
 Ch. 4 Programming the Application 1

Chapter 4 Programming the Application

This chapter deals with the steps to creating a working program from both the Siemens and A-B

platform. In the last chapter, we dealt with linking the computer to the PLC and establishing the

project or file for the PLC to begin programming. This chapter deals with the creation of

programs for the PLC.

Background Program

Allen-Bradley and Siemens go about storing programs in a main file that runs continuously in

the background of the processor. Allen-Bradley refers to this program as Main while Siemens

refers to it as OB1 (Object Block 1). The method of storing logic looks slightly different for the

two. At the left is Allen-Bradley’s program format. It resembles a scroll. At right is the

Siemens approach. Siemens allows the programmer to use one line or rung of logic per Network

or place multiple lines of logic in the same network. An advantage of placing more than one line

in the same network is that the logic is not as spread out and can be more easily read.

 Ch. 4 Programming the Application 2

The following shows the path logic is solved by both manufacturers’ PLC. The logic solves left

to right, up to down and down to up. Never does the logic flow right to left. There may be a

circuit that, if copied as is, would require right to left logic but this logic must be modified to not

allow the flow right to left.

Discussion of entry of the logic for both processors is given.

First with Siemens:

Organizing the Program in S7

The S7 PLC uses “program containers” called Organization Blocks to separate programs into

areas of execution.

OBs are numbered and divided into different classes based on function. The quantity of OBs of

a particular class vary by CPU model. OBs are added by the application programmer as desired.

OB1 contains the main application program for the PLC. Other OBs can be thought of as

interrupt handlers or subroutines (function blocks).

What Are Organization Blocks?

Organization Blocks (OBs) are the interface between the operating system of the CPU and the

user program. OBs are used to execute specific program sections:

• At the startup of the CPU

• In a cyclic or clocked execution

• Whenever errors occur

• Whenever hardware interrupts occur

 Ch. 4 Programming the Application 3

During a warm restart, the first step carried out by the operating system is to delete the non-

retentive bit memories, timers, counters, interrupt stack, and block stack; to reset all stored

hardware interrupts and diagnostic interrupts; to write the status of the outputs to the PIQ table

(Process Image of Outputs); and to start the scan cycle monitoring time. In the second step, the

operating system writes the values from the process-image output table into the output modules.

In the third step, it then reads the status of the inputs and writes them to the PII Table (Process

Image of Inputs). In the fourth step, it then executes the user program with the respective

instruction. The operating system starts the cyclic operation again and continually monitors for

interrupts.

Startup:

A startup program is carried out before the cyclic program execution after a power recovery or a

change of operating mode (through the CPU‘s mode selector or by the PG). OB 100 is available

in every PLC model, whereas 101 and 102 are only available in the S7-400. In these blocks you

can, for example, preset the communications connections or execute initialization routines.

The Program Editor

 Fig. 4-1 View of Base Page – Program Editor

The Editor has the following components:

Instructions
This area shows all instructions available for use in the program. To implement an instruction,

select the “rung” (network) you wish to add the instruction to, then “drag and drop” the

instruction onto the “rung”.

Work Area
The code section contains the program itself, divided into separate networks (rungs) if required.

 Ch. 4 Programming the Application 4

Fig. 4-2 Cross-Section of Instructions

Programming instructions are separated into groups based on functionality.

Basic Instructions – these are the “standard instructions” that can be used with all standard data

types. Instructions include Bit Logic Operations, Math functions, Move Operations, and so on.

Extended Instructions – these are instructions that can either be used on complex data types, or

that perform specific functions not associated with “traditional” program control functions.

Favorites – you can add frequently used instructions to the Favorites group. Instructions in the

Favorites group appear in the upper area of the Program Editor.

Communications – these are instructions used to program communications tasks, such as peer-

to- peer PLC communications, open communications over supported networks, and so on.

Technology – these instructions are associated with technology functions supported by the PLC

in question. Examples include PID Control.

Addressing Program Elements

Fig. 4-3 Addressing a Function

 Ch. 4 Programming the Application 5

As instructions are added, any address the user MUST fill in are shown in a red italic font. The

program editor prompts you for the general data format of the instruction as follows:

• ??.? – a bit address

• ??? – an address other than a bit (e.g., byte, word, etc.)

Addresses that can be defined but are not required to be addressed are shown with a black font

as an ellipsis (…).

Allowing the mouse pointer to “hover” over an address field will reveal the required data type(s)

for the instructions operand. Blocks can be saved without addresses filled in, but the program

will not compile until all required addresses are defined.

Programming with Tag Names

Fig. 4-4 Tag Selection from Menu

You can select configured tags using a pull-down accessible from the instruction. Double

clicking will bring an icon into view that can be clicked on to open a list of all tags in the

program that have the required data type. You can also start typing and the tags that appear will

be filtered based on the text entered to that point. Select the desired tag from the list to assign the

tag to the instruction. Autocomplete must be turned on to use this feature.

 Ch. 4 Programming the Application 6

Fig. 4-5 Table of Memory Designators for Tags

In many cases, it is necessary to access portions of contiguous data that is “embedded” in a larger

tag element. An example would be evaluating or changing a bit address within a word of data.

To access a smaller segment of data by a Bit, Byte, Word or Double word, the syntax is as

follows:

BIT <Tag>.x<Bit number>, e.g., “Status Long Word”.X4

BYTE <Tag>.B<Byte number>, e.g., “Status Long Word”.B2

WORD <Tag>.W<Word number>, e.g., “Status Long Word”.W0

DOUBLE WORD <Tag>.D<Double word number>, e.g., “Status Long Word”.D1

Changing an Operand

Fig. 4-6 Operand Choices

Often it is required to change an operand to a different one. To accomplish this, double click on

the instruction, then click on the pull down to select the new operand.

 Ch. 4 Programming the Application 7

The same feature can be used for many of the math instructions where the data type of the

instruction can be changed using the same method.

A first contact is chosen and added to the first network, Network 1:

Notice the <??.?> above the contact. This signals that an address must be selected for this

contact, much as a name was required for each contact in a ladder diagram. Move to the tree

area PLC tags and choose Show all tags. This area is blank to begin and must be added before the

contact above is complete. Bit, byte and word length tags may be created here. Some care must

be given to the addressing since tags can be programmed over other tags, a problem that will

cause errors later in debugging.

To start, tags will be given generic names such as “a1”, “a2”, etc. This is not a good practice but

Fig. 4-6 Choosing LAD as a

Programming Language

Fig. 4-7 Network 1

Fig. 4-8 Adding Tags

 Ch. 4 Programming the Application 8

will be done to start the process of naming variables. Tags should be given meaningful names

that give the user an idea as to the meaning behind the contact or other instruction. Below,

when the first tag is entered, an address appears of %I0.0. If your tag is to be addressed to the

first input %I0.0 then all is well. Usually, this variable needs to be changed. Here it is changed to

an M identifier. M bits and bytes are used for internal storage, not for inputs or outputs from the

PLC. The first bit of the M table is M0.0. Since this table is addressed in bytes, the succeeding

bits are M0.1, M0.2, M0.3, M0.4, M0.5, M0.6, M0.7, M1.0, etc.

Fig. 4-9 Using M for Internal Data Storage

Thus, the first address is entered as M0.0.

 Fig. 4-10 We Entered M0.0

And we proceed back to the ladder diagram for Network 1 and add the tag to the contact:

 Ch. 4 Programming the Application 9

 Fig. 4-11 Completed Tag

The final result resembles the following:

 Fig. 4-12 Continuing with Network 1

Next, we would like to add an input to the logic. The input is tied to the input point I0.0. In the

PLC tag table, we begin with the name “Input0”. We proceed across with default tag table, Bool

and then see an address of %M0.1 picked. This must be changed. The tag table will

automatically roll to the next available address but we will be using an internal bit for an input

but rather an “I” bit, I0.0.

 Fig. 4-13 Adding the Input

After changing the M address reference to an I address, and entering the correct bit offset, the

table appears as follows:

 Ch. 4 Programming the Application 10

 Fig. 4-14 Completing the Tag for the Input

Do not forget that a real device needs to be wired to an input for this input to perform its correct

function. Usually the input wired is through a NO (normally open) contact. This may change

from time to time but NO is usually chosen.

 L+ M G L+ M 1M .0 .1 .2 .3 .4 .5 .6 .7 .0 .1 .2 .3 .4 .5
 24VDC 24 VDC DI a DI b

 Input Output

24

VDC

0

VDC

PB

In the Program Block, the contact is added and the tag Input0 chosen.

 Fig. 4-16 Adding the Tag for the Input

Our program now has a normally closed contact labeled “Input0” address I0.0 in series with a

normally open contact labeled “a1” address M0.0. Next, we would like to add a parallel contact

to the NO contact “a1”. Start with an arrow from the left ladder.

Fig. 4-15 Wiring the Input

 Ch. 4 Programming the Application 11

 Fig. 4-17 Adding a Parallel Path

Add a tag to the tag table ”a2”. Note that we want this address as an M bit so the next available

M bit is M0.1.

 Fig. 4-18 Adding the Tag for the Parallel Path

We finish the contact by choosing the normally closed contact and adding the “a2” tag from the

tag list:

 Ch. 4 Programming the Application 12

 Fig. 4-19 Adding the Contact for the Parallel Path

The up arrow is chosen to tie the circuit right of “a2” to the circuit above. The circuit is now

complete except for an output coil.

 Fig. 4-20 Tying in the Parallel Path

The output coil is chosen from the instruction list and the tag is added.

 Ch. 4 Programming the Application 13

Fig. 4-21 Adding the Coil

The tag is chosen from the internal M bits again, this time M0.2.

Fig. 4-22 Adding the Tag to Finish the Coil

 Ch. 4 Programming the Application 14

At this time, our circuit is complete. The next rung or circuit is to be programmed in the next

available location. The programmer has a choice of moving to the next network, Network2, or

continuing in the present network. The program will solve the same either way. Usually, the

programmer will continue in the same network for compactness on the screen. More can be seen

at the same time when troubleshooting if more rungs are grouped into the same network.

 Fig. 4-23 Completed Circuit (Rung)

The following shows a second circuit input in the same network as the first. This circuit is not

completed but illustrates the ability of the programmer to stack several ideas or circuits into one

network.

 Fig. 4-24 Where to Add Another Circuit (Rung)

 Ch. 4 Programming the Application 15

The following shows the same circuit but entered in a second network. Here the ideas are more

spread out, usually a less attractive alternative but available as desired.

 Fig. 4-25 Alternate Place Add Circuit (Rung)

When defining a Boolean variable, the choice of local or global is to be given. The only time

that a variable is to be defined as a Local variable is when the information is only to be passed to

a later rung in the same scan but lost after this. The local variable does not return after the end of

the scan. Care must be taken to not choose ‘Local’ because it is the default choice. It is not the

preferred choice in most cases.

 Ch. 4 Programming the Application 16

Next, Allen-Bradley

Starting with the project tree, the first program to enter is MainRoutine under MainProgram. This

program is equivalent to OB1 in that it is always on and scanning in the background. Execution

occurs as often as possible when other programs are not pre-empting the cpu’s time. This

program is programmed in Ladder. Subroutines and other programs may be programmed in FBD

and STL.

To choose a NO contact, either of the following tabs may be chosen.

Choose either the Favorites tab above or the Bit tab below to show a

NO contact. NC contact and coil are found in both as well.

 Fig. 4-27 Alternate Tabs for NO Contact

Fig. 4-26 Beginning a New Rung

 Ch. 4 Programming the Application 17

Tags are given the same generic names as with the Siemens processor but care must be taken to

be meaningful to the process being represented. Names generally are less than 30 characters in

length and may have underscore (_). The more well commented, the better in the long run.

 Fig. 4-28 Entering the NO Contact

The tag may be entered by right clicking the contact. The new tag will then be entered from the

following screens:

 Fig. 4-29 Entering the Tag

The screen below will be entered with Name as a1. A description may be entered if desired.

Since the contact was chosen, the Data Type is Bool. Other options are listed but usually left as

is.

When the tag name is successfully entered, the contact and tag appear as one unit.

 Ch. 4 Programming the Application 18

It is worth noting that the A-B tag database has no M offsets similar to the Siemens architecture.

The variables’ offset is hidden from the user. This is more like a computer language in which

the value of a variable’s address may not be known.

 Fig. 4-30 Addressing a Tag using A-B

Tags may also be entered from the Program Tags option from the project tree. Here, they are

entered in the Edit Tags mode (see tab at bottom of page). This mode must be properly set to

enter tags or monitor tags. Use the Monitor Tags mode when online and changing variables to

verify the program or enter data to try for a specific result. This tag will be discussed more in the

troubleshooting section.

 Ch. 4 Programming the Application 19

 Fig. 4-31 Tag Entry from the Program Tags Option

Input and output tags are already defined and may be entered using their address. The addresses

for these devices can be found under the controller tab Controller Tags. This table is set for the

L23E. Other controllers with stacked cards will vary with the card type and number of each. For

our processor, the following I/O list is standard.

 Fig. 4-32 I/O Tags Configured for the Processor

Expand the Input tab to find the specific input point to be used. For input point 0, Local:1:I.Data.0

is used.

 Ch. 4 Programming the Application 20

 Fig. 4-33 Expanding the I/O Table to get Actual Tag

This data address may be copied into the contact directly and used for the address.

 Fig. 4-34 Copy/Paste of I/O Tag into Rung

 Ch. 4 Programming the Application 21

Adding a parallel branch involves the following:

From the Favorites, choose the loop (second choice) and place the loop

before the contact to be branched around. Then drag the cursor around

the contact. Then move the cursor just before the contact to be added.

 Fig. 4-35a Adding the Parallel Path

 Ch. 4 Programming the Application 22

 Fig. 4-35b The Completed Path

 Fig. 4-35c Adding the Output

Once the rung has been completed, it is wise to verify the rung for completeness. Right click on

the rung at left. The following will appear. Choose Verify Rung and the eee’s should disappear.

Fig. 4-36 Verify Rung Chosen

 Ch. 4 Programming the Application 23

To start a second rung, simply click on the new rung button. The following will appear.

Fig. 4-37 Adding the next Rung

 Ch. 4 Programming the Application 24

Fig. 4-38 Main Task Properties

While your program may be set

to operate with no timing

problems, it is wise to check the

Task Properties for MainTask

as shown at left.

The setting of 500 ms is an

acceptable time for the

Watchdog timer. If the program

execution exceeds 500 ms or the

program isn t allowed to

execute within 500 ms, the

WDT will shut down the

processor.

 Ch. 4 Programming the Application 25

You may alias a tag to another name as shown in the example below. Here Input0 is aliased to

Local:1:I.Data.0.

 Fig. 4-39 Aliasing of a Tag

Fig. 4-40 How Aliasing Looks in the Program

 Ch. 4 Programming the Application 26

Finally an A-B L16ER processor wired for inputs and outputs:

VDC+

VDC-

NC+

FP+

FP-

24VDC

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 - 8

1 - 9

2 - 10

3 - 11

4 - 12

5 - 13

6 - 14

7 - 15

V - V

V - V

0 - 8

1 - 9

2 - 10

3 - 11

4 - 12

5 - 13

6 - 14

7 - 15

C - C

C - C

DC
Input

DC
Output

DC 24 VDC
Sink

DC 24 VDC
Source

CompactLogix 5370 L1 Controller
with embedded I/O Module

 Fig. 4-41 (From Ch. 3)

 Ch. 4 Programming the Application 27

Troubleshooting the Siemens Processor

Online mode

In online mode, there is an online connection between your programming device / PC and one or

more devices.

An online connection between the programming device/PC and the device is required, for

example, for the following tasks:

 Testing user programs

 Displaying and changing the operating mode of the CPU

 Displaying and setting the date and time of day of the CPU

 Displaying module information

 Comparing blocks

 Hardware diagnostics

Fig. 4-42 Choosing to Go Online

 Ch. 4 Programming the Application 28

Fig. 4-43 May Choose Go Online Here as Well

Fig. 4-44 Choose Load

 Ch. 4 Programming the Application 29

Several changes appear when in the online mode. Among them are the following:

1. The title bar of the active window now has an orange background.

2. The title bars of inactive windows for the relevant station now have an orange line below

them.

3. An orange, pulsing bar appears at the right-hand edge of the status bar. If the connection

has been established but is functioning incorrectly, an icon for an interrupted connection

is displayed instead of the bar. You will find more information on the error in

"Diagnostics" in the Inspector window.

4. Operating mode symbols or diagnostics symbols for the stations connected online and

their underlying objects are shown in the project tree. A comparison of the online and

offline status is also made automatically. Differences between online and offline objects

are also displayed in the form of symbols.

5. The "Diagnostics > Device information" area is brought to the foreground in the

Inspector window.

 Fig. 4-45 Online Siemens Display

 Ch. 4 Programming the Application 30

Fig. 4-46 Click on the Glasses to see Monitor Mode

Fig. 4-47 Build a Watch Table to Monitor Variable Status

 Ch. 4 Programming the Application 31

 Fig. 4-48 Starting and Stopping the Program

Troubleshooting the Allen-Bradley Processor

Access Who either from Communications or from the symbol here:

Fig. 4-49a Downloading to the CompactLogix Processor

 Ch. 4 Programming the Application 32

Fig. 4-49b Downloading to the CompactLogix Processor

 Fig. 4-49c Downloading to the CompactLogix Processor

 Ch. 4 Programming the Application 33

 Fig. 4-50 The A-B Program in Run Mode

 Fig. 4-51 Changing from Run to Program or Test Mode

 Ch. 4 Programming the Application 34

Fig. 4-52 Monitoring the Variables using Monitor Tags

 Ch. 4 Programming the Application 35

Exercises

1. *In the program of Fig. 4-53, if input Catsup were changed from a NO contact to a NC

contact, how would the program have changed to not change the function of the push

button?

2. Would the program of Fig. 4-53 be significantly changed if the two N.C. contacts in the

third rung were removed?

3. Where in the program of Fig. 4-53 could the copy/paste function have been used

effectively?

4. Name the different processor modes for the Siemens S7-1200, the A-B L23E.

 Ch. 4 Programming the Application 36

Lab 4.1 The Hot Dog Counter

Project Description:

Fred and Rudy are making hot dogs at the ballpark. Fred dispenses mustard and Rudy dispenses

catsup. A hot dog is not sold without each Fred and Rudy putting both mustard and catsup on

the dog. As each pushes the button for their ingredient, a signal is fed to the PLC for the action.

Either button may be pushed first. Design a program to count the total number of hot dogs made.

Inputs should be wired to contacts and labeled as mustard and catsup. A display is kept in the

PLC showing up-to-date counts of hot dogs made by Fred and Rudy.

To complete the lab, enter the program shown later in the lab into the PLC and wire the two

inputs.

Watch the count accumulate in the counter as the two buttons are pressed in any order.

Get a listing from the listing software on the programming software package.

The documented listing of the program may be used as the final lab report.

Wire the PLC to the inputs for this lab and to inputs or outputs for other labs per the diagram on

the next page.

The next page shows the layout of the PLC on the trainer and the PLC wiring schematic. To

wire the two inputs, wire through the two pushbuttons selected so that 24 volts is at the terminals

of I/0 and I/1 when the two buttons are pushed.

 catsup mustard

Enter the following 4 rung program in both Siemens TIA Portal and A-B RSLogix 5000.

 Ch. 4 Programming the Application 37

Download both and wire the inputs. Demonstrate a working counter to your instructor:

Catsup

(Input)

Hotdog

(Internal bit)
Catsup Remember

(Internal bit)

Catsup Remember

(Internal bit)

Mustard

(Input)

Hotdog

(Internal bit)
Mustard Remember

(Internal bit)

Mustard Remember

(Internal bit)

Hotdog

(Internal bit)

Catsup

Remember

(Internal bit)

Mustard

Remember

(Internal bit)
Catsup

(Input)

Mustard

(Input)

Hotdog

(Internal bit)

Hot Dog Counter

 Fig. 4-53 Program to be Entered

The count of hot dogs made is found in the accumulated value of the counter.

Both PLC platforms have instruction help features which may be used at this point to find how

the counter function above is programmed. RSLogix 5000 has this feature in its Help>Instruction

Help tab. Siemens has similar help features but has helps with the instruction to identify variable

types in the instruction itself.

 Ch. 4 Programming the Application 38

 Fig. 4-54 RSLogix 5000 Counter Instruction

 Fig. 4-55 Siemens’ help with the PV Variable

 Ch. 4 Programming the Application 39

 Fig. 4-56 Siemens’ help with the CV Variable

In the example above, Figs. 4-51 and 4-52 show the type of inputs available for PV and CV. In

general, PV is short for process variable and CV is short for the controlled variable. For the up-

counter, PV is the count preset and CV is the active count. The PV may hold a constant as

shown below:

 Fig. 4-57 Siemens’ CTU Instruction with PV Constant (=9999)

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

