

v | Favorites

- A = T 0= s> «r)>

? |Basic instructions
> | Extended instructions Fig_ 19-42

v | Technology

Name Description

» [] Counting

~ [7] PID Cantrol

~ [7] campact FID

3 FID_Compact Universal FID cantrolle
3 FID_35tep FID contraller with tuni

» [7] Motion Contral

Ch 19 PID Block

The settings for the controller may be reached by clicking the icon in the upper right of the PID
block. The block should also be placed in a Timed Interrupt OB:

Basic settings
Froc
v Advanc

s value settings

Process value monitoring
FWIM limits

Output value lirmits

FID Parameters

A3 O

Basic settings

Controller type

T | [~ (et conro lagi

[W] Enable last rode after CPU restart

Input/ output parameters

Setpoint:

-]

|

Input:

Qutput:

Input [+]

| Output_FER (analog)

[~]

%

NS - EEET |

52 |

] |

An example from the Ball in Tube program is included in the following explanation. The second
PID program developed is the Tank over Tank.

Inserting the PID instruction and technological object

STEP 7 provides two instructions for PID control. Use the PID_Compact instruction for the lab
in this course, please!

The PID_Compact instruction and its associated technological object provide a universal PID
controller with tuning. The technological object contains all of the settings for the control loop.

The PID_3Step instruction and its associated technological object provide a PID controller with
specific settings for motor-activated valves. The technological object contains all of the settings
for the control loop. The PID_3Step controller provides two additional Boolean outputs.

After creating the technological object, you must configure the parameters. You also adjust the
autotuning parameters (“pretuning” during startup or manual "fine tuning™) to commission the
operation of the PID controller.

SCL

FiD_Cemoect o

-EN
Sepomt
Input
InpLt_FER

ENO
uput}
OurpUt_PEE
Onitpre_ N -c
Same |
Brret }

"PID Compact 1" (

PID_Compact provides a PID controlier with
self-tuning for automatic and manual mode
PID_Compact is a PIDT1 controller with
anti-windup and weighting of the P- and D-
component

Setpoint:= real in ,

Input:= real in ,

Input PER:= word in ,
ManualEnable:= bool in ,
ManualValue:= real in ,
Reset:= bool in ,

ScaledInput=> real out_,
Output=> real out_,

Output PER=> word out ,
Output PWM=> bool out ,
SetpointLimit H=> bool out ,
SetpointLimit_L=> bool out_,
InputWarning He> bool out_,
InputWarning_ L=> bool out_,
State=> int out ,

Error=> dword out);

1 STEP 7 automatically creates the technological object and instance DB when you insert the instruction. The instance
DB contains the parameters of the technological object

In the SCL example, "PID_Compact_1" is the name of the instance DB

Ch 19 PID Block

Fig. 19-43

36

When programming the inputs and outputs, the following two instructions are used to scale and
normalize the analog value. Use the NORM_X function first to convert the number to a real in

the range 0-1 and then use SCALE_X to scale the normalized value to a range for the real value.

Tahle 6-& SCALE ¥ and MORM _X instructions

LAD f FBD SCL Description
. out := SCALE X{ Scales the normalized real parameter WALLUE where (0.0
Mﬁ;%ﬂx min,:= undef in_ ==WALLE ==1.01in the data fype and value range
<EN EHD- value:= real in _, specified by the MIN andMAX parametars:
rﬂMUE ouT max:=undef in }; QT =WALUE intA -hAIB + Al
MK
TR out := HORM X{ Marmalizes the parameter WALLUE inside the value range
77 1o Rieal min:= ,undef in_ specified by the MIMN and MAX parameters:
~EN END - value:= undef in , OUT = 0FALUE -hAINY § (AR - AN,
mu! ol max:= undef_in); where { 0.0 == OUT == 1.0)
ax
! Eguivalent SCL: our -= value (max-min) + win:?Eguivalent SCL cur := ivalue-min)/ (max-min) ;

Descriptions of various parameters in the PID block are found below:

Parameter and type Data type Description
Setpoint IN Real Setpoint of the PID controller in automatic mode. Default value: 0.0
Input IN Real Process value. Default value: 0.0
You must also set Config.InputPEROn = FALSE.
Input_PER IN Word Analog process value (optional). Default value: WH1680
¥ou must also set Config.InputPERCn = TRLUE.
ManualEnable 1N Bool Enables or disables the manual operation mode. Default value: FALSE

+ On the edge of the change from FALSE to TRUE, the PID controller
switches to manual mode, State = 4, and Retain Mode remains
unchanged,

+ Onthe edge of the change from TRUE to FALSE, the PID controller
switches to the last active operating mode and
State = Retain.Mode.

ManualUP IM Bool In manual mode, every nising edge opens the valve by 5% of the total
actuating range, or for the duration of the minimum motor actuation
time. ManualUP is evaluated only if you are using OutputPer and if
position feedback is available. Default value: FALSE

+ [f Output_PER s FALSE, the manual input tums Output_UP on for
the time that comesponds to a movement of 5% of the device.

« |f Config.ActuatorEndStopOn is TRUE, then Output_UP does not
come on if Actuator_H is TRUE.

ManualDMN IN Bool In manual mode, every rising edge closes the valve by 5% of the total

actuating range, or for the duration of the minimum motor actuation

time. ManualDN is evaluated only if you are using OutputPer and if

position feedback is available. Default value: FALSE

+« I Qutput_PER is FALSE, the manual input turns Output_DN on for
the time that comesponds to a movement of 5% of the device.

+ |f Config. ActuatorEndStopOn is TRUE, then Output_DN does not
turn on if Actuator_L is TRUE.

ManualValue IN Real Process value for manual operation. Default value: 0.0

In manual mode, you specify the absolute position of the valve.
ManualValue is evaluated only if you are using OutputPer, or if position
feedback is available, Default value: 0,0

Feedback IM Real Position feedback of the valve, Default value: 0.0
To use Feedback, then set Config.FeedbackPerOn = FALSE.

Ch 19 PID Block

37

The values in the table above are necessary to make the PID block work correctly. Some may be
set once and not included in the program as variables. Others must be included as programmed
variables. For example, if Input_PER is used, this input must be represented as a percent from 0
to 100.0. This value is the value fed to the PID block from the analog process variable, in this
case the laser. The variable must be represented in Input_PER as a ratio from 0 to 100.

Other variables in the table above are useful when coordinating with the faceplate. For example,
if the PID algorithm is set to manual, the ManualValue variable must be set to the desired state of
the output of the PID. The variable is moved to this location and the output is set to this value.

Parameter and type Data type Description

Actuator_L IN Boal If Actuator_L = TRUE, the valve is at the lower end stop and is no
longer moved in this direction. Default value: FALSE

Resat IN Bool Restarts the PID controller. Default value: FALSE

If Reset = TRUE:
+ "Inactive" operating mode
+ Inputvalue=0

* Intenm values of the controller are reset. (PID parameters are

retained.)

Scaledinput ouT Real Scaled process value

ScaledFeedback ouT Real Scaled valve position

Output_PER ouT Word Analog output value. If Config OutputPerOn = TRUE, then Output_PER
Is evaluated.

Output_UP ouT Bool Digital output value for opening the valve. Default value: FALSE
If Config.OutputPerOn = FALSE, then parameter Output_UP is
evaluated.

Output_DN ouT Bool Digital output value for closing the valve. Default value: FALSE
If Config.OutputPerOn = FALSE, then parameter Output_DN is
evaluated.

SetpointLimitH ouT Bool Setpoint high limit. Default value: FALSE

If SetpointLimitH = TRUE, the absolute upper limit of the setpoint is
reached. In the CPU, the setpoint is limited to the configured absolute
upper limit of the actual value.

SetpointLimitL ouT Bool Setpoint low limit. Default value: FALSE

If SetpointLimitL = TRUE, the absolute lower limit of the sefpoint is
reached. In the CPU the setpoint is limited to the configured absolute
lower limit of the actual value.

InputWarmingH ouT Bool If InputWamingH = TRUE, the input value has reached or exceeded the
upper warning limit. Default value: FALSE
InputWamingL ouTt Bool If InputWarninglL = TRUE, the input value has reached or exceeded the

lower warning limit. Default value: FALSE

State ouT Int Current operating mode of the PID controller. Default value: O
Use Retain.Mode to change the operating mode:

+ State = 0: Inactive

* State = 1: Pretuning

s State = 2: Manual fine tuning

+ State = 3: Automatic mode

s State = 4: Manual mode

s State = 5: Safety mode

* State = 6: Output value measurement

s State = 7: Safety mode monitoring with active trigger

s State = 8: Inactive mode monitoring with active trigger

Error ouT Bool If Error = TRUE, at least one error message is pending. Default value:
FALSE
ErrorBits ouT DWord Error message. Default value: DW#16#0000 (no error)

Ch 19 PID Block 38

Likewise, these variables contain information to allow the PID algorithm to function properly.
The state is a number from 0 to 8. We only use the values of 3 and 4 for the application given in
the Ball-in-Tube program.

The 1/0 address of the analog input point is shown in the analog input addresses of the base
processor unit. If additional analog points beyond two or if these points need a floating neutral,
then an additional analog input card is needed. In our example for the ball-in-tube lab, the input
addresses start at 1:64. The first address is bytes 1:64 and 65. The second input address is bytes
1:66 and 67

PID_V14a » PLC 1 [CPU 1214C DUDUDC]

|E-?TD|JD|DQ}I"U'iEW Hﬁﬂ-hﬂetmrkview ||[|TDeviceview |_

ﬂ-ﬂﬂ'lF‘LCJ [CPU 1214C] |v|,:,lﬂ @l!

103 102 101 1 2 3
57-1200 rack

SILMLRE

| v | | =l

(<] m (3] [100% [+] —5—
|§Pmperties ||"_i.'.lnfn y"ﬂ Diagnostics |
J General || 10 tags || System constants || Texts |
General _

b Analog inputs LimhEETE

IID addresses Input addresses

Hardware identifier
* AQ1 signal board
» General

m

= 1 &

Start address: | ad

End address: | B7

» Analog outputs
10 addresses
Hardware identifier

ot I
- il rmmimidd st e Ll O ol kY * I 3

Fig. 19-44 Addresses of the Analog Inputs

Process image: | Cyclic PI

Display of the analog points is done on a historical data plot shown below.

Ch 19 PID Block 39

» [PLC_1 [CPU 1214C DGYDODC]
= (=4 HMI_1 [KTP700 Basic PM]
Y pevice configuration
_‘M Online & diagnostics
Y Runtime settings
¥ [Screens
¢ Add new screen
[] root screen

_____ Kl

Fig. 19-45

» [Screen management
» [HMitags

?‘ Connections

Hl alarms

o Recipes

HH Historical data

VO field_1 [VO field]
|| Properties

v | Details view

| Animations | Events | Texts |

General

General

Marme Process

Appearance H
Characteristics Tag: | Laser_Percent

~ |] FID_VI3_SP1_1
ﬁ Add new device
EE,, Devices & networks
~ [PLC_1 [CPU 1214C DC/DCDC]
!'f Device configuration
4] Online & diagnostics
= F:E‘. Program blocks
ﬁ Add new block
3 Cyclic interrupt [OB30]
4 Main [0B1]
b 5 System blocks Project
» [Technology objects Tree for
External source files Ball-in-
[& PLC tags Tube
[PLC data types
Watch and force tables
|:F‘. Online backups
8% Frogram info
[EiL Device proxy data
E;‘] Text lists
» [Local modules
= [HMI_1 [KTP600 Basic color PN]
[I§ Device configuration
ﬂ Online & diagnostics
'f Runtime settings

- v v wv v

] E Screens

[@ Screen management
b [HM tags
%2, Connections
1 HMI alarms Physical
o Recipes Layout
5] scheduled tasks -Of Ball-
%] Text and graphic lists in-TUbe
i? User administration

Fig. 19-46

Ch 19 PID Block 40

General

General

Cyclic interrupt

Information

Tirne starnps

Cormpilaticn Cyclic time (ms): |5
Sissas Phase offtet (ms): |III
Artributes

Cyclic interrup

Fig. 19-47 Setting up the Cyclic Interrupt (OB30)

A separate Cyclic Interrupt Program must be built to provide execution of the PID Block. The
PID program executes the PID algorithm after reading the Process Variable input. After
execution of the algorithm, the PWM output determines the state of the output to the fan.

The PID algorithm for the Ball-in-Tube program is shown below. The instruction is configured
and set up from programming statements as well as constants entered into the tables above.

WMBO001.7
*Do not modify” MOVE
== | EM EMO
SN "PID_Compact_
i OUT1 2" 5tate
B3
“PID_Compact_2"
PID_Compact
EM END ——
WAnE 8
"PID Setpoint’ -
B F'C"T Setpoint UAD250
Input "PID_Out_
TMWD 4 Dutput — Percent”
“Integer_Percent” Input_PER Output_PER
“WBO0001 WMBO000.3
"FWWI_Fixed Output_PWh — “%:FID_FW_Out’
Enable”
] | —_— .
1 1 ManualEnable
WMBO01.6 |,
"FID_Reset”
State
: : Reset
" Error

Fig. 19-48 The PID Block for the Ball-in-Tube Lab
The HMI panel below has a button to choose between auto and manual. In PID_PWM, the

button is in automatic. When in auto, the setpoint is entered on a separate page. The manual
value for the PID output may be entered below the button in manual mode.

Ch 19 PID Block 41

Fig. 19-49

100% [~

| Properties | Animations | Events | Texts

General
Appearance
Design
Layout

Tea format
Limits

Miscellaneous

Security

|4 Properties (% Info 1| &) Diagnostics |

General

Process

Tag:
PLCtag:
Address:

| PW_Fised_Enable

PWM_Fied_Enable

Value for "ON": |

]

Mode

[l Format: | Switch with text =]

Text

Bool
ON: | Menusl P

OFF: [P0 Py

Below the button is a data entry window for the value of percent on time for the fan. In thest
window is the percent on time for the output.

The Configuration editor for PID_Compact shows the following screen. Here, the user selects
the units such as temperature or pressure. The user also determines whether variables such as the
PV are Input or Input_Per. Most users would select ‘general’ for controller type.

Use the commissioning editor to configure the controller for auto-tuning at startup and for auto-
tuning during operation. To open the commissioning editor, click the icon on either the
instruction or the project navigator.

men
Froject Edt View it Ovine Options Tools Window Help 1
X e W MO EQR S coonine F cociin: MR ¥ | PORTAL

5 Ty sevepjea & X 18

Devices |
SRR

= [PLC_ 1 [CPU 127140 ATy
Y Device corguation
% Online & disgnostics
i Program blocks
I Add new black
& Main [081]
& Cyclic intemupt [0830]
1 m blocks

+ [SIMATIC Cord feader

B

Tatally Integrated Automation

wt_VZ ¢ PLC_T [CPU 12140 AUDORly] » Technology shjects » PD_Campact_1 [DB1]

Basic settings

Cantraller type

Ternpersture

000000

Input f output parameters

Setpoint
-]
Input:
Input

A Enable last mods aler CPU restan.

I=1[* [=] [invert the conzrol lagic

e] SheLe)]

=
| Output:
T=] [: Ctput_PAM =]

Fig. 19-50

v | Details view

|’ Properties [y info i)| ¥ Diagrostics

Ch 19 PID Block 42

The following table lists some common suggested actions for assisting the set-up of the PID
controller:

Sample configuration settings for the PID_Compact instruction

| Settings Description
Basic Controlier type Selects the engineering units.
Invert the control logic | Allows selection of a reverse-acting PID loop.

« If not selected, the PID loop is in direct-acting mode and the output of PID loop
increases if input value < setpoint.

« If selected, the output of the PID loop increases if the input value > setpoint.
Enable last mode after | Restarts the PID loop after it is reset or if an input limit has been exceeded and

CPU restart returned to the valid range.

Input Selects either the Input parameter or the Input_PER parameter (for analog) for the
process value. Input_PER can come directly from an analog input module,

Output Selects either the Output parameter or the Output_PER parameter (for analog) for

the output value. Output_PER can go directly to an analog output module.

Process Scales both the range and the limits for the process value. If the process value goes below the low limit or
value above the high limit, the PID loop goes to inactive mode and sets the output value to 0.

To use Input_PER, you must scale the analog process value (input value).

Allen-Bradley Analog Inputs and Outputs

Wiring diagrams for the card as well as the engineering range of the input and output channels
are found on the next two pages.

1769-IF4X0OF2/A
Terminal Door Label

TANGEFR
[ol Fervoae FTH Lokt P onen
ke : S ab NmHCTou .
Vin1+ E Vin0+ Vints
VAin0- :
VAin1- @ VAin1 -
lin1+ |[[SQ) Iin0+ lin1+
ey)
vin3+ || [2] vin3s
D)
. o Vilin2- Vilin3-
Viin3- Lt-_‘:
iin3s || [lin 2 + lin3+
D/ AILG Com ANLG
ANLG Com @ _ Com |
Yo Vout 0+ Voutd+
Vout1+ L..‘J loudt1s
| eut
lout 1+ r;i: ctos Ermm Ajaani s Lewr s
e Ut ded Laded | b s
Femuny ey hdue

Fig. 19-51 1769-1F4XOF2/A and F2F/A Analog Card

Ch 19 PID Block 43

O Vin 0+
Vin 1+ O
' O/ V/lin 0-
viin1-| (O , 24VDC
Q\ lin O+ |
lin 1+ O \< Flow |
_ O Vin 2+ é Xmitter | |
Vin 3+ Q
Q V/lin 2-
V/lin 3- O
Q lin 2+
lin 3+ O
O/ ANLG Com
ANLG Com O Q —
Vout 0+ é
Vout 1+ O Valve
O/ lout O+
lout 1+ Q Fig. 19-52

The wiring diagram of the card is shown above. The input and output range of the 4-20 mA
engineering units can be found by looking up the accuracy of the signals. Both have a range of 0
mA to 21 mA — 0 to 32640 decimal range. So, 4 mA would be 6217 (32640/21)*4 and 20 mA
would be 31085. Our range for the raw input and output then is 6217 — 31085.

General” | Connection | |nput Configuration I Output Eu:unfiguratiu:un|

Requested Packet Interval (RP): B0.0=| ms(1.0-750.0)
[Inhibit Module

Major Fault On Cortroller ¥ Connection Fails While in Bun Mode

Module Fault

| General | En:nnnec:tin:nnl Input Canfiguration | Qutput Configuration

Channel| Enable

DDDF

L3R =

| General® | Connection | Input Configuration | Dutput Configuration |_

Channel | Enable

0
1

aN

Ch 19 PID Block

Fig. 19-53

44

Using the CompactLogix PID Block with RSView ME

The PID algorithm will be introduced in an application using the CompactLogix hardware and
software to provide control of the same valve used in the SLC programming experiences. The
graphical operator interface will be upgraded to the newer RSView ME operator interface.

(onﬁgurea PlD |nstruction After you enter the PID instruction and spedfy the PID structure, you use the

configuration tabs to specify how the PID instruction should function.

PID
— P tional Int te \—
PIIE?O' S o Derwa% e__] ~g— Clickhere to configure the PID
Process Variable] instruction
Tieback ?
Control Varnable ?
PID Master Loop ?
Inhold Bt ?
Inhold Value ?
Setpoint ” .)
Process Variable 7? Fig. 19-54
Output % ”

Inclusion of the data tag to create the list shown above. The PID algorithm uses these data tags
to calculate and control a PID block. For instance, the PV value for the block is mypid.Pv. The
SP or setpoint is mypid.SP. The example screens that follow show the newer IF4XOF2F/A card and
are used to set up the scaling for the present system in the lab.

Controller Organizer ~ 01X @ Controller Properties - Test '?'@
=55 Controller Test
& Controller Tags | Nonvolatile Memary | Memory I Intemet Protocal | Port Configuration | Network I Securty | AMlam Log
.71 Controller Fault Handler General | Major Faults I Minor Faults | Date/Time Advanced | SFC Execution | Project
-3 Power-Up Handler Vendor: Allen-Bradley
=25 Tasks
.68 MainTask Type: 176%-L30DERM CompactLogi™ 5370 Cortraller
% MainProgram Revision: 2312
-8 PID_task
BEE PID_Pragram Name: Test
; Program Tags
.Eapl Description: i
.23 Unscheduled Programs / Phases
=143 Motion Groups .
s | Ungrouped Axes
----- 3 Add-On Instructions “enes
-5 Data Types 0
O User-Defined
- Strings

.. Add-On-Defined

-C Predefined
#-C Module-Defined

253 IO Configuration
= 1769 Bus
..... [[0]1763-L30ERM Test

L8 [111769-IF4FXOF2F/A A

=& Ethernet [
i [f€ 1769-L30ERM Test

OK | [Cancel || ool Help

Fig. 19-55 Controller Configuration of the L30ERM

Ch 19 PID Block 45

"4 Task Properties - PID_task

General | Configuration | Program / Phase Schedule | Monitor

The task was set up to execute every 100 msec. This is shown in the figure below:

Lo [0

[Inhibit Task

Type: |Pesiodic v

Period: 100.000 ms

Priority: 10 5| (Lower Number Yields Higher Priority)
Watchdog: 500.000 ms

[7] Disable Automatic Output Processing To Reduce Task Overhead

Fig. 19-56

oK || cancel Apply

gj | Controller Organizer

» 0 X

=55 Controller Test
-] Controller Tags
-3 Controller Fault Handler

=53 Tasks
5% MainTask
Cﬁ; MainProgram
=459 PID_task
: E|E§ PID_Program
E Program Tags

et
.23 Unscheduled Programs / Phases
(1453 Motion Groups

O | Ungrouped Axes
----- [Add-On Instructions
-5 Data Types
g User-Defined
[j--E@, Strings
- Add-On-Defined
L3 Predefined
(O, Module-Defined
----- 3 Trends
-5 [0 Configuration
&£ 1768 Bus
. [[0]1769-L30ERM Test
B [1]1759-IF4FXOF2F/A AD
£)-35 Ethernet
L. [ff 1769-L30ERM Test
iy 2097-V31PRO-LM yt

My B5 G5 B2 B (2] o v| wp

PID
Proportienal Integral Derivative
FID mypid (]
Process Variable Local1:.Ch1Data
Tieback o
Control Variable Local1:0.Ch1Data
PID Master Loop o
Inheld Bit o
Inheld Value o
Setpoint 0.0«
Process Variable 0.0«
COutput % 0.0«

Fig. 19-57 PID Module Set in Periodic Task

Ch 19 PID Block

46

E C@, Strings

L Add-On-Defined

. @y Predefined

. @0 Module-Defined

3 Trends

EIS 170 Configuration
£ 1769 Bus

o [111769-IF4FXOF2F/A AD
£ &5 Ethemnet

[1769-L30ERM Test
ol 2007-V31PRO-LM yt

59 Module Properties: Local:1 (1763-IF4FXOF2F 1.1) ==

General |Conned.ion | Input Configuration I Input Alarms I Output Configuration | Cutput Lim'rtsl

Type: 1763-FAFX0F2F 4 Channel Input/2 Channel Output, Fast Analog

Vendor: Allen-Bradley

Parent: Local

Name: AD Slot:
Description: %,

Module Definition

Revision: 11
Blectronic Keying: Compatible Madule
Connection: Cutput
Data Format: Integer
Status: Offine I oK I [Cancel] Ppply Help

Fig. 19-58 Configuration of the PID Module Set in Periodic Task

- Strings
., Add-On-Defined
- Predefined
- Module-Defined
[Trends
=1-53 /0 Configuration
Bm 1769 Bus
% [0]1769-130ERM Test
t] [111769-IF4FXOF2F/A AD
-#% Ethernet
. [t 1769-L30ERM Test

Iﬂ Module Properties: Locall (1769-IF4FXOF2F1.1)

General | Connection | Input Corfiguration | Input Alarms I Output Corfiguration I Output Limits |

Requested Packet Interval {RPI): 1005 ms(1.0-750.0)
[Inhibit Module
Major Fault On Controller f Connection Fails While in Run Mode
Madule Fault
Status: Cffline [QK] [Cancel Apphy Help
Fig. 19-59

Ch 19 PID Block 47

(- Strings

[Add-On-Defined

- Predefined

(-5 Module-Defined

3 Trends

S0 Configuration

£ 1769 Bus

L [[0]1769-L30ERM Test
-8 [1]1769-IFAFXOF2F/A AQ
5= Ethernet

L. [1769-L30ERM Test
o5 2007-V31PRO-LM yt

Fig. 19-60

(@ Strings
(@ Add-On-Defined
(@ Predefined
(#-Cgp Module-Defined
[Trends
-3 IO Configuration

- 1769 Bus

{f [0]1769-L30ERM Test
8 [1]11769-IF4FXOF2F/A AQ
&5 Ethernet

- {f& 1769-L30ERM Test

Ch 19 PID Block

|57 Modute Properties: Local:d (1769-F4FXOF2F1.1) ==
General I Connection | Input Corfiguration | Input Alams | Output Corfiguration I Output Lim'rtsl
Channel| Enable Input Range Filter Data Format
0 O] [1vite10v |+f60Hz ||| Raw/Proportional ||
1 V] |4mAto20ms 4] 80Hz |o)[ScaledforPD |4
2 O [1vio10v [£f60Hz |=|| Raw/Proportional ||
3 O] [1vite10v |+f60Hz ||| Raw/Proportional ||
[Enable Real Time Sample (RTS) |0 = ms
[Enable Timestamp
Status: Offline [0K] [Cancel] Apply Help
5T Module Properties: Local:1 (1769-IFAFXOF2F1.1) [ro|[-E | 2]
| General I Connection I Input Configuration | Input Alams | Output Configuration | Output Limits
Channel| Enable Output Range Data Format
1] 4mA to 20mA | | Raw/Proportional |«
1 4mA to 20mA ||| Scaled for PID -
Status: Offline [oK] [Cancel Apply Help
Fig. 19-61

48

----- [Controller Fault Handler
----- 3 Power-Up Handler
-5 Tasks

E% MainTask

Cﬁ; MainPregram
=58 PID_task

Elﬂ PID_Program

.| Program Tags

e Ep]_

£-23 Motien Groups

=423 Data Types
J:ﬁ User-Defined
Cﬂ, Strings

. Add-On-Defined

a1 Predefined
- Module-Defined

=25 /0 Configuration
-1 1769 Bus
- [t [0]1769-L30ERM Test
- B [1]11769-IF4FXOF2F/A AD
5-2% Ethernet

[t 1769-L30ERM Test

Fig. 19-62

= mypid

fonn1

H-mypid CTL

134217728

—mypid.EN

—mypid CT

—mypid.CL

—mypid PNT

— mypid.DOE

— mypid SWM
— mypid CA

----- [(3 Unscheduled Programs / Phases

— mypid.MO

—mypid.FE

—mypid MDF

—mypid NOBC

—mypid NOZC

—mypid .|M|

—mypid SPOR

—mypid OLL

—mypid.OLH

—mypid EWD

— mypid . DVINA

—mypid DVPA

—mypid .PVLA

—mypid PYHA

—mypid.5P

—mypid .KP

[]

—mypid. Kl

L I O . I e e e . e e . R R e e e s I e R = =]

=
-

— mypid.KD

[
=
L]

—mypid.BIAS

0.0

—mypid MAXS

16383.0

—mypid . MINS

0.0

—mypid.DB

0.0

—mypid.50

0.0

—mypid . MAXD

100.0

—mypid . MINO

0.0

The Program Tags for the PID mypid are shown with variable contents. These variables are
useful as tag references used for communicating with the variables through program control.

—mypid UPD

0.1

—mypid PV

0.0

Ch 19 PID Block

—mypid. ERR

0.0

49

P
0 Proportional Integral Derivative

FID mypid [..]
Process Variable Local1:1.Ch1Data
Tieback 0
Control Variable Local:1:0.Ch1Data
PID Master Loop 0
Inhold Bit 0
Inheold Value 0
Setpoint 00=
Process Variable 00=
Cutput % 0.0=

’
PID Setup - mypid et S|

Tuning |[:ur|ﬁgu|atinn | Alams I Scaling I Tag |

. _ Dﬂ'— re Manual Modes
Setpoint (SF): : = [Manual «
Set Output: oo = €% [] Software Manual &
Output Bias: 0.0 e
Tuning Constants
. . . D4 L e Reset Tuning Constants
Proportional Gain {Kp): to the values they had
i i 10 PRy upon entry into the PID
Integral Gain (Ki): 5 Setup dislog
Dervative Time (Kd): 0.0 €5 W €

Setpaoint (5P): 0.0 PV Alam: Mone
Process Varable: 0.0 Deviation Alam: Mone
Errar: 0.0 Cutput Limiting: MNone
Outpt: 0.0 s Ermor Within Deadband: No
Tieback: 0.0 s Setpaint Out of Range: Mo
Mode: Auto PID Inttialized: No

][Cancel] Applhy Help

Fig. 19-63 PID Tag Setup-Tuning

The tuning tab shows the variables used to tune the PID block. The Kp, Ki and Kd tuning
constants are probably the best variables for the water valve. These constants should not vary too
much from the numbers shown or the PID block may become unstable.

Ch 19 PID Block 50

The configuration tab shows the variables used to set up the type of block used. The variables

PID
Proporticnal Integral Derivative

FID mypid [
Process Variable Local1:1.Ch1Data
Tieback 0
Control Variable Local:1:0.Ch1Data

PID Master Loop 0
Inhold Bit 0
Inhold Value 0
Setpoint 0=
Process Variable 0.0+
Output % 0.0+

r
PID Setup - mypid

2]

| Tuning | Configuration |Fu|arrns | Scaling I Tag |

Se2Cs.

PID Equation: | Independent -]
Cortral Action: [SP - PV "]
Derivative Of: [Ermor "]
Loop Update Time: 0.1 =

CV High Limit: 1000 H %
CW Low Limit: 0.0 ca| A
Deadband Value: 0.0 =

[] Mo Derivative Smoothing

[] Mo Bias Calculation

[] Mo Zeno Crossing for Deadband
[C] PV Tracking

[Cascade Loop
Cazcade Tvpe: | Slave

Setpoint (SP):
Process Varable:
Emar:

Output:

Tieback:

Maode:

=]
=]
ot

PV Alam: Mone
Deviation Alam: Mone
Output Limiting: Mone

Emor Within Deadband: Mo
Setpoint Out of Range: Mo
FID Initialized: Mo

| oK

J [

Cancel] Apply Help

Fig. 19-64 PID Configuration

seen above are the ones used in the download example. There are a number of variables that are

not used.

Ch 19 PID Block

51

P
0 Proportional Integral Derivative
PID mypid [
Process Variable Local:1:1.Ch1Data
Tieback 0
Control Variable Lecal1.0.Ch1Data
PIC: Master Loop 0
Inheold Bit 0
Inhold Yalue 0
Setpoint 0o+
Process Variable INIE
Output % INIE
PID Setup - mypid -2
| Tuning | Corfiguration | Alams |Scaling I Tag |
Process Vanable (PV) High: 0.0 5
Process Varable (PW) Low: 0g s
Process Varable (PV) Deadband: 0.0 -
Posttive Deviation: 0a s
MNegative Deviation: 0.0 <
Deviation Deadband: 0.0 -
Setpoint (SP): 0.0 PV Alam: Mone
Process Varable: 0.0 Deviation Alarm: Mone
Emor: 00 Output Limiting: Mone
Output: 0.0 i Emor Within Deadband: Mo
Tieback: 0.0 s Setpoint Out of Range: Mo
Mode: Auto PID Initialized: Mo
| ok || cancel || epi Help

Fig. 19-65 PID Alarms

The alarms tab shows the alarm variables used to set up the block. The alarm limits are ignored
for now but in a real application will be necessary when setting up a system of alarms.

The scaling tab shows the variables as set up in the block. We need to make a decision whether
to scale the engineering units. The unscaled PV and CV are listed at 3200 low to 21000 high. The
Engineering Units for the PV may be changed or left as is. For water, the engineered units
should be 91 gpm max.

Ch 19 PID Block 52

|Tur1ir1g |Cunﬂgumtiun | Fv.larrns| Scaling |Tag |

Process Varable (PV)
31085 —> Unscaled Max.: = Engineering Unit Max.: 91.0 =
6217 —> Unscaled Min.: = Engineering Unit Min.: 0.0 e
Cortrol Varable {CV) Tieback
31085 —> Max. (=t 100 %) = Mese—iz—H08) 00 =
6217 —T> Min. (@t 0 %) = Min. (@t 0 %) 0.0 =
[]PID Intiglized «
Py
] Proporticnal Integral Derivative
PID mypid (]
Process Variable Local:1:1.Ch1Data
Tieback]
Control VWariable Local1:0.Ch1Data
PID Master Loop]
Inheold Bit]
Inhold Value]
Setpoint 0o+
Process Variable 0.0«
Output % 0.0+
”
PID Setup - mypid S
| Tuning | Corfiguration | Alams | Scaling | Tag |
Mame: yiypic |
Description: A
Type: Base
Data Type: FID
Scope: Cﬂ; PID_Program
Edemal Read\Write
Access:
Setpoint (SP): 0.0 PV Alam: Mone
Process Varable: 0.0 Deviation Alam: Mone
Emor: 0.0 Output Limiting: MNone
Output: 00 A Emor Within Deadband: Mo
Tieback: 0.0 s Setpoint Out of Range: Mo
Made: Auta PID Initialized: Mo
|| Cancel || Aoy Help

Fig. 19-66 PID Setup

Ch 19 PID Block

53

PID Setup - mypid X

Tuning | Configuration | Alamns | Scaling | Tag |
_ Dﬂ'— iy Manual Modes
Setpoirt (SP): : z [Manual =
Set Output: 0.0 = €% [Software Manual «
Output Bias: 0o e
Tuning Constants
: . . 04 e Reset Tuning Constants
Proportional Gain (Kp): to the values they had
) . 10 Sy upaon entry into the PID
Integral Gain (Ki): 5 Setup dialog
Derivative Time (Kd); 0.0 Tes W €

Setpoint (SP): 0.0 PV Alam: High
Process Vanable: 0.011105076 Deviation Alam: Low
Emor: 0.011109076 Output Limiting: Low
Cutpt: 0.0 i Emar Within Deadband: Mo
Tieback: 0.0 W Setpoint Out of Range: Mo
Mode: Auto PID Initialized: Yes

| oK || Cancel || fppi Help

Fig. 19-67 Tuning Parameters

PID Setup - mypid S

Tuning |Cnnﬁgumtiun |.Pdarrns | Scaling | Tag |

_ . F0.0 re Manual Modes
Setpoirt (SP): : = [Manual &
Set Output: 41.285263 = €% [Seftware Manual «
Output Bias: 0.0 = %
Turing Constants

) i .04 L e Reset Tuning Constants
Proportional Gain (Kp): to the values they had
) i 10 PRy upon entry into the PID

Imtegral Gain (Ki): 5 Setup dislog
Dervative Time (Kd): 0.0 T &5 E &

Setpoint {SP): H0.0 PV Alarm: High
Process Varable: 54 57389 Deviation Alam: Low
Ermar: -4 5738918 Cutput Limiting: MNone
Output: 41 285263 g Emor Within Deadband: Mo
Tieback: 0.0 g Setpoint Out of Range: Mo
Mode: Auto PID Intialized: Yes

| oKk || cance || ool Help

Fig. 19-68 Setpoint Trial
Ch 19 PID Block 54

PID Setup - mypid e

Tuning™ |Cunﬂgu|atinr1 IAIarrns | Scaling | Tag |

_ 0.0 all e Manual Modes
Setpairt (SP): : 2 [Manual «
Set Output: 40,0 2 faak Software Manual &
Output Bias: 0.0 SRk
Turing Constants
) . S04 =l e Reset Tuning Constants
Proportional Gain (Kp): ta the values they had
; . 10 = e 14 upan entry into the PID
Imtegral Gain (Ki): g Setup dialog
Dervative Time (Kdy: 0.0 S es W -

Setpoirt (SP): 80.0 PV Alam: High
Process Vanable: 50557407 Devigtion Alam: High
Ermar: 29442593 Cutput Limiting: Mone
Outpurt - 40.0 i Errar Within Deadband: Mo
Tieback: 0.0 o Setpoint Out of Range: Mo
Made: Software Manual PID Initialized: Yes

| oK || cancel || appy || Hep

Fig. 19-69 Manual Trial

General |5tates | Timing | Common | Cunnediuns| LOOP 2
Appearance
Border style: Border width: 100
- Border uzes back color
[Halsed v] 4
[Highlight colar 80
Back style:
| Solid - e
Shape: 40
[Hectangle v] 0
State zettings 0
Murnber of states: Meut state bazed on:
2 - [Current State -

Touch marginzs

Harizontal margin: Yertical margin;
1] 1]
Other
Audio

Fig. 19-70 Setup of the Faceplate
Ch 19 PID Block

RIETRIRIR!

Fig. 19-72

Numeric Input Enable pmperﬁ. .

Gereral | label | Mumeric | Timi

Common | Connections

Appearance
Border style: Border width: Border uzses back colo
Raised =] 4 B Eack color
Back style: Pattemn style: B Eorder color

Shape:
Rectangle -

Touch margins

Horizontal margin:
1] 0

Other

Audio
F.ep navigation
T ake focus on press

Solid | |Mone = | [Pattern color

O Highlight color
Elink.

"Yertical margin:

Fig. 19-71

Tag / Expression

{[ehad]Program: PID. Praaram, rypid 50}

Optional Exp

Enter

Enter Handzhake

kirirnLam

b awirmrm

Ch 19 PID Block

56

Continuing the Allen-Bradley Configuration Pages

After you enter the PID instruction and specify the PID structure, you use the configuration tabs
to specify how the PID instruction should function.

To specify tuning, select the Tuning tab. Changes take effect as soon as you click on another

field.

To configure the PID:
Specify Setpoint (SP)

Set output %

Output bias

Proportional gain (Kp)

Integral gain (Ki)

Derivative time (Kd)

Manual mode

PID equation

Control action

Derivative of:

Loop update time

CV high limit

CV low limit

Deadband value

No derivative smoothing

No bias calculation

Enter a setpoint value (.SP).

Enter a set output percentage (.SO) (In software manual mode, this value is
used for the output. In auto mode, this value displays the output %.)

Enter an output bias percentage (.BIAS).
Enter the proportional gain (.KP).For independent gains, it’s the
proportional gain (unitless). For dependent gains, it’s the controller gain

(unitless).

Enter the integral gain (.Kl). For independent gains, it’s the integral gain
(1/sec). For dependent gains, it’s the reset time (minutes per repeat).

Enter the derivative gain (.KD). For independent gains, it’s the derivative
gain (seconds). For dependent gains, it’s the rate time minutes).

Select either manual (.MO) or software manual (.SWM). Manual mode
overrides software manual mode if both are selected.

Select independent gains or dependent gains (.PE). Use independent when
you want the three gains (P, I, and D) to operate independently. Use
dependent when you want an overall controller gain that affects all three
terms (P, I, and D).

Select either E=PV-SP or E=SP-PV for the control action (.CA).

Select PV or error (.DOE). Use the derivative of PV to eliminate output
spikes resulting from set-point changes. Use the derivative of error for fast
responses to set-point changes when the algorithm can tolerate
overshoots.

Enter the update time (.UPD) for the instruction.

Enter a high limit for the control variable (.MAXO).

Enter a low limit for the control variable (.MINO).

Enter a deadband value (.DB)

Enable or disable this selection (.NDF)

Enable or disable this selection (.NOBC).

Ch 19 PID Block 57

No zero crossing in dbnd
PV tracking
Cascade loop

Cascade type

Specify Alarms
PV high:

PV low:

PV deadband:
Positive deviation
Negative deviation
Deviation deadband

Specify Scaling
PV unscaled maximum

PV unscaled minimum

Enable or disable this selection (.NOZC).
Enable or disable this selection (.PVT).
Enable or disable this selection (.CL).

If cascade loop is enabled, select either slave or master (.CT).

Enter a PV high alarm value (.PVH).

Enter a PV low alarm value (.PVL).

Enter a PV alarm deadband value (.PVDB).

Enter a positive deviation value (.DVP).

Enter a negative deviation value (.DVN).

Enter a deviation alarm deadband value (.DVDB).

Enter a maximum PV value (.MAXI) that equals the maximum unscaled
value received from the analog input channel for the PV value.

Enter a minimum PV value (.MINI) that equals the minimum unscaled value
received from the analog input channel for the PV value.

PV engineering units maximum Enter the maximum engineering units corresponding to .MAXI (.MAXS)

PV engineering units minimum Enter the minimum engineering units corresponding to .MINI (.MINS)

CV maximum

CV minimum

Tieback maximum

Tieback minimum

PID Initialized

Enter a maximum CV value corresponding to 100% (.MAXCV).

Enter a minimum CV value corresponding to 0% (.MINCV).

Enter a maximum tieback value (.MAXTIE) that equals the maximum
unscaled value received from the analog input channel for the tieback
value.

Enter a minimum tieback value (.MINTIE) that equals the minimum
unscaled value received from the analog input channel for the tieback

value.

If you change scaling constants during Run mode, turn this off to reinitialize
internal descaling values (.INI)

Ch 19 PID Block 58

Shifting to the HMI Program, RS Studio is entered and the Libraries choice and then Face Plates
choice is entered.

Fig. 19-74 Under Libraries — Face Plates

With RSStudio, build a screen from scratch using a face plate. There are a number of face plates
in the template from which to choose.

Ch 19 PID Block 59

Fig. 19-75 HMI Loop Face Plate

The various parts of the face plate are animated. The next screen shows the details:

Edit

Connections..,

Key Assignments...

Arrange

Paste without localized strings
Delete

Fig. 19-76 Animation of the Arrow

Ch 19 PID Block

Animation Ylﬂ'bﬂity...
Color...
Convert to Wall
o Wallpaper ill...
Tag Substitution... Horizontal Position...
P Panel v Lg::;:l Position...
Object Explorer 5
Height...
Cut Rotation....
Copy Horizontal Slider...
Paste Vertical Slider...

60

| S

Connections...

Arrange »
Animation L4

Convert to Wallpaper

I Tag Substitution...

Property Panel
Object Explorer

Cut

Copy

Paste

Paste without localized strings
Delete

Duplicate

Copy Anirmation

Paste Animation

Global Object Defaults
Global Object Parameter Values
Global Object Parameter Definitions

Fig. 19-77 Animation of the Numeric Entry

Ch 19 PID Block 61

Building the Faceplate

The faceplates below are samples of single loop faceplates that are accepted by most industry.
They resemble faceplates of actual PID controllers used prior to the computer. They may be
more or less sophisticated than these and may include the 3-d look or not. These are samples of
what is expected for proper HMI design of a faceplate.

LOOP 2
PV SP DEVIATION
100 _PV 22 100 -~
80 - 80
60 - B0
40 - 40
20 l l 20
0 0
PV % PV %
| wanninn [NNRNN
SF % SP %
J |
CV % CV %
| NNNNN [NN
LTI MANUAL
0 100
SETPOINT
CLOSE
OUTPUT NN

Fig. 19-78 One of Many

Choose a faceplate and begin modifying it for the application. Several tags are provided with
each faceplate. These tags may set a number, allow entry of a number, move an animated arrow
or fill a sliding window. Bits may be added for auto/manual and local/remote. Note that alarms
may also be included such as the red and yellow tags above.

These faceplates may be modified with additional components. They may also be built from
scratch using existing components. At one time, the faceplate could be unbundled. While no
longer possible, the individual components may be animated by clicking them and then
answering the questions.

Ch 19 PID Block 62

The next two pages show the animation of the faceplates from Siemens and Allen-Bradley using
the faceplate as the starting point for the animation. While the faceplate given is not available
from Siemens, it can be built from parts using existing Siemens components. The up and down
triangles shown in the earlier faceplate may also be added to these faceplates for a more complete
system. The logic in the Siemens faceplate below show how to add the triangles.

The following logic can be used to add 1 % to the full scale value of the Setpoint. Similar logic
can be used for 5% increase or for 1% or 5% decreases. The triangle buttons on the original
faceplate showed these triangles. Similar buttons can be added to the CV or Output logic when
the PID algorithm is in manual. Similar logic can be added to the Allen-Bradley program.

UWMO .0
*add_1_SF_ . a2 . ADD
Button” ISP—VE”I Real
I p | = EM ENOD
LI | Real |
o 0T 4P Full_Scale_ WD2 %WMD2
Add_1_5P_05 less_const "SP_Val® — INT OUT - "SF_val"
WM D6
"One_PCT_Full_
Scale® — N2 sk

Fig. 19-79 Logic for Incremental Change of Setpoint

The following from HPHMI examples in Chapter 15 show a group of PID controllers. Each
gives just the information necessary for the running of that controller. To change the mode of the
controller or to run the controller in a mode other than remote requires a more complete
faceplate. To add this feature, simply program an invisible button that calls a pop-up faceplate
similar to the one below.

RECYCLE COMPRESSOR K43
Cool Suct Inter Dsch Swct Inter Dsch E.Wib N.Vib W.Vib Motor Qil o
gpm psig psig psig degF degF degF mil mil mil Amps psig degF
f t___,Alan'n
Indicator
[_] -]] m|m [] - [] -
w | Interlock
B = . 1 01 M1 | [= Threshold
7 | | b’ Alarm
- .2 a Range
i1 Desirable
—H 1 L 14" Operating
Range
|: Alarm
2 - = - - - - - - - - - Range
42,7 387 931 185 95 120 170 12 8 9 170 1] 29

Fig. 19-80 Analog Depiction of Information

Ch 19 PID Block 63

indications, Interlock indication, and recent range

Moving Analog indicators with Normal Range, High, Hi-Hi, Low, and Lo-Lo alarm

When
o % ﬂ°w Sl Ty
Range I ’
[<+— Hilam based on [J {“ Dark blue bar
D et the highest m«oa | shows .
[High Range 1 alamin Abmu j |» variabiityin a
B Desirable effecton stlin specified tme
Operating the sensor effect penod such
Range shown Priceity 3 ;;:':2
asa ight blue Hi Alarm
shaded area sn [mm
afiet Sysoms)
<« Abnormal Low ™
W AR LR LR
H ,'lunm u u g H SP %
na*\\:fMNM" 81.1 91.1 5 BAD— |
Interlock Function CV %
< > | NNNMN
Fig. 19-81 Further Explanation of Moving Analog Indicators L %
CLOSE

Two new topics not explored in the earlier PanelVView were alarm screens and trends. Alarm

banners were available in the older PanelView but were not as flexible as the newer alarm screen.
Also, trends are needed. Trend data is very important in that a trend of any variable can be used

to diagnose a problem either in the start-up phase of a project or later during daily operation.
Historical data trends will show long-term trends as well.

Tank of Liquid Fat

Control Valve

\V/

A

5V &P
100
80
B0
40
20
0

:b.

I NNP<NM

SP%

C'J %
NNr- MM

Q..

1 U
CLCSE |

Fig. 19-82 Imaginary Button calling Faceplate

Ch 19 PID Block

64

This figure shows a partially finished graphic of the ‘fat’ portion of the dog food extruder. When
the invisible button around the valve is energized, the PID block faceplate appears allowing
control of the valve in auto and manual mode. Local and remote control may also be added to
the screen with the faceplate. The pipe may be enhanced as well to show flow when the valve is
open and no flow when the valve is closed.

The graphical application may be run from the PC or downloaded to a target system. The tags
for the graphical screen may be those in the PLC. Care must be taken when selecting where the
process is to be displayed. If it is displayed from the computer screen, then Local is selected. If
the display is downloaded to the Panelview32, then Target is selected. In order to display the
process locally, a number of steps must be incorporated for the local application to correctly
“see” the PLC.

Tuning the PID Block

It is interesting that a number of different PID algorithms exist. No one standard equation is used
in all controllers. While the PID block has the same general function, nomenclature and the
action of the block may differ.

Proportional Band = 100/gain
Integral = 1/reset
Derivative = rate — pre-act

Three classifications of PID algorithms are considered major classes of design equations. They
are ideal, parallel and series or interacting. Equations for the three are listed below:

\deal: Output = Kc[e(t) + % [ed () + D%}
Parallel: Output = Kpe(0] +1 [e()d () + DV

Series (Interacting) Output = Kc[e(t) + Ilje(t)d (t)}[l +D %}

Different manufacturers use one of the above control algorithms as the basis for their PID block.
The three do not respond identically to different situations. A control algorithm from one
manufacturer cannot be guaranteed to work identically to the control algorithm of a second
manufacturer. Differences in the derivative action are especially critical to the operation. For
this reason, many do not use derivative action in the tuning of a loop. To not use derivative
action, set the derivative or D value to zero.

Manufacturers such as Honeywell, Bailey, Allen-Bradley, Modicon, Foxboro, Fisher, and Texas
Instruments pick one of the above types of equation to implement on their controllers. Some
manufacturers allow a choice between which algorithm is used. It is the engineer’s or
technician’s responsibility to understand the application, the PID equation, and choose the best

Ch 19 PID Block 65

overall solution for the application.

Using the PID Algorithm to Control a Process

To configure a system, a flow diagram must be drawn to identify the parts of the system. The
example below is of a dog-food manufacturing facility. The basic process for making the dog
food is the extruder whose function is to make dog food from dry ingredients along with some
steam, fat, and other wet ingredients. As the motor speeds up, more ingredients are to be added
and as the motor slows down, the added ingredients are to slow down as well. The PID block
will be used to add one wet ingredient, fat.

Other Raw
Ingredients
Tank of Liquid Fat
Fat
Control Valve
Dog Food

Extruder Motor -_ Extruder

Fig. 19-83

—

Kibbles ‘n Bits

Extruder/Mixing System making Dog Food

Since the extruder motor speed runs the feed speeds for the other ingredients in the process, its
speed sets the master speed for the process. All other feed speeds will be a percent of the motor

speed.

Control signals for the Dog Food Control include:

Fig. 19-84 Cascade or Remote Signal

Ch 19 PID Block

Motor Speed
Motor Speed Motor Speed Motor Speed Motor Speed
Feed Rate Feed Rate Feed Rate Feed Rate
Ingredient a Ingredient b Ingredient c Fat

66

When the PID algorithm is in remote, the motor speed furnishes the value. Variables are usually
multiplied by a constant with motor speed * multiplier giving the value of the setpoint when the
local-remote switch is in remote.

The example will be used as a lab exercise at the end of the chapter. Design of the faceplate will
show selector switch positions for local versus remote and manual versus auto. Usually a
graphic of the system is provided with a button activated that shows the faceplate. The screen
with the faceplate is not the primary screen but is accessed as needed. The process screen
displays the entire process with various pop-up buttons available to show the PID algorithm for
that portion of the process as the operator needs to access a specific PID block. Many times the
buttons to activate the PID block are configured as invisible. If the operator pushes the area
around the valve — “fat’ valve in this case — the PID block for ‘fat’ will be displayed. The
diagram below follows the signal path through the PID block and is useful as a programming aid.
Looking only at the Fat Feed, the following process flow will be implemented:

Motor Speed
|
Multiplier Local Setpoint
o—-
switch in remote or cascade switch in local
Flow Valve to
Proces Variable Setpoint in PID
> PID Solver
Cv or Output Manual Cv
- - C - -
switch in auto switch in manual

Signal to Valve

Fig. 19-85 Motor Speed Settings for Ingredient Adds

Bumpless Transfer

When the PID block is switched from manual to auto, the function responds to the SP presently
available to the block. If the process is sensitive to sudden changes in PID output, then the
program should include logic to give the output a signal matching the present flow when the
block was in manual. This is referred to as bumpless transfer.

With the more advanced PID blocks of the PLC/5 and Control Logix platform, the output value
that is described as the value to write to so that the output will be bumpless is the .SO value. The

Ch 19 PID Block 67

.SO value of the PID block should be given the value that the operation would like the output to
have when the PID block is first put in Auto. This value is usually the value of the output when
the PID block is in Manual. The MOV operation should guarantee bumpless transfer when the
block moves from Manual to Auto.

For example, if the block was in manual and flow was 25.5 gallons per minute, when the PID
block is transferred to auto, flow should continue to maintain 25.5 gallons per minute. With PID
blocks, the addition of logic requires writing the present flow rate to the setpoint when the block
transfers from manual to auto.

Non-Standard Controller Modes

A number of additional modes may be created for the PID block. Bits must be programmed
externally to the PID block for many of these other control modes.

An example is Control Output Tracking (COT). In COT, the loop is forced to manual and the
output moves to a programmed position until conditions in the program are stable enough for the
system to proceed to auto. In COT, the mode shown to the operator is AUTO with COT. The
system is perceived to be in Auto but the output or CV is actually in Manual.

This mode is ideally suited for burner start-up with a large number of burners. When the burners
are first turned on, the gas and combustion air are not able to be controlled under automatic
control. The burners need to operate in the extreme low range of the CV but the control valve
cannot be allowed to completely shut off. In the low range of most valves, proper flow rates are
not accurate and control becomes very unstable. COT allows the PID loops to operate for a set
period of time in manual at a preset position until the burners are all started and flows are at their
mid-range positions more capable of accurately being controlled. Then the PID algorithms take
effect in Auto and the PID loops begin the process of controlling the temperature in the furnace.
To the operator, the system appears to be in auto but in the program, the PID algorithm is being
controlled in manual until the auto mode is capable of accurately controlling the PID block.
COT is to be used only in start-up situations or in recovery operations in which it is necessary to
operate at a low-end setting to keep the burner system from shutting down.

When operating in a mode such as COT or Maintenance and when the mode is removed, the loop
should resume its former status.

Use a toggle input from the HMI and the following logic to program bits for A/M, L/R, COT,
and Maintenance.

B|~°>1(|)/0 El”orl B3:0/0
A 0O
Remote Remote .
B3:1/0 Error, B3:1/0 Fig. 19-86

| | |

| ﬂ/IL O
Use of toggle bits to turn on a mode may not at first resemble a seal or latch circuit but in fact
they act in a manner similar to both. The toggle bit (B3:0/0 or /1) may be turned on by an
operator through the HMI and will remain on until the operator removes the toggle or until the
NC contact logic interrupt the flow. When this happens, the circuit reverts to the safer off state.
In the example of auto/manual (bit B3:0/0), the bit will turn off to the manual state. Note that the
actual state of the SLC Auto/Manual bit is reversed from this logic.

Ch 19 PID Block 68

Floating Point PID

The subject of what type of PID block to choose is an easy decision. Always use the Floating
Point PID block if floating point is available. The number representing the flow or pressure or
temperature is an actual number with units and no need to be transposed to another number
elsewhere. With the integer PID block, it is very important to keep a record of the various
transpositions so the PID block can be used at maximum efficiency with numeric values sent to
the operator that relate to the process.

PID function blocks using floating point numbers are preferred. For instance, if flow varies from
0 to 45 gpm, then the numbers entered for minimum SP and maximum SP’s would be 0.00 and
45.00. However, to gain accuracy, any integer setpoint should use the entire range from 0 to
16383. The min. value 0.00 equals 0 and the max value 45.00 equals 16383. With the integer
PID block, there is a translation in the values between internal units and values displayed to the
operator. For examples in the text, this translation is ignored. In an actual application, however,
each translation must be implemented with an appropriate SCP instruction. Effort to keep all
translations in order is not seen as necessary and most complex applications tend to use floating-
point PID.

Calibration may be used to determine units of flow. In order to determine flow, a test is run with
a watch and a calibration system. For instance, running a 5 gallon bucket full of water in a
certain time is an acceptable method of calibrating flow through a valve. Repeating the
calibration a number of times over a range of settings gives a better overall measurement.

Fault Circuits

Faults occur at different levels in the program and require a variety of responses. Some types of
faults should shut the process down. Shutting down may require that valves turn off. Many
times, to shut down automatic operation is desired and the valves are to stop moving, staying in
the same position. If the desire is to move from Auto to Manual, the bit in the PID algorithm
labeled AM must be changed from 0 to 1. The bitis set to 0 in Auto and 1 in Manual. The fault
contact represents various faults that can harm the process if the PID algorithm is allowed to
continue in auto.

Two levels are present in most processes. As with the dog food application, the process is
capable of being run in remote or local for both automatic modes or in manual. In a hierarchical
picture, remote mode is favored over local mode and the manual mode is the least desirable mode
to run the process. This may be pictured as:

Bit B3/x on Remote Auto A “”03
Bit B3/y on Desired
B%t B3/x off Local Auto

Bit B3/y on

Bit B3/x off Manual (Local) v Lea$
Bit B3/y off Desired
Bit B3/x is the Remote Control Bit Fig. 19-87

Bit B3/y is the Auto/Manual Control Bit
Ch 19 PID Block 69

Note that when the PID block is in auto, the control bit is on. A second bit must be programmed
to reverse the status of this bit to turn off the AM bit in the PID block to correctly run the PID
block.

One of the control button types in PanelView is ideal to program the Remote/Local and
Auto/Manual layout for the PID block. It is the Multistate Button. Define two multistate buttons
for the process above. Reference the first multistate button to B3/x to represent Remote or Local.
Reference the second multistate button to B3/y to represent Auto or Manual.

Let B3:0/0 represent the remote/local mode and let 83: 0/1 represent auto/manual.

Fault
From
Femote
PID in Eemote to Loc PID i Auto PID m Femote
B30 B3:2 B30 B30
)|] F - J E 7
0 5 1 0
Fanlt
From
Auto
PID in Auto to Man FID in Auto
B3:0 B33 B30
0002 1 E - i)
1 S 1
PID Block
PID in futo A0 Bat
E3:0 M0
0003 —— G o
1 _ 1
Fig. 19-88

The logic for control bits for remote/local and auto/manual is provided. Multistate pushbuttons
are programmed in the HMI for 83:0/0 and B3:0/1. B3:0/0 is labeled Remote when the bit is
on and Local when the bit is off. 83:0/1 is in Auto when the bit is on and Manual when the bit
is off. The state is set to ‘on’ when the operator places the buttons in the remote or auto mode.
The operator can also place the buttons in local or manual mode. Operation of the process can
also place the process in the local or manual mode as well when faults occur. Faults as
represented by B3:2/5 will energize the NC contact and take the PID block from remote to local.
Faults represented by B3:3/5 will energize the NC contact and take the PID block from auto to
manual.

Multistate buttons are used for remote/local and auto/manual so one button can be used instead of
two buttons. Most graphical applications encourage the use of a single button as opposed to two
separate buttons. Using the multistate button provides a single button with toggle functionality.
Multistate buttons also respond to program logic in the PLC and will turn on or off with logic
internal to the program.

To complete the mode program for the PID block, be able to add logic to the rungs above to turn
on or off 83/0 and B83/1 from the program as well as from the HMI. From the HMI software,
configure two multistate buttons. These buttons are programmed as follows:

Ch 19 PID Block 70

Button 1

B3:0/1 Tag

Off Local

On Remote .

Fig. 19-89
Button 2

B3:0/0 Tag

Off Manual

On Auto

Faults that move the operation from remote to local are different than faults that move the
operation from automatic to local. Always, the option most highly sought is for the operation to
run in remote. However, if a fault occurs in the process but not necessarily in the individual PID
block, the fault should cause the process to revert to local from remote and sound an alarm.

If a fault occurs in the PID block, the best practice is to change the block from automatic to
manual. One of these faults is referred to as anti-reset windup. In manual, the algorithm is not
active and the error term is reset to zero eliminating the integral term from growing with a
growing error.

Example of Fault Causing Switch from Remote to Local

When looking at PV, a temperature profile may be found to form a composite PV. The values of
a number of different temperature inputs are summed together. The sum is weighted with the
weighted values having to add to 100%. If the weights do not add to 100%, the individual PID
blocks used to control their CV outputs are switched to local mode. The local setpoint is used
until the weights have been adjusted to add to 100% and the operator switches control back to
remote.

Weight 1 X Temperature 1
Weight 2 X Temperature 2
Weight 3 X Temperature 3
+ Fig. 19-90
Temperature PV

In the example, Weights 1-3 must add to 100 % for the Temperature PV to run the temperature
PID block in remote.

Ch 19 PID Block 71

Example of Fault Causing Switch from Auto to Manual

When operating between Auto and Manual, the PID block should be monitored so that a failure
to achieve the desired result is not defeated by faulty equipment. If the equipment fails, the PID
block should be faulted to the Manual Mode and an alarm sounded. For instance, if a valve is
attached to the CV and the valve does not turn when the CV changes, this should be considered a
fault condition. To find if this is the case, the CV or output is compared to a position on an
analog scale. The sensor is usually nothing more than a potentiometer. If the CV does not keep
within 10% (or other constant) over a time period such as 10 seconds, the PID block for the valve
should fail.

Another type of failure is the restriction of flow that can cause the CV to travel to full ‘on’. A
restriction in flow may be simulated by simply pinching off a hand valve in the line of flow. Any
restriction over time can cause the CV to not be able to control the process. If the CV is allowed
to go to 100% for a period of time, the PID block should fault and the output be placed in
Manual. Ranges other than 100% may be used as well with a time delay appropriate to shut
down the process in abnormal conditions. The programmer must be able to decide acceptable
ranges for these cutoffs, usually through experience with the PID block and with the process.

Eliminating Anti-Reset Windup

In order to avoid anti-reset windup of the PID controller, the controller must be switched from
auto to manual when conditions exist that would wind up the controller integral term. The
integral term is reset to zero in manual mode. To detect integral error, monitor the PV. If the PV
does not follow the CV after a preset time, something is perceived to be wrong with the system
and action should be taken.

For example, a check valve may be turned off starving the system. When this happens, the PID
controller must be placed in manual to eliminate windup and an alarm sounded.

An experienced operator will find the problem and reset the loop to auto control. And the system
will continue to function with only a small upset to the system. If the PID block is allowed to
wind up over several minutes or hours, the output valve may stay open 100% (or closed 100%)
for long periods of time after the system comes back into operation before control is re-
established. In this time period, excessive gas may flow through a gas valve causing an
explosion or too much liquid may flow through a control valve flooding a process vessel
downstream. In any case, the result usually upsets the entire system causing scrapped product or
worse.

When switched from Auto to Manual, the error integral term is reset to zero:

Auto

Manual

I I Fig. 19-91
E-0 E=0

windup may occur no windup

When switched from Manual to Auto, the error integral term starts at zero and adjusts:

Ch 19 PID Block 72

Auto

Manual

Fig. 19-92
jE=o jEiO

no windup error term initially O

Changes from Manual to Auto are usually made by the operator and imply that the operator is
aware that a problem occurred, has found the problem and is ready to put the process back into
Auto.

Building a Ramp Block

A ramp block is a function block that is added in front of a PID block to change the SP over a
period of time instead of immediately. It is constructed in the PLC diagram to increment from
the old SP to the new SP in increments of 1. More sophisticated ramp blocks allow the ramp rate
to be set by an operator or engineer. Some PLC instruction sets include a ramp block. The SLC
instruction set does not include a separate Ramp block so one must be programmed from
available instructions.

In this example, the old setpoint was 50 and the new setpoint was 62. In order to move from the
old setpoint to the new one, the SP value must be incremented to climb. The rate at which the SP
is incremented may be changed which varies the rate at which the new SP achieves its value. For
example, if the time interval is lengthened, the new setpoint is reached much later.

A setpoint may vary as high as 5000 or more integer units and the incremental ramping may need
to be very rapid (in msec). Quickly moving ramp blocks are possible with the higher speed timer
blocks. Ramp blocks may also require very slow operation and this can be accomplished using
slower preset timer blocks. Examples of slow-acting ramp blocks include cure operations that
require hours to advance the setpoint to the final point or a ramp-soak operation for operations
such as steel in which the annealing requires a slow temperature rise over an extended period of
time.

It is preferred for the ramp block to move in small increments. If the increment speed in units of
1 is less than the PID update speed, increments should definitely be handled in increments of 1.
The goal of the ramp block should be a smooth continuous ramping.

An example of a Ramp of a Setpoint built from Ladder follows:

Ch 19 PID Block 73

1_'4{] r TON
0001 - 1 Tinwer On Dalay —{EN)~
DN Tiner T40
Tume Dase 001 DR D)—
Prese 00«
Acoum 0«
[neyemment Actual SP
B30 Té0 r ADD [
0002 9 |] E | Add
0 DH Source A N7:30
D«
Source B 1
1=
Dast N730
O«
Decrement Actual SP
B30 T40 ‘ SUE
000 4 E q E Subtzact —
1 DN Sonyse A N730
O«
Sowmece E 1
1«
| Dest N7:30
0<
Target SP Increment
GRT] B30
0008 —— Greater Than (A>B) LooF
Sourse A N7:31 0
O«
Scurce B N7:30
(1 74
Actaal SP Decrement
-GRT] 3_339
0005 e Greater Thant (A=E) | L)
Scurce A N7:30 l 1
<
Source B N731 ‘
il

Fig. 19-93 Ramp Block using Ladder

Ramp blocks are used to cause the PID block to be tuned to a different set of tuning constants
than would be required if the ramp were not present. A PID having ramping would have a set of
tuning parameters that would be tuned to respond to only much smaller step changes seen with
small upsets in the process. In block diagram format, if a ramp function is needed, it may be
shown as a block before the PID SP as follows:

Ch 19 PID Block 74

Target Actual

Setpoint Setpoint
Rate o PID
Block Block
Fig. 19-94

Loops within Loops

The discussion now describes multiple PID blocks used to control a process.
The following example shows how a PID loop can be imbedded within another PID loop:

ﬁ Level Probe Level = xxxx

Level PID Block
Level Probe = PV
Setpoint from
Operator or Remote
Cv output to Flow PID

Flow PID Block
Flow Meter = PV Fig. 19-95
Valve = Cv
Setpoint from PID
Level Block

In the example above, the inner loop is the flow valve with its setpoint the CV from the Level
PID block. The outer loop is the Level PID block controlling level in the tank.

To successfully tune loops such as these, it is important to establish the order for tuning the
loops. Itis also important to establish parameters for tuning them.

1. Tune the inner loop first. In this case, tune the Flow PID loop first.

2. Establish comfortable tuning parameters for it and then proceed to tune the outer loop.
The outer loop should be tuned to respond more slowly than the inner loop. The outer
loop in the example is the Level PID loop. Try to tune it to respond about 2 to 10
times slower than the inner loop.

3. Stability problems occur in general if the two loops are tuned too closely together or
the outer loop is tuned to respond more quickly than the inner loop. So, keep the
Ch 19 PID Block 75

inner loop fast, outer loop slow and observe any instability. Ramp blocks should not
be used on PID blocks such as these unless they are very quick acting. The inner loop

should not have a Ramp block.

ﬁ Level Probe Level = xxxx

Level
Level

Setpoint from
Operator or Remote
Cv output to Flow PID

PID Block
Probe = PV

Flow PID Block
Flow Meter = PV
Valve = Cv
Setpoint from PID
Level Block

Ki term rather slow

N

‘ Ki term rather fast

Fig. 19-96 Loop ina Loop

Additional PID Labs are included — all from Siemens to
control projects.

Ch 19 PID Block

further develop the PID concept to other

76

PID Beyond the Lab
Using Multiple Controllers for Temperature Control

Most systems used in process control require a number of PID loops working together. In the
example of the dog food extruder, the system would have included a PID controller for each
ingredient. In general, each control element requires a PID block.

In the case of temperature control with gas and oxygen combustion, temperature is a PID block
as well as gas and oxygen flow. The interaction of temp, gas and air are shown next:

Temp PV
— Temp SP
Temperature
Controller
Gas PV Oxygen PV
Gas SP Oxygen SP
Gas Oxygen
Controller Controller Fig. 19-97
Gas CV Oxygen CV

This algorithm controls the combustion for a furnace or section of a furnace. Temperature
Setpoint may come from a number of sources. The local SP may come from an entry from an
operator. Setpoints may also be calculated using a formula for best performance. Setpoints from
a formula would be considered as remote setpoints in the temperature PID loop.

In some applications involving gas and oxygen, the oxygen must be guaranteed to be in excess
relative to fuel. Otherwise, excess gas may build up in the chamber and explode. Above certain
temperatures, gas will burn without exploding. This is an especially prevalent condition in some
steel reheat furnaces.

In the case of gas and oxygen below the critical temperature for gas to burn, a cross-limiting
control scheme is introduced to allow only enough gas to be present to burn with at least enough
oxygen or combustion air to burn all the gas all the time. This implies that the gas valve always
must be more closed than the oxygen valve (times the air-fuel ratio). Control of the cross-
limiting requires the same temperature control as the master control but introduces lag control,
high select, low select and other control blocks in addition to the PID control. The oxygen
control for the cross-limiting control algorithm would be:

Ch 19 PID Block 77

Temp PV

‘ — Temp SP
Temperature
Controller
Gas PV ‘
Lag High Select |
Oxygen PV
Oxygen SP ‘
Oxygen
Controller

The gas control for the cross-limiting control algorithm would be:

Temp PV
— Temp SP
Temperature
Controller
Oxygen PV
Low Select Lag l
Gas PV | Gas SP
| Fig. 19-99
Gas

Controller
Gas CV

As can be seen, the Gas PID block selects the lower of the values of the Temperature Setpoint or
the Oxygen value after a lag has occurred. The effect of the cross-limiting control is to assure a
Gas-Oxygen ratio that will never allow more gas into the combustion chamber than can be
burned in the combustion process. This is an example of a much more complex algorithm than
was first discussed earlier with a simple PID block. The same PID blocks are still used.

Ch 19 PID Block 78

Example of PID Block for Feedforward Control

The PID block is a device used for feedback control. Many times, however, a small amount of
feed-forward control is required. Feed-forward control may include control that anticipates an
action and is ready to apply control as a situation arises more quickly than the pure feedback
solution is able to provide. Since there is only one set of tuning parameters for the PID block, it
IS not practical to switch to a second set of parameters for a special case. The following example
shows how a little tweaking of the PID block can be useful for some anticipatory or feed-forward
control. The example below is of a furnace with a door on the front. This example shows just
one of many additions to the PID block to give it characteristics not normally associated with
PID control.

The gas burners use air for combustion and the air must be exhausted through an exhaust stack.
Pressure in the furnace is adjusted by adjusting the damper in the stack. Pressure should be
adjusted to be slightly negative so flames do not jump out of the door when the door is opened.

Fig. 19-100
Stack Damper ——— | £
Pressure
Sensor
Furnace Door Furnace Pressure PID Block

Pressure Sensor = Pv

Operator entry of
Furnace Pressure = SP

Position of Stack
Damper = Cv

Operator Entry
Furnace Pressure = XxXxx

Ch 19 PID Block 79

The concern of the pressure PID loop is:
What happens when the door opens?

This is a major concern because the PID loop must respond in a much different manner in this
circumstance than under normal operating conditions with the door closed. The fact that an
event such as the door opening occurs helps to accomplish the control of this task. While not
true feed forward, augmentation of the PID block will help offset the pressure upset and keep the
flames pretty much inside the furnace. (Flames coming out the furnace tend to ignite grease from
bearings causing grease fires around the furnace.)

To accomplish better pressure control, place a limit switch on the door and adjust the output of
the PID block so the output will open the damper rapidly and then recover. The constant of the
jump is a number that should be adjustable by an operator in the maintenance mode only.

When the door swings open, perform the following operation using a one-shot rung:
CV = CV + constant

This statement should be written only once to the CV. Use a one-shot circuit to add the constant
to CV. The CV then is allowed to recover to its new value but from a new higher starting point
as opposed to the original value. The value of the constant is the amount shown by the arrow
below. This is a constant that is adjusted to fit the application. Once set, it should not be
changed.

//
/ \ New
One Shot ~ | | Response Fig. 19-101
Furnace Add to Cv |
Pressure / -
(negative) / -
_________ v -~

Old Response

The response is a simulated response but makes the point that the response to a pressure change
requires fast action to adjust to the conditions of the door opening. A change in the CV provides
this type of change. The change in CV will start the adjustment procedure and trick the PID
tuning parameters into responding to the new situation quickly instead of a slow acting controller
as would be the case for the regular control of oven pressure.

While the addition of a small incremental value to CV may be considered a trick on the PID
block, it is important to note that such an action may be accomplished in the PLC very easily.
Ladder logic accommodates this type of programming through the use of one-shot ladder logic
and math functions. This type of change to the PID block provides quick response to an upset
outside the normal range of the PID block’s algorithm. The actual move may only be able in the
manual mode. To move to manual, change the CV and then move back to auto is recommended
for this action to occur successfully.

Ch 19 PID Block 80

Introducing Flow Diagrams (P&ID’s)

Processes are described using flow diagrams. Symbols for diagrams are defined by the
organization — International Society of Automation, aka Instrumentation, Systems, and
Automation Society, aka Instrument Society of America, aka ISA. Letter codes are written in
circles representing various devices that control a process. For instance, FIC represents Flow
Rate, Indicator, Controller. Any three-letter code with C as the final letter represents a PID
controller. First a review of the letter codes used to configure an instrument:

Letter

A

B

First Position
Analysis
Burner Flame
Conductivity

Density /
Differential

Voltage

Flow Rate / Ratio
Gaging

Hand

Current

Power / Scan
Time

Level
Moisture
Choice

Choice
Pressure
Radioactivity
Speed
Temperature
Viscosity
Weight
Interlock
Choice

Position

Succeeding Positions

Alarm

Control

Glass
High

Indicate

Light / Low

Middle/ Manual

Record
Switch
Transmit
Valve

Well

Relay

Drive

Ch 19 PID Block

81

Element Indicator Ratio

Process Type Element Transmitter Indicator controller Controller Controller Recorder
Measurement Code E T I IC C FC R
Analysis A AE AT AT AIC AC AFC AR
Conductivity C CE CT CI CIC CcC CFC CR
Density D DE DT DI DIC DC DFC DR
Voltage E EE ET ET EIC EC EFC ER
Flow F FE FT FI FIC FC FFC FR
Dimension G GE GT GI GIC GC GFC GR
Hand H HE HT HI HIC HC HFC HR
Current I IE IT IT IIC IcC IFC IR
Time K KE KT KI KIC KC KFC KR
Level L LE LT LT LIC LC LFC LR
Humidity M ME MT MI MIC MC MFC MR
Power N NE NT NI NIC NC NEC NR
Pressure P PE PT PI PIC PC PFC PR
Delta

Pressure dap dPE dPT dPI dPIC dpC dPFC dPR
Quantity Q QE QT oI OIC QcC QFC OR
Radioactivity R RE RT RI RIC RC REC RR
Speed S SE ST ST SIC SC SFC SR
Temperature T TE TT TI TIC TC TFC TR
Delta

Temperature dT dTE dTT dTI dTIC dTC dTFC dTR
Viscosity \Y% VE VT VI VIC vC VFC VR
Weight w WE WT WI WIC wC WEC WR
Vibration Y YE YT YT YIC YC YFC YR
Position Z ZE zT zI ZIC zC ZFC ZR

The table above contains descriptions of various types of transmitters, indicators, controllers and
recorders. Most PID blocks are used to program controller items. There is a one-to-one
programming transfer for most xIC (various, Indicating Controller) or xC controllers.

Process and Instrumentation Drawings (P&ID) are formalized drawings of a process explaining
flow and movement of material. It is important to know the symbols for this type of drawing. It
is also important to be able to understand the functionality of the devices on the drawing so the
engineer or technologist can program the process on the PLC or other computer.

It is also hoped that down the road, the engineer or technologist is allowed to design the P&ID
for others. The programmer usually understands the process as well as anyone and has insight
into the complexities of the process and should be allowed to take responsibility for design of the
P&ID.

A note about PID vs P&ID: Of course, the similarities are glaring. PID refers to the control

block Proportional Integral Derivative, a control algorithm. P&ID refers to Process and
Instrumentation Drawings. Some refer to them as Piping and Instrumentation Drawings.

Ch 19 PID Block 82

Process
Measurement

Analysis
Conductivity
Density
Voltage
Flow
Dimension
Hand
Current
Time
Level
Humidity
Power

Pressure

Delta Pressure

Quantity
Radioactivity
Speed
Temperature

Delta
Temperature

Viscosity
Weight
Vibration

Position

Element
Type
Code

A

" zZ 2 B X" H - Q@ = @H O Q

Switch Valve Totalizer

Hand Hand
HS HV
AHS AHV
CHS CHV
DHS DHV
EHS EHV
FHS FHV
GHS GHV
HHS HHV
IHS IHV
KHS KHV
LHS LHV
MHS MHV
NHS NHV
PHS PHV
dPHS dPHV
QHS QHV
RHS RHV
SHS SHV
THS THV
dTHS dTHV
VHS VHV
WHS WHV
YHS YHV
ZHS ZHV

Q
AQ
CcQ
DO
EQ
FQ
GO
HQ
I0
KQ
LO
MO
NQ
PO
dPQ
QQ
RQ
SQ
TQ

dTQ
vQ
Wo
YQ
zQ

Indicating
Totalizer

1o
AIQ
CIQ
DIQ
EIQ
FIQ
GIQ
HIQ
IIQ
KIQ
LIQ
MIQ
NIQ
PIQ
dPIQ
QIQ
RIQ
SIQ
TIQ

dTIQ
VIQ
WIQ
YIOQ
Z210Q

Solenoid Control

Valve
XV
AXV
CXV
DXV
EXV
FXV
GXV
HXV
IXV
KXV
LXV
MXV
NXV
PXV
dPXV
QXV
RXV
SXV
TXV

dTXV
VXV
WXV
YXV
ZXV

Valve
\Y%
AV
Ccv
DV
EV
1%
GV
HV
Iv
KV
LV
MV
NV
PV
dpPVv
Qv
RV
SV
TV

dTVv
\AY%
wv
Yv
v

Calculation
Y
AY
CYy
DY
EY
FY
GY
HY
IY
KY
LY
MY
NY
PY
dpPYy
QY
RY
SY
TY

dTyY
vY
WY
YY
7Y

Devices such as hand switches, valves and some electronic devices such as totalizers and
calculation elements are described here. Most calculation elements are executed inside the

computer and algorithms become much too difficult to describe on the P&ID. The designer of
the P&ID is free to decide how much of the calculation information is to be included on the

drawing.

Devices such as those of the table above are primarily used for checking position of switches and

for various types of alarm. It is not uncommon to assign switches for end-of-travel on analog

devices. With most analog systems, there is an alarm reserved for both low and low-low. Low-
low is the signal that is just past low and should be attached to an alarm as well as shut-off logic.

The same logic is used for high and high-high. The inner alarm is the low or high alarm bit and

the low-low and high-high are the outer or fail-safe alarm.

Ch 19 PID Block

83

Process
Measurement

Analysis
Conductivity
Density
Voltage
Flow
Dimension
Hand
Current
Time

Level
Humidity
Power
Pressure
Delta
Pressure
Quantity
Radioactivity
Speed
Temperature
Delta
Temperature
Viscosity
Weight
Vibration

Position

These tables demonstrate the breadth of labeling that can be included on a device. The devices

Element
Type

Code
A

c

Ratio
Calculation

FY

AFY

CFY

DFY

EFY

FFY

GFY

HEFY

IFY

KFY

LFY

MEY

NEY

PEFY

dPFY

QFY

RFY

SEY

TFY

dTFY

VEY

WEY

YFY

ZEY

Switch

Low Switch High
SL SH
ASL ASH
CSL CSH
DSL DSH
ESL ESH
FSL FSH
GSL GSH
HSL HSH
ISL ISH
KSL KSH
LSL LSH
MSL MSH
NSL NSH
PSL PSH
dPSL dPSH
QSL QSH
RSL RSH
SSL SSH
TSL TSH
dTSL dTSH
VSL VSH
WSL WSH
YSL YSH
ZSL ZSH

Alarm
Low

AL

AAL

CAL

DAL

EAL

FAL

GAL

HAL

IAL

KAL

LAL

MAL

NAL

PAL

dPAL

QAL

RAL

SAL

TAL

dTAL

VAL

WAL

YAL

ZAL

Alarm
Low Low

ALL

AALL

CALL

DALL

EALL

FALL

GALL

HALL

IALL

KALL

LALL

MALL

NALL

PALL

dPALL

QALL

RALL

SALL

TALL

dTALL

VALL

WALL

YALL

ZALL

Alarm
High

AH
AAH
CAH
DAH
EAH
FAH
GAH
HAH
IAH
KAH
LAH
MAH
NAH
PAH
dPAH
QAH
RAH
SAH
TAH
dTAH
VAH
WAH
YAH

ZAH

Alarm
High

AHH
AAHH
CAHH
DAHH
EAHH
FAHH
GAHH
HAHH
IAHH
KAHH
LAHH
MAHH
NAHH
PAHH
dPAHH
QAHH
RAHH
SAHH
TAHH
dTAHH
VAHH
WAHH
YAHH

ZAHH

are also numbered and contain a 3 or 4 digit number in addition to the device type name. These

numbers are usually assigned sequentially and are placed on a metal tag that is attached to the

device itself. In the plant, one should be able to find a device, then find its metal tag, and find the
reference to the device on the P&ID. Names of devices are used on electrical drawings as well as

on the P&ID. If a device is referenced as a flow transmitter and numbered 087, then FT-087 is

referenced on all drawings using the same name.

The design of a P&ID may start with a senior engineer familiar with the process. Other sources

for P&ID’s are reference books such as the Liptak reference handbook Process Control. Texts
and company reference drawings are good sources for a starting point for a new P&ID. Of
course, names such as those listed above are to be used in defining the devices used in the

process.

Ch 19 PID Block

84

For example, the flow drawing of level control using flow would be drawn as follows:

|
|
"J Fig. 19-102

While in many P&ID’s the symbols are kept as simple as possible, there is delineation in the ISA
S5.1 standard for location as well as type of device. These symbol types are shown below:

A discrepancy between the symbols and the usage of the devices is that the PLC has traditionally
been viewed as only useful for some safety circuits and for discrete control. The PLC has taken
over much of the analog control and more logically fits the computer function as well as the
traditional PLC role. The device providing control has changed dramatically over the years from
discrete hardwired controllers to DCS systems and finally to PLC analog systems. The primary
rationale for using the PLC in analog situations is cost.

For instance, the door-mounted limit switch on the oven above would be drawn as:

| Fig. 19-103

The following cut from Amazon shows one of the most definitive set of texts on use of the P&ID
symbols in industry. Bela Liptak gives an exhausting supply of P&ID drawings with explanation
for a huge variety of processes. These texts, especially the middle one, Process Control and
Optimization, has been used by this author to program a process. These texts are invaluable for
someone involved in process design and implementation, either with a PLC or other control
method. Various examples from his Process Control and Optimization Text are given below as
practice problems for building the PLC program to control the various processes.

Ch 19 PID Block 85

INSTRUMENT ENGINEERS' WANDBOOR

rocess

BELA 6. LIPTAK

Follow the author

Béla G.

Foll
Liptak otow

Instrument Engineers Handbook, Fourth th

Edition, Three Volume Set 4th Edition
by Bela G. Liptak (Author)

4.1 dehh R (3) See all formats and editions

This set consists of:

s Instrument Engineers' Handbook, Fourth Edition, Volume One: Process
Measurement and Analysis (Published June 2003, ISBN 9780849310836)

» Instrument Engineers' Handbook, Fourth Edition, Volume Two: Process Control
and Optimization (Published September 2005, ISBN 9780849310812)

o Instrument Engineers' Handbook, Fourth Edition, Volume Three: Process
Software and Digital Networks (Published August 2011, ISBN

9781439817766)
Unsurpassed in its coverage, usability, and authority, the latest edition to Béla G.

Liptak's three-volume Instrument Engineers’ Handbook continues to serve as
the premier reference for instrument engineers around the world. The acclaimed
“bible" of instrument engineering helps users select and implement hundreds of
measurement and control instruments and analytical devices. It also aids in the
design of cost-effective process control systems that optimize production and
maximize safety.

Example Programming for P&ID:

Fig. 19-104a
|
The P&ID above is used to generate a PLC ladder diagram as follows:
PID DIC 001 Multiply Block PID FIC 001
PV PDT 001 DT 001 x DIC 001 PV FT 001
SP From HMI to FIC 001 SP From Multiply
CVTo Multiply CVto FCV 001

Fig. 19-105

Ch 19 PID Block 86

Test Question:

Using either the PID blocks from A-B or Siemens, provide a program that will work in auto mode
for the following P&ID. Define and use variables as inputs, outputs and internal variables as
necessary. Describe these variables in a table. ORP refers to Oxidation-Reduction potential.

ACH Be?E

~250 mV PROPORTIONAL
————— O XD QT
|

INFLUENT TO SETTLWG
WASTEWATER ‘ TANK
— —
FIRST | STAGE SECOND | STAGE
=0

Cr*t—=Cr*? PRECIFITATE Cr*?
ogdeli Fig. 19-104b
CO"""“O“S Chro”le treatment. :

Find PID controllers, assign numbers to each and identify any other math relationships. This is
the auto control portion of the program controlling this P&ID.

REDUCING
ABENT

PROPORTIONAL
CONTROLLER
SETFOINT = 8 pH

INFLUENT
WASTEWATER

TO SETTLING
TANK

— =

crtt—=Cr*? P‘ECI‘I’ Cr?
FIG. 8.216
COI""IMO(IS chmme rreatment.
ORPIC 101 PHIC 102 PHIC 103
PID PID PID
Sensor PV oV Sensor PV oV S.ensor PV oV
solenoid solenoid valve
HMI p HMI p HMI sp

Ch 19 PID Block 87

Test Question:

Using either the PID blocks from A-B or Siemens, provide a program that will work in auto mode
for the following P&ID. Use variables as inputs, outputs and internal variables as necessary.
Describe these variables in a table. PV’s and CV’s are marked in the diagram. Unmarked SP’s
are setpoints from the HMI screen. Ignore sqrt operation. Assume that FT’s give a flow rate
and the sqgrt function is performed at the transmitter, not the controller. (AE — Analysis Element,

AR — Analysis Recorder, ASL — Analysis Switch Low, ASH — Analysis Switch High, AAL — Analysis
Alarm Low, AAH — Analysis Alarm High)

RATIO
SETTERS

F

CHLORI
SupeL” Dy
;

INFLUENT

!

INJECTOR EFFLUENT

e
IST STAGE TANK

CAUSTIC
LA guppLY

2ND STAGE TAMNK

Fig. 19-104c

FiG. 8238

Continuous oxidation of cvanide waste with chlorine. Influent
here fias continwous constant flow rate and variable quality,

Ch 19 PID Block 88

]

INJECTOR

INFLUENT

)

f—]
IS8T STAGE TANK

CAUSTIC
SUPPLY

= 4
S

Fi&. 8.28b
Continuous oxidation of cyanide waste with chlorine. Influent
here fhas continuows constant flow rate and variable quality,

FRC 101

FT101

FY101

PID

PV cv

SP

valve

FY102

FY101 = FT100 * constl
FY102 = FT100 * const2

AAH104 = AE104 > high alarm const

AAL104 = AE104 < low alarm const

FT102

¥

FRC 102

CAUSTIC
SUPPLY

*

AE

2ND STAGE TAMNK

104

PID
PV

SP

Vi

Ch 19 PID Block

valve

EFFLUENT

Fig. 19-104d

pHRC 103

pHE103

HMI

PID

PV cv

SP

solenoid

89

Example Programming for P&ID (The PLC program is left as an exercise for the student):

Fig. 19-105

The following three diagrams show more extensive P&ID drawings for a complete system.

Fig. 19-106a

Ch 19 PID Block 90

https://www.edrawsoft.com/template-processing-pid.html

¥ Fusl Gas

=D

Fig. 19-106b

This diagram shows the system for generation of steam.

COLD VRTER IN L
(o PG
T
TOVACCLM

I -
REFLUX
COLDVARTER DRLUM
ouT

MEG

©
DMSTILLA-

TION

IE_-_@_ COLUMN Di:]'_ﬁ—

ATEAM IN

4%—. DEG + TEG

STEAM OUT

Fig. 19-106¢

Ch 19 PID Block

https://www.edrawsoft.com/template-factory-pid.html
https://www.edrawsoft.com/template-water-boiling-process-pid.html

Specifications for P&ID design and the design of a process may be found at the ISA website.
The following list is a partial list of design specifications used in constructing a modern process.

ANSI/ISA-75.01.01-2002 (60534-2-1 Mod) Flow Equations for Sizing Control Valves

ANSI/ISA-75.02-1996

Control Valve Capacity Test Procedures

ANSI/ISA-TR75.04.01-1998

Control Valve Position Stability

ANSI/ISA-75.05.01-2000 (R2005)

Control Valve Terminology

ISA-75.07-1997

Laboratory Measurement of Aerodynamic Noise
Generated by Control Valves

ANSI/ISA-75.08-1999

Installed Face-to-Face Dimensions for Flanged
Clamp or Pinch Valves

ANSI/ISA-75.08.01-2002

Face-to-Face Dimensions for Integral Flanged Globe-
Style Control Valve Bodies (Classes 125, 150, 250,
300, and 600)

ANSI/ISA-75.08.02-2003

Face-to-Face Dimensions for Flangeless Control
Valves (Classes 150, 300, and 600)

ANSI/ISA-75.08.03-2001

Face-to-Face Dimensions for Socket Weld-End and
Screwed-End Globe-Style Control Valves (Classes
150, 300, 600, 900, 1500, and 2500)

ANSI/ISA-75.11.01-1985 (R2002)

Inherent Flow Characteristic and Rangeability of
Control Valves

ISA-75.13-1996

Method of Evaluating the Performance of
Positioners with Analog Input Signals and Pneumatic
Output

ISA-75.17-1989

Control Valve Aerodynamic Noise Prediction

ANSI/ISA-75.19.01-2001

Hydrostatic Testing of Control Valves

ISA-RP75.21-1989 (R1996)

Process Data Presentation for Control Valves

ANSI/ISA-75.22-1999

Face-to-Centerline Dimensions for Flanged Globe-
Style Angle Control Valve Bodies (ANSI Classes 150,
300, and 600)

ISA-RP75.23-1995

Considerations for Evaluating Control Valve
Cavitation

ANSI/ISA-75.25.01-2000

Test Procedure for Control Valve Response
Measurement from Step Inputs

ANSI/ISA-TR75.25.02-2000

Control Valve Response Measurement from Step
Inputs

ANSI/ISA-75.26.01-2006

Control Valve Diagnostic Data Acquisition and
Reporting

Partial List of ANSI-ISA Specifications for Process Control

Ch 19 PID Block

92

Using Visio for P&ID Drawings

Microsoft’s Visio is useful for a flow-diagram generation and has provision for generating the
P&ID drawings similar to those described above. An example below gives a description of how
the drawing type is chosen in Visio.

i Drawing1 - Microsoft Visio

E File | Edit “iew Insett Format Tools Shape Process Engineering Window Help Adobe PDF
|1J Bew 4 | Chonse Drawing Type. .,
_lJ 7| Open Chrl+]| Mew Drawing Chr+N e | & |m, “-Ln - A -G 100% - | @ !
? Close [Block Diagram 3 B
E | Save Chrl+S || Brainstorming 3
- Save fAs (4| Buiding Plan »
Tynl a4 Save as ‘Web Page... [Business Process 3
E m File Search... [tCharts and Graphs 3
E @ Shapes ¥ |4 Database »
EEq Page Setup. .. [4| Electrical Engineering >
g; 3| Print Preview 4| Flowchart 3
B r| S Erint... Ctrl+p (4| Map r
Bl Send To p |4 Mechanical Enginesring »
1 I Properties 4 Metwark r
I B0 [| Crganization Chart >
Rl remre ' ||ﬁ Process Engineeting * | Fiping and Instrumentation Diagram {Metric)
D J 14| Project schedule k Piping and Instrumentation Diagram (LS units) i
OLFSLSEI]'EIH OLF;E;I'I'EH OLFS' 4| Software] Process Flow Diagram (Metric)
(ﬁ @ =4 | ‘Web Diagram] Frocess Flow Diagram (U3 units)
Callr 1 Callane 2l a
Fig. 19-107

The elements are automatically connected with piping (lines) and names are attached in
sequential order.

Fig. 19-108

T
o

Below the diagrams show a number of different pre-drawn figures for use in a P&ID. The
diagrams follow ISA symbol standards.

Ch 19 PID Block 93

[l Equipment - General {LUS units)
[E] Equipment - Heat Exchangers (... |

Fig. 19-109

The PIDE Function from Allen-Bradley

The PIDE is only available as a function block. Like the PID instruction, it is best to set it up in
its own periodic task. The period of the task automatically becomes the sample rate of the PID
loop. Just make sure when adding the new routine to the task to select Type as “Function Block
Diagram — FBD”.

The PIDE (Enhanced PID) is an Allen-Bradley Logix5000 function block that improves on the
standard PID found in all their controllers. First impressions tend to be intimidating. The
advanced instruction boasts the following:

1.

ok~ wN

It uses the velocity form of the PID algorithm. This is especially useful for adaptive gains
or multiloop selection

Control of the instruction can be switched between Program and Operator modes

Better support for cascading and ratio control

Built-in autotuner

Support for different timing modes

More limiting and fault handling selections

Ch 19 PID Block 94

o

| Tempersture d
250
%0]

ful

fwl

A A0 6 6 A @A O 0

PIDE_Temp_Control

PIDE =

Enhanced PID
Py cveupos = @
SPPIog SP :II:O =
SPCascade PVHHAL M '_n:
RatioProg PUHALIm [
CVProg PVLALam Ev(f
FF PVLLAIam '5;'"
HandFB PVROCP exalarm EI::
ProgPtogReq PURDCNegAlam =)
ProgOperReq DevHHALIrm o

(-]

ProgCask stReq DevHAL M

.00 O O O e 04

]

ProgAutoReq DevtAlam [5)
0
ProgManualRaq DevilLAlam |(
)
ProgOvamnideReq ProgOpetfn
0

ProgHandReq CasRatl)
o

Auto [5)
Ma
Manual o)
0

Ovwenide [5)
o

Hand ™

AutotuneTag 7

Fig. 19-110

Once a function block is created, the program tags for the function block must be created. With
later versions of RSLogix 5000, the set-up box below gives a view of the variables required.

Timng
Mode:

Cortrol acboer

~Caoudate Usng
Proportional teem: * E
Danvatveteey E

I Dedvative Smocthing
I~ PV Treckng

PIDE Proper ties - PIDE_01

U
IO Y

I Marusl Mcde after rdshzabon

lm v
Oversample At] 3
RTS Pesod l mt

* EeSP-PV
" E«PV-SP

Genetal Confipuation | EUs/Limts| Cascade/Ratio| Alamms | Passmeters| Tag | Autotune|

Gamn
Propoonat Qo

a0 mn/iepest

00 mn

Inkegy &
Denvame
Equation Type: 0 |ndependent

" Dependent
-V Zero Crossing D eadband
Deadband a0
I ZeoCroteng of

Ovemda valse 00 %

I ProgamVake 1e3et

Stalus: 0K

Ewocution Order Number <routine not veshod>

o]

Heb

Corcel | o |

Fig. 19-111

Instead of control of control using the MultiState Button and the logic shown above, the PIDE
shares program and operator control with control bits in the PIDE block. The following bits

partially describe this control:

.ProgProgReq
.ProgOperReq
.OperProgReq
.OperOperReq

Program request to go to Program Control
Program request to go to Operator Control
Operator request to go to Program Control
Operator request to go to Operator Control

Ch 19 PID Block

95

Operating Modes for the PIDE instruction include:

Manual:

Auto:

While in Manual mode the instruction does not compute the change in CV. The value of
CV is determined by the control. If in Program control, CV = CVProg and if in Operator

control, CV = CVOper. Select Manual mode using either OperManualReq or
ProgManualReq. The Manual output bit is set when in Manual mode.

While in Auto mode the instruction regulates CV to maintain PV at the SP value. If in
program control, SP = SPProg and if in Operator control, SP = SPOper. Select Auto
mode using either OperAutoReq or PRogAutoReq. The Auto output bit is set when in
Auto mode.

Cascade/Ratio:

While in Cascade/Ratio mode the instruction computes the change in CV. The
instruction regulates CV to maintain PV at either SPCascade value or the SPCascade
value multiplied by the Ratio value. SPCascade comes from either the CVEU of a
primary PID loop for cascade control or from the “uncontrolled” flow of a ratio-
controlled loop. Select Cascade/Ratio mode using either OperCasRatReq or
ProgCasRatReq. The CasRat output bit is set when in Cascade/Ratio mode.

Override:

Hand:

While in Override mode, the instruction does not compute the change in CV. CV =
CVOverride, regardless of the control mode. Override mode is typically used to set a
“safe state” for the PID loop. Select Override mode using ProgOverrideReq. The
Override output bit is set when in Override mode.

While in Hand mode, the PID algorithm does not compute the change in CV. CV =
HandFB, regardless of the control mode. Hand mode is typically used to indicate that
control of the final control element was taken over by a field hand/auto station. Select
Hand mode using ProgHandReq. The Hand output but is set when in Hand mode.

The example below is of a PIDE block in FBD programming language:

Ch 19 PID Block

96

A

PIDE_Temp_Control
PIDE 5]
Enhanced FID
- '
l Tempeature Tr————(JPV CVEU
1200
1200 = PVEUMax sP I
0 PVEUMIn ProgOpat E
250
- SPProg Aute £y
[1200 "o SPHLImit Manuat
o
DI SPLLImIt Instructf ault By
o
ManualContrel [- CVProg
50 ——sjDepandindepend
T péain
o1
L:D—c IGain
o
(=] b—l: DSGain
1 r— —]ProgPregReq
IkutoNanSunch nv—t — —— — -¥#jProgAutoReq
[—— «JFProgManualReq
AtotunaTag 2
BNOT_O1
BNOT

o
o
o

L ;
[——] HeatOutput
a0 .

Fig. 19-112

The following problems give an example of how the PID algorithm is executed as time increases
with a known error (e). The output Cv is calculated at each change of (e).

Test Problem:

A PI controller has a gain of 0.6, an integral action rate of 0.6 s%, and an initial value of v, of
15%. The graph is of the error (e). Determine the value of the controller fromt=0tot =12 sec
and graph the result below:

(rememberthat Cv =P-e+P-1-Y e At +v,)

4 |-

3

Error (e)

Ch 19 PID Block

97

i’:a

Cy= ltss + ibii| 2156
£=u
b= IS +.6%2 + bvby(Yxl+Lxuxi) . 18.34
Arew undey Gpve.
ELq

G .00~ +bxlbx(ls + &)= 1T
£l

W= 5+ .60-1) Kbyt x(1.5+e=3) =lko2
f=—lb

o= IS +0 + by (X +b -3-)) =l 2%

Graph

Cv
40 |-

30
20 |~

10

-10 - t, sec
20 -

30 -

Ch 19 PID Block

98

Remember the change in the integral term if the PID algorithm is moved from Auto to
Manual. The integral term is cancelled (=0), If then the PID algorithm is changed back to
Auto, the former sum is reset to 0. There is an assumption that the value of the output Cv
does not change during the A-M-A change. This is commonly referred to as Bumpless
Transfer. Bumpless transfer must be programmed in the PLC and is non-trivial. However, it
is needed in most applications. The problem above is worked again here with an A-M-A
pulse introduced to reset the sum of (e). The results show the difference with the problem
above.

Test Problem:

A PI controller has a gain (P) of 0.6, an integral action rate (1) of 0.6 s*, and an initial value
of v of 15%. The graph is of the error (e). Att =09, a pulse occurs that drives the controller
from auto to manual and then back to auto in a few msec. Determine the value of the
controller (Cv) fromt = 0 to t = 12 sec and graph the result below: (e is unitless and Cv is in
percent)

(rememberthat Cv =P-e+P-1-Y e At +v,)

4 =
Error (e)
3 -

Ch 19 PID Block 99

Cdz | I |+lelylf | |=y5b

e ISl s (&) = 18,36

W= IS + .40 Foxo XS4 Y| 2121

9

Gz L0 +06(=D) tibyeox(1.S102) (630

1= 4+
G ds 4 (=) +0 = [ty
t=pw 2
Nele list £.40-D L X 6 XC=0)! =i/ %Yy >
131z '
wl2| 05 redolvdz) kapzal | | |
Graph
Cv
40
30
20 |
s A
0 | | | | | | | | | | | |
> 10
-10 t, sec
20
30
40

Ch 19 PID Block 100

Whether a PLC or a DCS is better at implementing Process Control:

“22 March 2011

It may surprise you to know that PLC, HMI and SCADA implementations today are
consistently proving more expensive than DCS for the same process or batch application.
CEE finds out more...

Traditionally, DCSs were large, expensive and very complex systems that were considered as a
control solution for the continuous or batch process industries. In large systems this is, in
principle, still true today, with engineers usually opting for PLCs and HMIs or SCADA for
smaller applications, in order to keep costs down.

So what has changed? Integrating independent PLCs, the required operator interface and
supervisory functionality, takes a lot of time and effort. The focus is on making the disparate
technology work together, rather than improving operations, reducing costs, or improving the
quality or profitability of a plant.

Yet a PLC/ SCADA system may have all or part of the following list of independent and
manually coordinated databases.

* Each controller and its associated 1/0O
* Alarm management

* Batch/recipe and PLI

* Redundancy at all levels

* Historian

* Asset optimization

* Fieldbus device management

See the following video from RealPars for a comparison of the PLC vs DCS system. The
arguments may not fit exactly with your application but the video is worth the effort.

What is the Difference Between PLC and DCS?
https://www.youtube.com/watch?v=iF99iKIDpxA

Making changes

Every time a change is made in one database, the others usually need to be updated to reflect that
change. For example, when an 1/0O point and some control logic are added there may be a need to
change or add a SCADA element, the historian and the alarm database. This will require the
plant engineer to make these changes in each of these databases, not just one — and get it right.”

While you may not be a proponent of either the DCS or PLC for Process control, the above is
something worth thinking about. The arguments are not trivial. If one programs a process
application with PLCs, then the objections mentioned in the above article must be dealt with and
the negative effects of using the PLC minimized.

Ch 19 PID Block 101

https://www.youtube.com/watch?v=iF99iKlDpxA

Other RealPars videos on PID include:

How to Tune a PID Controller

https://www.youtube.com/watch?app=desktop&v=1B1Ir4o0CP5k&list=PLIn3BHg93SQI9SENS8jXvh
ycxAeFecmkjTNs&index=41

PID Controller Explained

https://www.youtube.com/watch?app=desktop&v=fv6dLTEvI74&list=PLINn3BHg93SQI9SENS8jXvh
ycxAeFecmkjTNs&index=85

PID Settings | Proportional-Only Control

https://www.youtube.com/watch?app=desktop&v=E780BPOjKwM&list=PLIn3BHg93SQISENS8;jX
vhycxAeFcmkjTNs&index=94

Ch 19 PID Block 102

Summary

This chapter has the purpose of taking the programmer from the state of asking “What is a PID
loop” to being able to program a PID loop, implement a faceplate, consider how more than one
PID block can be combined to control complex processes and encourage the programming of at
least one PID project complete with tuning and HMI panel.

A student should be able to accomplish each of the steps listed above from the examples in the
chapter and implement a PID process in the laboratory.

Students should also be able to read a P&ID and interpret the parts of the P&ID that can be
implemented in a controller including the PID algorithm.

HMI considerations also should be heeded and alarms that control the mode of the PID block
were discussed.

Ch 19 PID Block 103

Lab 19.1 PID

Use the Extruder/Mixing System making Dog Food of Fig. 19-60 to design a PID
controller for the Fat Valve. A potentiometer may be present and (if present) may be
used to represent the motor speed. Input the potentiometer into a second analog input.
To simulate the change of speed of the motor, change the analog value from the pot.
Demonstrate the running face-plate with auto-manual and local-remote to the instructor.
When the PID algorithm crosses between auto and manual or between auto-remote and
auto-local provide a bump-less transfer (optional). You may program the A-B and
Siemens processors in either Ladder or FBD. Both processors must be demonstrated and
their PID control discussed in a lab report. The Siemens process is the ball-in-tube and
the A-B process is the water valve.

Lab 19.2 Advanced PID

Add logic to PID Lab 17.1 to program to ramp from the old setpoint to a new setpoint
using a ramping block. Program the ramping only for the remote mode (although the
ramping function typically done in all automatic modes since it is needed to protect the
process). When a new value is entered in the remote Sp entry location, the PID’s Sp is
not to immediately change to the new Sp, but rather it is to be ramped up or down from
the present value (found in the Pv). Save the Pv when the new Sp is detected and
determine whether the Pv is below or above the new Sp. Set a seal coil or latch coil to
remember which way the ramp is going (either up or down). Also, start a timer to time
out each 5 to 10 seconds. When the timer times out, add a small amount (delta) to the
new Sp and then compare it to the Remote Sp. If the ramped Sp went past the Remote
Sp, stop the ramp and put the Remote Sp in the PID’s Sp. Then end the ramp program
and wait for another Sp change. Also, stop the ramp if the PID loop is taken to manual
from auto. Add a fault circuit that detects if the flow is dangerously low for the value of
the output. If this kind of fault occurs, the PID algorithm might begin to wind up (read
about anti-reset-windup in the PID section of the A-B book). If the low-flow fault occurs,
blink an alarm light on the PanelView and turn the PID block to manual. Set the bit in the
alarm banner.

Ch 19 PID Block 104

Exercises

10.

11.

When a PID controller is in remote, is the mode in auto or manual?
T/F Windup of the controller is possible in manual mode?

T/F The controller performs exactly the same whether the controller is set for E = PV —
SPor E=SP -PV.

What is the purpose of the small triangles on the left and right side of the bar graphs of
a faceplate?

List the function of the following ISA symbols:

LT

LIC
FIC
dTC

The process engineer says that you are to move the PID controller from auto to manual
if any of the analog signals (4-20 mA) are invalid in the low range. Show with an
example how to accomplish this in ladder logic. Assume the analog inputs are in slot 5.
Label all rungs explaining your logic.

A temperature profile of two different TT’s is to be added together in varying
percentages to provide the PV for a PID controller. Show with an example how to
accomplish this in adder logic. Provide a mechanism so that if the percentage is not
100% that the PID block will only run in manual mode. Label all rungs explaining your
logic. You should show the PID block but do not provide logic for the SP or CV.
Assume the analog inputs are wired to a 4-20 mA analog card in slot 3.

A speed sensor has a high and low alarm attached to it. The signal from the sensor is
transmitted to a computer. Draw a P&ID of the speed signal transmitter, high alarm
and low alarm. Assume the signals are attached to a computer and are field mounted.

A differential pressure transducer transmits a signal that is used for flow. However,
flow is proportional to the square root of the differential pressure. An analog input card
is to be used with range 1-5V input for the PV and an analog output card is to be used
for the CV, range 1-5V. The SP is to be input from an HMI. Draw the P&ID showing
the mathematical calculation of the square root. Any symbol type is appropriate. Then
write a program to control the flow using the analog cards listed. Assume the input card
is in slot 4 and the output card is in slot 6.

In some temperature control, the output device is a switch that turns on or off a resistor
to produce heat. If the output of a PID block is fed to a discrete output that can only
turn the resistors on or off, write a program to turn the discrete output on or off a
proportion of 10 seconds based on value of the CV. Assume the output CV can range
only from 0 to 100 and is its value is found in a storage location.

Build a lag controller capable of a 5 second lag with value changes each .5 second.
Build a lag controller capable of an x second lag with value changes each y second.

Ch 19 PID Block 105

12. Using either the PID blocks from A-B or Siemens, provide a program that will work in
auto mode for the following P&ID. Use variables as inputs, outputs and internal
variables as necessary. Describe these variables in a table. PV’s and CV’s are marked.

Unmarked SP’s are setpoints from the HMI screen.

— N —
W= ?
cv ‘
PV _(Fic)
Al
SET
NS

FLOW (Fs)) 1 3 cv
r D

PRIMARY
‘FLOW (Fp,
i

SECONDARY

13. Using either the PID blocks from A-B or Siemens, provide a program that will work in
auto mode for the following P&ID. Use variables as inputs, outputs and internal
variables as necessary. Describe these variables in a table.

ws'(t}

Ws

STEAM
FLOW

SPECIFIC g

GRAVITY OF } > =
FEED

FIG. 8.161
Feedforward control loop based on Equation 8.16(29) and
provided with lag for dynamic compensation.

or if feed flow is the manipulated variable:
wf
Vi= u
1.I1(1 — 0.4378))

8.16(29)

Ch 19 PID Block 106

14. Using either the PID blocks from A-B or Siemens, provide a program that will work in
auto mode for the following P&ID. Use variables as inputs, outputs and internal
variables as necessary. Describe these variables in a table. PV’s and CV’s are marked
in the diagram. Unmarked SP’s are setpoints from the HMI screen. Ignore sqrt
operation. Assume that FT’s give a flow rate and the sgrt function is performed at the
transmitter, not the controller.

FB L1
Reflux rate control system for overcoming accumulator lag.

15. Provide PID blocks for all the PID controllers in the following P&ID. Identify SP, PV
and CV using labels from the P&ID or descriptors you made up.
OPTIMIZING CONTROLLER

SET TO HOLD
90% COOLING LOAD

COOLANT
RETURN

COOLANT
SUPPLY

FRG. 828w
The reaction rate in continuous reactor is matched to the

capacity of the cooling system.

Ch 19 PID Block 107

16. Write logic to provide a 30-second lag given that the variable is to be updated each .1
second. Use A-B ladder format to demonstrate your answer.

17. Atthe end of Ch. 19 is an article:

A Discussion Comparing DCS and PLC/SCADA for Process Control

DCS and PLC/SCADA — a comparison in use

The author stipulates:

It may surprise you to know that PLC, HMI and SCADA implementations today are
consistently proving more expensive than DCS for the same process or batch
application. CEE finds out more...

What does the author claim for the basis of his arguments and what would you do as a
PLC programmer to counter these claims? Be specific:

18. Give an example of multiple inputs being used instead of just one value for the PV
(Process Variable) of a PID Loop. Write a program using either A-B or Siemens to
demonstrate your answer.

19. Anexample was given in class describing how to control the pressure in a steel furnace

even when the door was opened. Describe of how you would accomplish this. Be
specific:

Stack Damper ——— | X

Pressure
Sensor

Furnace Door Furnace Pressure PID Block
Pressure Sensor = Pv
Operator entry of

Furnace Pressure = SP
Position of Stack

Damper = Cv

Operator Entry
Furnace Pressure = xxxx

20. If an input range is listed as 0 mA to 21 mA range is from 0 to 32640 and we want a 4-20
mA. What is the numeric range of a 4-20 mA signal?

21. A good value for P for a servo:

Ch 19 PID Block 108

22.

23.

24,

25.

26.

27.

28.

29.

A good cyclic time to update the PID Control for a servo:__

A good value for P for a water loop:

A good cyclic time to update the PID control for a water loop:

A good value for P for a temperature loop:

A good cyclic time for update of the PID control for a temperature loop:

Name a PID control loop that does fine with no derivative component:

Name a PID control loop that is unstable if the derivative is left at zero:

The following program is a starter program to control the wind-up of the tape. To start
understanding it, provide comments for each statement in the program listing. All
statements are found in the cyclic interrupt program OB30 which is run each 100 ms.
The individual motor programs can be used to control the speed portion of the gearmotor
project discussed in the chapter.

Dancer3 » PLC_2 [CPU 1214C DOU/DCTDC]

Devices ‘E"" Topology view ||5Eh Network view ”—[l'f Device view |_
[= 2 | d¢ [Pczicruiziag) [+]] B __| [T =
Name E
¥ |] Dancer3 E

K Add new device
iy Devices & networks 103 102 101 2 3 4 5 6 7 8 9
+ [PLC_2 [CPU1214C DC... Rack 0 b
nf Device configuration: = - _
%/ online & diagnostics §
~ [Program blocks i
W" Add new black
4 Cyclic interrupt ...
3 Main [OB1]
» I System blocks
» [Technology objects
3 External source files T"T‘ 100% | —5— d
[~ s
: g Et::agt; apes |2 Properties | %, Info y”ﬂ Diagnostics |
» 55 Watch and force ta.. J General ” 10 tags || System constants ” Texts
3 ’}‘ Online backups « Digital inputs
» [82 Traces . > Channeld E
» [iil Device proxydata Channell
|(” — I | Channel2 E Channel address: ‘IC.C |
~ | Details view ET“"EE u Input filters: ‘ 20 microsec |'|

Ch 19 PID Block 109

J General " 10 tags || System constants ” Texts

|§.Properties ||"_i.'.lnfo i)

|| ﬂ Diagnostics |

Hardware identifier

w AQ1 signal board
b General
b Analog outputs
11O addresses
Hardware identifier
* High speed counters (H5C)
« H5C1

General
Functicn —
Reset to initial values
Ewvent configuration
Hardware inputs

IO addresses

T ol |

Hardware identifier

]
]
b H5C4
4
4

= Pulse generators (PTOIPWM)
* PTO 1PV
General
Parameter assign...

m’_ti.am.uﬁ.mmmj)

HSC1

> General

[wi2]

Enable

Project information

MName:

Comment:

*» Function

[Enable this high speed counter

Type of counting: | Count

Operating phase: | Single phase

Counting direction is specified

[~]

[~]

by: | User program (internal direction control}

Initial counting direction: | Count up

[+]

|'| |7|

sSUB
Dint MOVE
EM ENO EM ENDQ ———
HWD1000 D6 WD1000 D2
“In_Pulse_R" M1 ouT *|IDThiz_R" “In_Pulse_R" M 3 ouT "IDLast_R"
D2
“IDLast_R" N2
Y“DB4
"Right_Motor”
PID_Compact MNORM_X
1R Int to Real
EM ENOD EMN ENO =

D30 Output 0 MIN

“SP_R" — setpoint UMWS0 WSO out

FMDE Output_PER — "Out_PER_R" *Cut_PER_R" — WALUE

"IDThis_R" Input Output_PWWM —... 27658 — pAX
0~ Input_PER State
410 3 Error =—...
“Man_Enable_R" — ManualEnable ErrorBits
D26
“Man_Val_R" Manualvalue
WM10.4
“Mod_Act_R" — podeActivate
Eawz4a
"FID_Mode_R" Mode —
Ch 19 PID Block 110

NORM_X MUL
Int to Real Real
EM EMNO EN END ——
O MmN “WAD14 1000.0 — N W22
YAWSO out "Out_R_Morm” YMD14 out "Out_R_To_Mator”
"Qut_PER_R" VALUE "Out_R_Marm” N2 3k
27658 [T
sSuUB
L MOVE
EMN EMND EM END =l
WD1004 “MD38 WD1004 WMD34
“In_Pulse_L" N1 ouT “IDThis_L" “In_Pulzse_L" N s ouT “IDLast_L"
D34
“IDLast_L" N2
PID_Compact NORM_X
| Int to Real
EN EMNO EN EMNO
WIDAZ Output 0= MmN WMD56
"SP_L" Setpoint YW A LAWSA ouT — "Out_L_Morm”
YMD38 Qutput_PER "Out_PER_L" "Out_PER_L" VALUE
*IDThis_L" —linput Output_PWNM — ... 27E5E — MAX
0~ Input_PER State
TM10.5 Error —...
“Man_Enable_L" = ManualEnable ErrorBits
D46
“Man_Val_L" — panualvalue
W10.6
— ModeActivate
WS 2
"PID_Made_L" — pode .
MORM_X MUL
Int to Real Real
EM ENO EM ENO —
0 MIN YUMD56 1000.0— N1 UMWE D
LRAWSA out "Out_L_MNorm”® YMD56 ouT "Out_L_To_Motor”
"Out_PER_L" VALUE "Out_L_Morm”® N2 2k
27658 (XY
WDB1
"CTRL_PVilhi_DE"
MOVE CTRL_PWWM
EN — EM ENO —
WG O EQW1000 265 %M10.1
"Out_L_To_Motor® I 3% 0uT1 “Motor_PWhi_R" “Local~Pulse_1" PV BUSY =i “out”
%0 .6 "CTRL_PWI_
"Tag_7" — EMABLE STATUS DE" . STATUS
DB 3
"CTRL_PWh_DE_1"
MOVE CTRL_PWWM
EN — EM ENQ =i
W22 |QW1002 266 WM10.2
"Qut_R_To_Motor" M 3 oum *Tag_2" “Local~Pulse_2"° PVIMA BUSY —i “outl”
W0 7 "CTRL_PWI_
"Tag_8" — ENABLE STATUS — DE_1" 5TATUS

Ch 19 PID Block

111

30.

The following program is a starter program to control the control of water level in the top
tank. To start understanding it, provide comments for each statement in the program
listing. All statements are found in the cyclic interrupt program OB30 and start-up
program OB100. OB30 is run each 1000 ms (1 sec).

Ch 19 PID Block 112

v |z Program blocks
B Add new block

& Main [OB1]
3 Startup [OB100]

“Level_Man_a" — ManualValue

false == Error

false == peset
1.7
“Level_Mode_Act” — ModeActivate

MW 12
“Level_Mode® — Mode

InputWarning_L —false

WMMwe4
State — state_Level”
Error —4false
ErrorBits — 1650

Ch 19 PID Block

SuB CONV
Auto (int) Int to Real MOVE
N EN ENO EN — ENO ——
WW1002 WWI80 WIWI80 WDI6 WW1002 WIW1 78
“Pulse_Raw_Cnt” — IN1 ouT — “Pulse_This_Scan® “Pulse_This_Scan” — IN ouT — "Flow_PV* “Pulse_Raw_Cnt" — N sf OUT1 — "Pulse_Raw_Last’
WIW1 78
"Pulse_Raw_Last" — N2
*Flow_Rate”
PID_Compact
WMD114 Scaledinput — 0.0
“Flow_A" — Setpoint WMD66
WMD96 Output — "Level_Output®
“Flow_PV" — nput Output_PER — 0
0~ Input_PER Output_PWM —ialse
0.0 — Disturbance SetpointLimit_ '
Ho—tfalse
w14 .
“junk1® SetpointLimit_L —tfalse
_I I ManualEnable InputWarning_H —tfalse
70.0 — NBBlANale InputWarning L —ifalse
false = ErrorAck ':AMV\64 i
false — REset State — "state_Level
w15 = Error — zloe
¢ IR ErrorBits — 1650
TMW70
“mode” — Mode ~
NORM_X SCALE_X
Real to Real Real to Int
EN ENO EN ENO
00— MN %WID80 0— MN ZGWI000
WMD66 OUT — “Level_O_Norm® %LMD80 OUT — "Level_PYAF
“Level_Output® — VALUE “Level_O_Norm® — VALUE
100.0 — mAX 10000 — MAX
NORM_X suB SCALE_X
Int to Real Real Real to Real
EN ENO EN — ENO EN ENO
0— MN %WD104 1.0 — iy %WD104 00— MmN %MD108
ot R — tevelin” “MD104 out —“Level In” D104 out — "Level®
“Analog_Input_0" — VALUE “Level_In" — N2 “Level_In" — VALUE
12750 — MAX 100.0 — MAX
“Level_Rate”
PID_Compact
EN ENQ —
“MD118 Scaledinput —
“Level SP"— Setpoint %WMD114
%MD108 Output — "Flow_A"
“Level” — input Output_PER — 0
0~ Input_PER Output_PWM —i%alze
0.0 — Disturbance SetpointLimit_
H=—tfalse
Lok SetpointlLimit | =—4false
“Level_Man_En" — ManualEnable SetpointLimit_L oS
D174 InputWarning_H —ifalse

113

NORM_X SCALE_X
Int to Real Real to Real
EN ENO EN ENO
0— MN %MD122 0.0 MN %MD126
D114 OUT — “Flow_N" %WMD122 ouT — "Flow_sF"
“Flow_A" —ZVALUE “Flow_N" — VALUE
00 — MAX 70.0 = MAX
%15
-
{R}
w17
“Level_Mode_Act”
("}
iy Devices & networks YnB2
~ (g PLC_1 [CPU1215C . - *CTRL_PWM_DB"
[l Device configura.. CTRL PAWM
%) Online & diagno... EN ENO
* |5 Program blocks 257 — PWM BUSY —iFal:e
I Add new block | = ENABLE STATUS
2 Cyclic interru...
%WB4
4 Startup [OB1... *Pulses_In"
» ' System blocks CIRL HSC
» [Technology cbje... EN ENQ pm————t
» External source f... 261 —Hsc BUSY —False
b L PLCtags False —{DIR STATUS |— 1650
» [PLC data types Falste —l v
» ro?gLWatchandforce False —{ Ry
P o -V T W)
| Il | False —PERIOD
i I Details view e
NEW_CV
NEW_RV
NEW _PERIOD
Q| online & diagno... u
~ |l Program blocks MOVE
"" Add new block EN —
& Cyclicinterru... S—IN UWIW70
& Main [OB1] ¥ oum "mode”
____________ & Startup [0B1...
» [System blocks WM1.5
» [Technology obje .. E
» External source f.. {s}
» [a PLCtags MOVE
» [PLC data types EN — ENO—
» [watch and force ... 3N WMW112
v
Pl T T i ouTm — "Level_Mode"
i |
Details view
1.7
“Level_Mode_Act”
{c}
15T

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ch 19 PID Block 114

https://creativecommons.org/licenses/by/4.0/

