
 Ch 6 Basic Memory Circuits 1

Chapter 6 Basic Memory Circuits

In this chapter, we take a look at the memory circuits used in programs in the US and in Europe.

There are differences. The Allen-Bradley programming language definitely encourages the use

of seal circuits while Siemens’ programming allows the Set/Reset circuit or the seal circuit. Both

will be discussed in depth and their use in programming applications follow. Also, this chapter

introduces the one-shot or edge trigger. It is a highly used addition to most circuits and its use

should be well understood.

The memory circuit, while either the US or the European type, is the basic building block for all

programs involving automation and control of a process. Its use is foundational to all logic that

follows. In Ch. 7, we discuss the memory circuit (seal circuit) with a timer. In Ch. 8, we discuss

the memory circuit with comparison statements. Ch. 8 also introduces the idea of numbers

instead of bits to set memory steps or states. Ch. 11 introduces the concept of states and

discusses various ways of programming them. The first method proposed in most state diagrams

is the use of the basic memory circuit (either seal or S/R). Later chapters use the memory circuit

to build a foundation for control of a particular process – either batching (Ch. 13), mode (Ch 15),

motion (Ch. 17) or PID (Ch. 19).

After a discussion of the one-shot and introduction of some simple one-shot circuits, we discuss

some early design of memory circuits. These examples form the foundation for more

sophisticated applications in later chapters.

Developing the Memory Circuit

We look first at a very simple system. This circuit gives a look at how memory circuits have

been a part of digital logic and how the digital concepts have links to the Ladder diagram circuits

used later in the chapter.

The Acme Company has a problem flow of molasses in a storage tank. In the winter, viscosity

of the molasses is so high that the molasses run too slow to exit the flow valve. A present system

allows for flow out of the tank on request but no sensing of temperature. A second model is to

be put in place to allow for a heater to be turned on while the molasses are cool and then flow out

of the valve.

The first model does not have a temperature sensor or heater. Sensors consist of two level

sensors, LH, and LL. The tank outlet valve turns on to empty the tank when the upper level is

reached. After opening, the outlet valve was closed when only when LL has been reached.

The system as designed is shown below.

 Ch 6 Basic Memory Circuits 2

Molasses Tank

Inlet Valve VIN (not used)

Outlet Valve VOUT

Upper level

sensor,LH

Control Logic

Lower level

sensor,LL
Switch covered = ?
 not covered = ?

Switch covered = ?
 not covered = ?

Fig. 6-1 Flow Out when Full

Signal assignment must be made of the level switches LH and LL. These switches must be

assigned a value of 1 or 0 when the switch is covered (level exceeds the switch). A switch must

be assigned a value that is safe, that is, that limits bad consequences if the switch fails. The most

likely fault is for the switch to lose a wire (wire fall off and open the circuit). If this happens,

would the circuit allow some bad event to occur? In the event of LH, the switch is used to stop the

fill sequence (turn off the circuit). It is proper to think of switches that stop a memory circuit as

the same as a stop switch. Stop switches are assigned the value 0 when the switch level is

exceeded. For the switch LH, the switch covered = 0, switch not covered = 1. Not all switches

are as easy to assess and in some cases, either 0 or 1 is proper to assign as the value for “Signal

Assignment”.

In addition to finding a truth table and Karnaugh map, the requirement for safety requires a

signal assignment table:

Sensor Function/State Signal Assignment

LH Upper Level 0

LL Lower Level 1

 Table 6-1a Input Assignment

Actuator Function/State Signal Assignment

VOUT Outlet Valve 1

 Table 6-1b Output Assignment

 Ch 6 Basic Memory Circuits 3

The Signal Assignment can be assigned to the Molasses Tank and filled in on the system

diagram:

Molasses Tank

Inlet Valve VIN (not used)

Outlet Valve VOUT

Upper level

sensor,LH

Control Logic

Lower level

sensor,LL
Switch covered = 1
 not covered = 0

Switch covered = 0
 not covered = 1

Valve on (flow) = 1
Valve off (no flow) = 0

Fig. 6-2 Flow Out

with I/O Assigned

A Truth Table is designed and a Karnaugh map is developed from it:

Truth table for outlet valve VOUT

LH LL VOUT VOUT Action

0 0 0 0 Sensor error; open valve

0 0 1 0 Sensor error; open valve

0 1 0 1 Both sensors covered; open valve

0 1 1 1 Both sensors covered; maintain open valve

1 0 0 0 Level below low; leave valve closed

1 0 1 0 Level below low, close valve

1 1 0 0 Level between low, high; maintain open

1 1 1 1 Level between low, high; maintain closed

 Table 6-2 Truth Table for VOUT

 Ch 6 Basic Memory Circuits 4

Vout
0

0 0

0 1

1 1

1 0

1

1

0

0

1

0 0

0

1

LLLH

Vout = LH· LL + LH· Vout = LH· (LL + Vout)

LH

Vout

LL Vout

Fig. 6-3 Karnaugh Map

and Ladder Solution

The Karnaugh Map Simplification of Vout, Boolean Equation, Ladder Equivalent is developed.

The final design circuit could be built from logic gates and demonstrated for a lab experiment.

The addition of circuits for temperature and alarm could be added as well. This may be all that is

required in the academic world. In the real world, however, a PLC or similar device is employed

to turn on and off devices and report the result to computer systems monitoring the factory’s

production. This requires more effort than the simple circuit design found on the next page.

1K1K

1K

+5V

+5V

+5VUpper level sensor, LH

Switch covered = 0 or open,

not covered = 1 or closed

Lower level sensor, LL

Switch covered = 1 or open,

not covered = 0 or closed

VOUT

Fig. 6-4 Solution of Molasses Tank

with Boolean Gates

System modifications to the molasses tank include a temperature sensor, Tc and heater H. Level

sensors, LL and LH, are retained.

The outputs are one valve, VOUT, an alarm, A, and a heater, H. The heater must warm the

molasses enough for proper flow.

 Ch 6 Basic Memory Circuits 5

When the upper level sensor is covered, the outlet valve should open if temperature is sufficient

for proper flow. Flow should be allowed until the lower sensor is reached or temperature falls

below the minimum temp for good flow. Once flow stops, the outlet valve closes until the upper

level switch is again covered. Alarms will show improper combinations of level switches.

Alarms will also cause flow to stop and heater to turn off. The heater is off if the low level

switch is not covered.

Molasses Tank

Inlet Valve VIN (not used)

Outlet Valve VOUT

Upper level

sensor,LH

Control Logic

Lower level

sensor,LL
Switch covered = 1
 not covered = 0

Switch covered = 0
 not covered = 1

Valve on (flow) = 1
Valve off (no flow) = 0

H
TC

Switch above temp = 1
 not above temp = 0

Heater on = 1
Heater off = 0

Fig. 6-5 Molasses Tank with Temperature

Switch and Heater Added

Sensor Function/State Signal Assignment

LH Upper Level 0

LL Lower Level 1

TC Temperature Sw 1
 Table 6-3a Molasses Tank Inputs

Actuator Function/State Signal Assignment

VOUT Outlet Valve 1

A Alarm 1

H Heater 1
 Table 6-3b Molasses Tank Outputs

 Ch 6 Basic Memory Circuits 6

Truth table Revised System:

TCVout

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0
LHLL

TCVout

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0
LHLL

TCVout

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0
LHLL

VOUT = H =

A =
Table 6-4 Truth Table and Karnaugh Maps

Students should finish the Karnaugh Maps, Boolean Equations and Ladder equivalent. This

control circuit may be the needed outcome of the control algorithm. It may not be the best

algorithm, however. The engineer/program designer may first try such a circuit and find it to be

lacking. In this case, if the temperature switch is never satisfied, the output valve VOUT is never

energized. While this may be the desired result, there may be a better approach that should be

looked into. In the meantime, realize that you may have “the best possible program” and find

LH LL TC VOUT VOUT H A

0 0 0 0 0 0 1

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 1 0

0 1 0 1 1 1 0

0 1 1 0 1 1 0

0 1 1 1 1 1 0

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 0 1 0

1 1 0 1 0 1 0

1 1 1 0 0 1 0

1 1 1 1 1 1 0

 Ch 6 Basic Memory Circuits 7

that in the activation/startup phase that it may need to be totally revamped to satisfy the “real”

problem with the machine or process. The program engineer must also be careful to not create

conditions that would cause equipment failure such as a solenoid cycling on and off

continuously. While an electronic device may survive for years constantly cycling on and off, a

mechanical device such as a solenoid will not stand up to such abuse and quickly burn up.

In general, memory circuits resemble the following and the Truth Table/Karnaugh Map step may

be skipped:

Stop

CR

Start CR

CR = Stop · (Start + CR)

CR Stop Start CR

 0 0 0 0 Stop pushed

 0 0 1 0 Stop pushed, start pushed

 0 1 0 0 Nothing pushed

 0 1 1 1 Start pushed, CR active

 1 0 0 0 Stop pushed, start pushed

 1 0 1 0 Stop pushed, start pushed

 1 1 0 1 CR active, start no longer pushed

 1 1 1 1 Start pushed, CR active

>=1Start

&
Cr

Stop

Fig. 6-6 The

Standard Memory

Circuit

 Ch 6 Basic Memory Circuits 8

Relay Instructions/Memory Instructions

Instructions for building memory circuits in Ladder and FBD are discussed next. They include

instructions commonly referred to as ‘Bit’ logic instructions. Siemens and Allen-Bradley each

provide a number of instructions capable of building combinational and memory circuits. While

the same instructions may not be referenced by the same name, the function of the Normally

Open and Normally Closed contact for both A-B and Siemens produces the same result.

Differences arise when using some of the other instructions, however. The main difference

between the two is the path most programmers take as a first choice when programming their

respective PLC. The European style of programming will be discussed as varying somewhat

from the American style.

Review of class of instructions for bit logic for Siemens and Allen-Bradley are listed below:

Siemens instructions for Bit logic are:

Fig. 6-7a Siemens S7-1200 Bit

Instruction Set

Allen-Bradley instructions for Bit logic are:

Fig. 6-7b Allen-Bradley

CompactLogix Bit

Instruction Set

 Ch 6 Basic Memory Circuits 9

Normally Open Contact

Siemens Step 7 Basic:

Fig. 6-8 Siemens Normally

Open Contacts

The two contacts form an ‘and’ of the two points, “test_1 and test_2”. If both signals have the

signal state “1”, the combination will conduct from the left power rail to the right. Otherwise, if

either input does not have a “1” state, power is not passed. Siemens refers to the contact as a

normally open contact, the traditional name associated with controls drawings.

Allen-Bradley refers to the normally open input as an XIC or “Examine On” contact. The

RSLogix 5000 example below uses the same two inputs “test_1 and test_2”. Internal memory

addresses are assigned tag addresses with BOOL data type.

Fig. 6-9 A-B Normally

Open (Examine On)

 Ch 6 Basic Memory Circuits 10

Contacts can be arranged either in ‘and’ or ‘or’ arrangements starting at the left power rail and

flowing to the right. Contacts must be placed on horizontal runs and never on a vertical run.

The expression above would be written in Boolean: test_1 and test_2 =

and the FBD diagram would be:

Fig. 6-10 Example of

Siemens FBD AND

Normally Closed Contact

Siemens Step 7 Basic:

Fig. 6-11 Siemens Normally

Closed/Normally Open Pair

The two contacts form an ‘and’ of the two points, “not test_1 and test_2”. If test_1 is 0 and

test_2 is 1, the combination will conduct from the left power rail to the right. Otherwise, power

is not passed. Siemens refers to the first contact as a normally closed contact, the traditional

name associated with controls drawings. The second contact is a normally open contact.

Allen-Bradley refers to the normally closed input as an XIO or “Examine Off” contact. The

RSLogix 5000 example below uses the same two inputs “not test_1 and test_2.

Fig. 6-12 A-B Normally

Closed/Normally Open Pair

The normally closed contact provides the same function as the “NOT” function of Boolean logic.

The expression above would be written in Boolean: not test_1 and test_2 =

and the FBD diagram would be:

 Ch 6 Basic Memory Circuits 11

Fig. 6-13 Siemens FBD

Normally Closed/Normally

Open Pair

Not inserted as ‘bubble’ here

Invert Result of Logic Operation

Siemens Step 7 Basic:

Fig. 6-14 Siemens Logic Inversion

The Invert instruction will invert the state at the point of inclusion. If the state at the point was

“1”, the output of the Invert [NOT] instruction is “0”. Likewise, if the state at the point was “0”,

the output of the Invert [NOT] is “1”.

The instruction has many practical uses in logic design. No instruction is available in the Allen-

Bradley instruction set that exactly duplicates this instruction from Siemens.

The instruction above is read “not[not test_1 and test_2]” and the FBD diagram would be:

Fig. 6-15 Siemens Logic Inversion

using FBD

Not inserted as ‘bubble’ here

 Ch 6 Basic Memory Circuits 12

Output Coil

Siemens Step 7 Basic:

Fig. 6-16 Siemens Output Coil

The output coil bit sets a bit of memory for a Boolean logic expression. It adds the resultant to

the equation. Before, the result was not included in the equation but with the coil, an output is

set to 0 or 1.

Multiple coils may be programmed but this is not necessary. Multiple coils with additional logic

may be programmed and this may be necessary. Use of multiple coils in one network is shown

below. The FBD equivalent is also shown.

Fig. 6-17 Siemens Multiple Coils

The following shows the FBD equivalent of the Ladder circuit above.

Fig. 6-18 FBD Equivalent of

Ladder Diagram (Fig. 6-17)

 Ch 6 Basic Memory Circuits 13

The following is the Allen-Bradley equivalent of the Siemens Ladder and FBD circuit.

Fig. 6-19 A-B Equivalent of

Siemens’ Fig. 6-17

Negated Coil

Siemens Step 7 Basic:

Fig. 6-20 Siemens Negated Coil

The Negated Coil inverts the logic of the network and assigns the inverted signal value to the tag.

Siemens uses the term RLO to signify the signal value at a point in the circuit. RLO is short for

Result of Logic Operation and signifies the status of the network at the point investigated. In the

case of the Negated Coil, the RLO is inverted to find the status of the negated coil.

No instruction is available in the Allen-Bradley instruction set that exactly duplicates this

instruction from Siemens.

Set Output

Siemens Step 7 Basic:

Fig. 6-21 Siemens Set Output

The Set Output operation sets the state of the Boolean bit to 1. If power flows to the output bit,

the output bit is set. If the result is 0, the output remains unchanged (may be 0 or 1).

 Ch 6 Basic Memory Circuits 14

Reset Output

Siemens Step 7 Basic:

Fig. 6-22 Siemens Reset Output

The Reset Output operation sets the state of the Boolean bit to 0. If power flows to the output bit,

the bit is reset (to 0). If the result is 0, the output remains unchanged (may be 0 or 1).

Set_BF Output

Siemens Step 7 Basic:

Fig. 6-23 Siemens Set

Bit Field

The Set_BF instruction sets several bits beginning at the stored address. The number of bits set

is defined in the second operand <operand2>. As seen in the example above, 5 bits starting at

Q20.0 are set with the instruction if power flows to the output.

Reset_BF Output

Siemens Step 7 Basic:

Fig. 6-24 Siemens Reset

Bit Field

The Reset_BF instruction resets several bits beginning at the stored address. The number of bits

reset is defined in the second operand <operand2>. As seen in the example above, 4 bits starting

at Q20.0 are reset or turned off with the instruction if power flows to the output.

 Ch 6 Basic Memory Circuits 15

SR: Set reset flip-flop

Siemens Step 7 Basic:

Fig. 6-25 Siemens Set

Reset Flip-Flop

The SR flip-flop is used to set or reset a specific output operand based on the state of the S and

the R inputs. The Reset or R input dominates. If the S is 1 and the R is 0, the output turns on - 1.

If the S is 1 and the R is 1, the output turns off - 0. If the S is 0 and R is 1, the output turns off.

RS: Reset set flip-flop

Siemens Step 7 Basic:

Fig. 6-26 Siemens Reset

Set Flip-Flop

The RS flip-flop is used to set or reset a specific output operand based on the state of the S and

the R inputs. The Set or S input dominates. If the S is 1 and the R is 0, the output turns on 1. If

the S is 1 and the R is 1, the output turns on - 1. If the S is 0 and R is 1, the output turns off - 0.

 Ch 6 Basic Memory Circuits 16

OTL: Output Latch

These instructions are Allen-Bradley instructions similar to the SR or RS flip-flop instructions of

Siemens. The orientation determines the dominance. If (L) is before (U), the Unlatch or Reset is

dominant. If (U) is before (L), the Latch or Set is dominant. The difference between A-B and

Siemens is that the bit programmed for the latch is retained after a power fail or change to program

mode and then back to run. The Siemens data bit will turn off after a power fail or change to

program mode and then back to run. Certain data areas in the Siemens program are reserved for

data that is retained and can be programmed using the S-R flip flop similarly to the A-B latch.

Fig. 6-27 A-B Latch-Unlatch

Picture of wired latch-type

relay. These have a slide-type

mechanism that remains in the

last state energized. Two

coils may be present or one if

diodes are used for ac

voltage. Either coil may be

energized at a time controlling

the state of the contacts.

 Fig. 6-28 Picture of Latch Relay

 Ch 6 Basic Memory Circuits 17

Picture of wired latch-type relay.

The wiring shows how forward

and reverse magnetic force can

be obtained from ac versus dc

operation. With ac, a latch or

unlatch signal is wired to different

diode circuits which reverse the

current through the coil. For dc,

there are two coils as shown.

 Fig. 6-29 Wiring Diagram of Latch Relay

The circuit and its mechanical description are shown above. The latch relay is maintains in its

last position even though power may not be present. The Allen-Bradley instruction for latch and

unlatch is an exact representation of this mechanical device. The Siemens S-R relay may be the

same or may be a coil that is reset to 0 if the power is removed. To determine whether the S-R

coil is retentive is determined by the address location of the coil in the M table.

Why Coils are Located to the Right

Why is the Coil located right of the contacts in general? The tradition has roots in the relay logic

before PLCs were implemented. The following two circuits show the difference. If a ground

occurs in the circuit, the relay at right will not turn on while at left, it probably will. This may

cause errors in circuit function.

Both coils turn on based on
equal contacts in the circuit

The circuit at left does not
turn on based on the ground.

The circuit at left turns on even
though the contacts may not be

conducting. The ground prevents
the circuit from working correctly
and will allow the coil to turn on
without all contacts conducting.

 Ch 6 Basic Memory Circuits 18

Retentive Memory

Retentive refers to the coil’s ability to retain its former status through a power loss. If the PLC

either loses power or stops processing the program, coils are reset to 0 unless specified as a latch

coil. Latch coils retain their state when the power is turned back on or when the program returns

to the run mode. Mechanical relays accomplish this with a slide-over arrangement similar to the

light switch on the wall. The coil’s status remains in the last state until energized to move to the

opposite state.

Problems inherent in latch coil design cause their use to be restricted to applications requiring

their use. For example, it is difficult to determine the state of a coil if both the latch and unlatch

coil are on at the same time. A mechanical relay will hum and eventually burn up because high

inrush currents would continue to flow if the relay’s air gap is not essentially zero distance

between the core and plunger. Although the program can determine which rung will be dominant

(either latch-L or unlatch-U), the condition is generally not considered good programming

practice and something to guard against.

Also, the programmer must guard against all conditions that may cause the circuit to reset the

latch coil to off and provide for those conditions with the Unlatch coil. Many circuits do not

provide for all conditions to reset the coil.

Seal circuits are developed differently than latch coils. In seal circuits start logic is positive and

stop logic is negative for relay coils. In Latch coils (L), the logic is positive that turns on the coil.

In Unlatch coils (U), the logic is also positive that turns off the same coil. Coils allow the end

user to cycle power and de-energize all seal circuits. This ability to cycle power and restart a

machine from a known state is very useful and should be used as much as possible. If the

program does not follow this suggestion, the result may be a flurry of mid-night calls to fix the

machine. Machines that use latch circuits in them are sometimes described as machines that

have “a mind of their own” since all circuits may not be reset to a known state with a power

reset.

From Instruction Help, Allen-Bradley describes the Latch function as:

“This instruction functions much the same as the OTE with the exception that once a bit is set

with an OTL, it is "latched" on. Once an OTL bit has been set "on" (1 in the memory) it will

remain "on" even if the rung condition goes false. The bit must be reset with an OTU instruction.

Latch and Unlatch instructions must be assigned the same address in your logic program. Output

addresses are specified to the bit level.

Stop

CR

Start CR

Fig. 6-30a

Control Circuit Seal

 Ch 6 Basic Memory Circuits 19

Stop
Start

L

Lxx

U

Lxx

Conversion of control circuitry to PLC logic requires care to correctly represent the circnit’s

original design. Use of latch-unlatch coils or S-R flip-flop circuits with retentive memory is to

be limited to only circuitry with a need for retaining a previous state.

Stepping Through Various Memory Designs

The following circuits demonstrate a PLC emulating the seal control circuit of an off-dominant

memory circuit (Fig 6-31b) and on-dominant memory circuit (Fig 6-31c). In an off-dominant

circuit, the STOP is dominant. The START button only will work if the STOP button is not pushed.

The second circuit re-arranges the circuit to allow the START to work regardless of the position of

the STOP. This is referred to as an on-dominant circuit. In general the off-dominant circuit is

preferred as it is safer.

Start

Stop

Start_I

Stop_I

Stop_I

M

Start_I M

Stop_I M

Start_I M

Fig. 6-30b

Control Circuit Latch/Unlatch

Fig. 6-31a

PLC Inputs for Start and Stop

Fig. 6-31b

PLC Seal Circuit with Off-Dominance

Fig. 6-31c

PLC Seal Circuit with On-Dominance

 Ch 6 Basic Memory Circuits 20

Both types of rungs are found in logic. Typically, the first or off-dominant is found in most logic

but the latter or on-dominant is used from time to time. To convert from an off-dominant to the

on-dominant, move the stop contact to the seal loop.

Stop_I

M

Start_I M

Stop_I M

Start_I M

Siemens provides the S-R flip-flop circuitry to provide the same seal circuit shown above.

Start_I

S

M

Stop_I

R

M

Circuits with off-dominant structure are used in most control circuits while the on-dominant

structure is used in alarm circuits (circuits that report something bad). While no absolute rule

exists, an alarm circuit will almost always use on-dominant and control circuits will use off-

dominant.

Fig. 6-32

Siemens PLC Memory with
Off-Dominance

Fig. 6-31d

How to Change from Off-

Dominance to On-Dominance

 Ch 6 Basic Memory Circuits 21

On-Dominant:

Start_I

S

M

Stop_I

R

M

Start_I

L

B

Stop_I

U

B

Off Dominant:

Start_I

L

B

Stop_I

U

B

Start_I

S

M

Stop_I

R

M

Fig. 6-33a

Siemens PLC Memory with

On-Dominance (may be

retentive)

Fig. 6-33c

Allen-Bradley Latch with
Off-Dominance (retentive)

Fig. 6-33b

Allen-Bradley Latch with

On-Dominance (retentive)

Fig. 6-33d

Siemens PLC Memory with
Off-Dominance:

Latch if using Retentive

Memory

 Ch 6 Basic Memory Circuits 22

As long as the circuit is started or stopped with a single contact, it is simple to design. Most

circuits do not just have one start or stop contact, however.

 Fig. 6-33e How Siemens Sets Retentive Memory

The figure 6-33e shows the method used to set retentive memory in the Siemens’ S7-1200

processor. The retentive byte threshold starts at MB0 and is set to 0 signifying no retentive

memory is reserved in the program. If this number is incremented above zero, then the threshold

of retentive memory is set at this new boundary with the memory below reserved as retentive

while the memory above the threshold as non-retentive. The total number of bytes is limited in

the 1214C processor to 2048. While this is somewhat restrictive, the limit has been raised in

later processors to a much higher memory limit.

An Exercise Converting Between Seal and Latch/Flip-Flop Logic

Fig. 6-34 Typical Seal Circuit

The circuit above is a seal circuit with the start portion in parallel to the test1 contact and the stop

portion in series with the test1 contact. The start portion is moved intact to the latch coil. The

stop portion is negated (DeMorgan) and moved intact to the unlatch coil.

 Ch 6 Basic Memory Circuits 23

Negative of Unlatch Same as Latch

Seal contact

Non-retentive

Coil

Fig. 6-35a Seal Circuit

The following is the latch/unlatch equivalent of the circuit above:

Fig. 6-35b Latch/Unlatch

Equivalent Circuit

test1

Set

test1

Reset

The same circuit could be used for Siemens’ S-R flip-flop. These are Off-dominant circuits.

To convert to the On-dominant circuits, move the Stop portion of the circuit to in series with the

seal contact.

Stop moved

to here

Fig. 6-35c On-Dominant Seal

Circuit

To convert to the On-Dominant Latch circuit, switch the position of the L and U coils. The Latch

or on portion now dominates. Siemens’ R-S flip-flop has similar results.

 Ch 6 Basic Memory Circuits 24

Fig. 6-35d On-Dominant

Latch-Unlatch

test1

Reset

test1

Set

While European and American programmers tend to have their preferences for memory circuits,

we should be ready to convert from one style to another as necessary. In general, American-

trained engineers tend to use seal circuit design and European-trained engineers tend to use S-R

circuit design as well as a now-antiquated assembler look-alike language Statement List (STL).

Other memory circuits are shown below. They show the implementation of memory circuits in

FBD as well as Ladder circuits. FBD is more able to combine complicated memory circuits into

one circuit as shown below:

Logical operations including memory embedded in the circuit :

Fig. 6-36 Set-Reset Logic in

FBD

To review, for non-retentive circuits, the Allen-Bradley memory circuit is shown on the left and

the Siemens’ on the right. They are:

 Ch 6 Basic Memory Circuits 25

Stop_I

M

Start_I M

Start

Stop

Start_I

Stop_I

Start_I

S

M

Stop_I

R

M

Stop_I

M

Start_I M

Allen-Bradley – Non-retentive Memory

Circuits for Running Equipment

Siemens – Non-retentive Memory Circuits for

Running Equipment – The M bit must be located

in the non-retentive section of the M Table

Reset M

Alarm M

M

M

R

M

S

M

Allen-Bradley – Non-retentive Memory

Circuits for Alarm/Alarm Reset

Alarm

Reset

Reset

Alarm

Siemens – Non-retentive Memory Circuits for

Alarms – The M bit must be located in the non-

retentive section of the M Table

(Alarm and Reset contacts are Normally Open contacts.)

 Ch 6 Basic Memory Circuits 26

To review, for retentive circuits, the Allen-Bradley memory circuit is shown on the left and the

Siemens’ on the right. They are:
Start

Stop

Start_I

Stop_I

Start_I

S

M

Stop_I

R

M

Stop_I

M

Start_I M

Allen-Bradley – Retentive Memory

Circuits for Running Equipment

Siemens – Retentive Memory Circuits for

Running Equipment – The M bit must be

located in the retentive section of the M Table

M

M

R

M

S

M

Allen-Bradley – Retentive Memory

Circuits for Alarm/Alarm Reset

Alarm

Reset

Reset

Alarm

Siemens – Retentive Memory Circuits for Alarms

– The M bit must be located in the retentive

section of the M Table

Start_I

L

M

Stop_I

U

M

Alarm

U

M

Reset

L

M

(Alarm and Reset contacts are Normally Open contacts.)

 Ch 6 Basic Memory Circuits 27

Use of Seal (Memory) Circuits

The following example shows the need for a seal or memory circuit.

A tank is filling from above from buckets of water dumped into the tank. When the tank’s upper

level is reached, the pump starts and empties the tank until the lower level switch is reached. At

this time, the pump turns off. The program of the pump starter circuit is found after the

Function/State table on the next page.

Upper Level Sw

Drain Pump P1

Lower Level Sw
Fig. 6-37a

Empty the Tank

with Seal Circuit

Sensor Function/State Signal Assignment

LH Upper Level

LL Lower Level

 (Input Table for Fig. 6-37a above)

Actuator Function/State Signal Assignment

Pump Pump Liquid Out 1

 (Output Table for Fig. 6-37a above)

 Ch 6 Basic Memory Circuits 28

Solution:

Fig. 6-37b Empty the Tank

with Seal Circuit

Pump Run

Pump Run

Upper Level
Sw

Lower Level Sw

The correct contact must be identified as the start contact and as the stop contact. For instance,

when a pump is installed above the tank to fill the tank, the lower level switch becomes the start

contact and the upper level switch becomes the stop contact.

The circuit below demonstrates the principle of a seal or memory circuit used to fill a vessel.

Upper Level Sw

Fill Pump P1

Lower Level Sw

Fig. 6-38a Fill

the Tank with

Seal Circuit

 Sensor Function/State Signal Assignment

LH Upper Level

LL Lower Level

 (Input Table for Fig. 6-38a above)

Actuator Function/State Signal Assignment

Pump Pump Liquid In 1

 (Output Table for Fig. 6-38a above)

 Ch 6 Basic Memory Circuits 29

Fig. 6-38b Fill the Tank with

Seal Circuit

Pump Run

Pump Run

Upper Level
Sw

Lower Level Sw

Many times, two contacts are used to back up critical applications. In this case, both are used in

the start or stop circuit with the second or back-up contact also used to alarm. For instance, the

following circuit would be controlled as before except that an additional contact is found to also

start or stop the circuit. In addition to the control portion of the control circuit, a diagnostic or

alarm circuit is also used with the Hi-Hi and Low-Low contacts to alert the operator or supervisor

that a problem has occurred.

Fig. 6-38c Using Double High

and Low Contacts for Safety

Pump Run

Pump Run

Low Level Sw

Low-Low Level Sw

High Level
Sw

High-High
Level Sw

Use of Alarms – On-Dominant Seal Circuits

An alarm is programmed to turn on when the alarm is detected and not turn off until an

acknowledgement is received. The following circuit shows how this circuit can be built:

Fig. 6-39 Alarm Circuit using

On Dominant Memory Circuit

Low Level
Alarm Rem

Low Level
Alarm

Low Level
Alarm RemAlarm Reset

 Ch 6 Basic Memory Circuits 30

One-Shot Logic

One shot or positive signal edge instructions predate both the Siemens and Allen-Bradley current

processors. The first believed to introduce the concept was Modicon with the Modicon 484

processor in 1978. Their positive transition and negative transition instructions were unique and

added to the computer flavor of the PLC over the idea of just a relay replacer. The instructions

were:

P N

or

The Modicon 484 instructions did not require the use of a blocking bit as both the Siemens and

A-B processors do. Instead, Modicon kept a complete last-scan table of the entire Boolean table

of inputs, outputs and discrete internal bits used in logic. This last-scan table then was used to

report on the previous scan’s status. If the status was different than the present scan, then a

signal was allowed to pass. Otherwise, the branch was effectively blocked from passing power.

While an excellent concept, the execution time needed to process this function was prohibitive

time-wise and was dropped with subsequent manufacturers implementing the one-shot

instruction. Both Siemens and Allen-Bradley use a blocking bit that is programmed to keep the

last-scan information at hand and process an instruction similar to the Modicon approach. They

both require this blocking bit be programmed and defined, however. The blocking bit is not used

in logic. It is only used to block the future scans of power through the branch. You may say that

you have to use a bit (blocking bit) to get a bit (one-shot bit). This may help you as you work

through this next section.

Again, the definitions below are from the ‘help’ screen from the TIA portal. A more complete

definition for these instructions may be found in the Siemens Reference Manual.

Edge Detection- Siemens

|P|: Scan operand for positive signal edge

“The ‘Scan operand for positive signal edge’ instruction is used to determine whether there is a 0

to 1 change in the signal state of a specified operand (<Operand1>). The instruction compares

the current signal state of the operand with the signal state of the previous query saved in an edge

memory bit (<Operand2>). If the instruction detects a change in the result of logic operation

from 0 to 1, there is a positive, rising edge.

If a falling edge is detected, the output of the instruction has the signal state 1. In all other cases,

the signal state at the output of the instruction is 0.”

The following example shows how the "Scan operand for positive signal edge" instruction

works:

Fig. 6-40 Early Symbols of

One Shot

 Ch 6 Basic Memory Circuits 31

|N|: Scan operand for negative signal edge

“The ‘Scan operand for negative signal edge’ instruction is used to determine whether there is a

1 to 0 change in the signal state of a specified operand (<Operand1>). The instruction compares

the current signal state of the operand with the signal state of the previous query saved in an edge

memory bit (<Operand2>). If the instruction detects a change in the result of logic operation

from 1 to 0, there is a negative, falling edge.

If a falling edge is detected, the output of the instruction has the signal state 1. In all other cases,

the signal state at the output of the instruction is 0.”

The following example shows how the "Scan operand for negative signal edge" instruction

works:

(P=): Set operand on positive signal edge

“The ‘Set operand on positive signal edge’ instruction is used to set a specified operand

(<Operand2>) when there is a 0 to 1 change in the result of logic operation (RLO). The

instruction compares the current result of logic operation with the result of logic operation from

the previous query, which is saved in the edge memory bit (<Operand1>). If the instruction

detects a change in the RLO from 0 to 1, there is a positive, rising edge.

When a positive edge is detected, <Operand2> is set to signal state 1 for one program cycle. In

all other cases, the operand has the signal state 0.”

The following example shows the parameters of the "Set operand on positive signal edge"

instruction:

Fig. 6-41 Positive Signal Edge

Fig. 6-42 Negative Signal Edge

Fig. 6-43 Positive Signal Edge Output

 Ch 6 Basic Memory Circuits 32

(N=): Set operand on negative signal edge

“The ‘Set operand on negative signal edge’ instruction is used to set a specified operand

(<Operand1>) when there is a 1 to 0 change in the result of logic operation (RLO). The

instruction compares the current RLO with the RLO from the previous query, which is saved in

the edge memory bit (<Operand2>). If the instruction detects a change in the RLO from 1 to 0,

there is a negative, falling edge.

When a negative edge is detected, <Operand1> is set to signal state 1 for one program cycle. In

all other cases, the operand has the signal state 0.”

The following example shows the mode of operation of the "Set operand on negative signal

edge" instruction:

P_TRIG: Scan RLO for positive signal edge

“The ‘Scan RLO for positive signal edge’ instruction is used to query a 0 to 1 change in the

signal state of the result of logic operation (RLO). The instruction compares the current signal

state of the RLO with the signal state of the previous query, which is saved in an edge memory

bit (<Operand>). If the instruction detects a change in the RLO from 0 to 1, there is a positive,

rising edge.

If a rising edge is detected, the output of the instruction has the signal state 1. In all other cases,

the signal state at the output of the instruction is 0.”

The following example shows how the instruction works:

Fig. 6-44 Negative Signal Edge Output

Fig. 6-45 Positive Trigger

 Ch 6 Basic Memory Circuits 33

The following is an example from Siemens showing one-shots in S-R logic:

Edge Trigger or One-Shots in A-B Instructions:

Allen-Bradley refers to the edge trigger instructions above as One Shot instructions. To use one-

shot logic, a circuit similar to the following must be programmed for the SLC processor.

This circuit responds as follows:

I:0/1

B3:0/0

B3:0/1

ON

OFF

time

Notice that the desired coil to be used in the program is the coil at the right. The OSR bit is used

as a blocking bit and is not as a rule referenced elsewhere in the program. The OSR bit may be

useful if the input I:0/1 is necessary one scan delayed. Otherwise, it is not to be used in any

other logic in the program. B3:0/1 is on for only one scan. This may be very short as in a

millisecond or less or in the slower PLCs, the delay may be 20, 30, or even 50 milliseconds. It is

a relatively quick transition, however, and is not seen on the screen of the monitoring program
in most circumstances.

Fig. 6-46 One Shot in S-R Logic

Fig. 6-47a A-B SLC One Shot

Fig. 6-47b Timing Diagram

for A-B SLC One Shot

 Ch 6 Basic Memory Circuits 34

The OSR is used as a conditional input triggering an event only on the leading edge. Use the

OSR command to start a sequence of events when an event occurs. A one-shot in electronic

terms squares a waveform and makes it more exact for the circuitry. The PLC one-shot is

primarily equal to the electronic one-shot in that it runs through the entire program one time with

an on pulse and then turns off.

The OSR is to be placed immediately before the output instruction. It is referenced with a bit that

is not used elsewhere in the program. Either a binary file or integer file address may be used.

An example of improper use of the OSR command for the MicroLogix 1000 processor is shown

below when a parallel branch is programmed around the [OSR] instruction.

Fig. 6-48 Illegal One Shot added in SLC

To correct the problem in the circuit, all parallel branches must be resolved before the [OSR]

instruction as shown below:

Fig. 6-49 Corrected Logic in SLC

The ONS instruction turns the output of the rung to on for one scan when the contact sees a false-

to-true transition of the conditions preceding the ONS instruction on the rung. Rules for the

Micro1200/1500 ONS one-shot are similar to other SLC processors' OSR instruction. Rules for

these one-shot instructions include:

 1. Never branch around the OSR or ONS instruction

 2. Use the OSR or ONS instruction to turn on an output

 Ch 6 Basic Memory Circuits 35

 3. Other contacts may exist between the OSR or ONS instruction and the

 output coil

The OSR commands are used by the MicroLogix 1200 and 1500 as output coils and are one-shot

bits used on the rising or falling of power to the output. An example of an OSR instruction used

in RSLogix 5000 programs is shown below:

Fig. 6-50a One Shot as Output

The OSR circuit above acts in a similar manner to the ONS instruction with tag names instead of

file names used in the SLC architecture. The timing diagram for the OSR above is shown below:

Fig. 6-50b One Shot as Output Timing Diagram

first

second

third

ON

OFF

time

Similar to the OSR instruction is the OSF or One Shot Falling bit. Its timing chart is shown after

the instruction:

Fig. 6-51a One Shot Falling as Output

 Ch 6 Basic Memory Circuits 36

first

second

third

ON

OFF

time

Fig. 6-51b One Shot Falling as Output

Timing Diagram

A more robust type of one-shot is the ONS one-shot found in the MicroLogix 1200, 1500 and

ControlLogix/CompactLogix processors. The purpose of this newer type is to provide one-shot

logic inside a single rung without having to create a rung for the one-shot and then a second rung

that includes the one-shot logic.

In this example, the [ONS] instruction acts as a blocking bit one scan delayed. The resulting

logic creates a one-shot signal in the branch of the [ONS] instruction. An example of the use of

the [ONS] instruction is shown in addition to the circuit’s timing diagram:

start

second

ON

OFF

time

 Fig. 6-52 A-B One Shot Added in Branch

The series branch of start and [ONS] combine to provide a one-shot when start turns on. The

input start may remain on for a long duration but the branch of the network will remain on for

only one scan.

 Ch 6 Basic Memory Circuits 37

Use of the One Shot

The use of one-shot contacts requires programmers to ask when the leading edge of a signal is

more useful in the development of logic than the signal itself. Experience is the best teacher in

knowing when to use the one-shot.

For an example of a one-shot that can occur without the need to build an [ONS] or [OSR]

instruction, refer to Lab 4.1, The Hot Dog Counter.

In the logic of the Hot Dog Counter, the rung output turns on incrementing the counter. Then the

program starts again at rung 0 executing the first two rungs. These two rungs turn off, in turn

turning off the count bit. The count bit is only on for one scan. The count bit (Hot_Dog) is

essentially a one-shot coil that turns on for one scan only before turning off.

 Fig. 6-53 One Shot Signal w/o OSR Needed

Example of Making Momentary Switch into Toggle Switch

Fig. 6-54a One Shots used for

Toggle Switch

Button

Button
Blocking

Bit

Button
OS

OS and
Toggle

Button
OS

Toggle
Output

Toggle
Output

Button
OS

Toggle
Output

OS and
Toggle

The circuit above is useful to turn a pushbutton input into a toggle-type switch. The use of one-

shot logic is of benefit. Each time the input Button turns on, a one-shot is generated (Button OS).

As the first two rungs are executed, the status of OS and Toggle is critical. On every other

occurrence of Button, Toggle Output is on. When OS and Toggle is on, Toggle Output is off. The

 Ch 6 Basic Memory Circuits 38

scan that Toggle Output turns on is the same scan that generates the one-shot Button OS. It does

not turn on any other time. Using this logic, one can build a seal circuit that alternatively turns

on Toggle Output with Button OS and turns off Toggle Output with OS and Toggle.

This circuit is useful to demonstrate the utility of the one-shot contact. One-shots are useful to

isolate logic and to usually make solution of circuits easier. One-shots are used a great deal in

both turning on and turning off of seal circuits. Usually a circuit that is turned on with one-shots

may be turned off with one-shots as well. Circuits such as this do not have to be turned off with

one-shots, however.

A timing diagram of the circuit is shown to demonstrate the use of one-shots in logic.

Fig. 6-54b Toggle Switch

using One Shot Logic

Timing Diagram

Button

Button
OS

OS
and

Toggle

Toggle

The timing diagram shows the use of one-shots to selectively block the seal circuit Toggle from

turning on every other leading edge. The event of the leading edge is isolated using the one-shot

and then the blocking contact is inserted just before the seal circuit to set logic on to block the

circuit from turning on when the output was already on.

One Shots Used to Remember Order of Events

The following circuit may be useful to remember which of three events turned on last: IN1, IN2,

or IN3. An advanced form of this circuit will demonstrate the use of one-shots in logic.

IN1

IN2

IN3

Signals that are never on at the same time!

 Ch 6 Basic Memory Circuits 39

IN1 Last
Input On

IN2 Last
Input On

IN3 Last
Input On

IN1

IN1

IN1

IN2

IN2

IN2

IN3

IN3

IN3

IN1
Last On

IN1
Last On

IN2
Last On

IN2
Last On

IN3
Last On

IN3
Last On

Fig. 6-55a Non-Overlapping Signals

However, if the events overlap or the signals IN1, IN2 or IN3 are ever on simultaneously, then

one-shots are needed to separate the events. Notice that if IN1 and IN2 are on at the same time,

indeterminate results will occur.

To accommodate the problem of overlapping signals, consider the following improvement to the

circuit above. This circuit remembers which leading edge turned on last.

IN1

IN2

IN3

Signals that may be on at the same time!

The following program remembers the input that last turned on by remembering a one-shot of

the leading-edge of the signal, not the signal itself.

 Ch 6 Basic Memory Circuits 40

IN1

IN2

IN3

IN1
Blocking

Bit

IN2
Blocking

Bit

IN3
Blocking

Bit

IN1
OS

IN2
OS

IN3
OS

IN1
OS

IN1
OS

IN1
OS

IN2
OS

IN2
OS

IN2
OS

IN3
OS

IN3
OS

IN3
OS

IN1 OS
Remembered

IN1 OS
Remembered

IN2 OS
Remembered

IN2 OS
Remembered

IN3 OS
Remembered

IN3 OS
Remembered Fig. 6-55b Overlapping Signals

Remembered

Edge evaluation or one-shot circuits may be included in transferring of a seal circuit to an S/R

circuit. Care must be taken when this is attempted as the DeMorgan rules are not necessarily still

the only tool needed. For example, if the following seal circuit were evaluated, what would be

the equivalent S/R circuit?

 Ch 6 Basic Memory Circuits 41

This circuit would be evaluated as follows:

This leads to the observation that as long as the one-shot is involved in the “start” portion, all is

well. However, if the “Stop” portion is involved in a one-shot and the DeMorgan Theorem is

necessary, a one-shot should be evaluated in coordination with a timing diagram. The inverse

must be the inverse in all circumstances with all combinations of inputs evaluated. The one-shot

does introduce a problem in using DeMorgan’s Theorem to invert logic and convert from seal

memory to S/R memory.

Fig. 6-56a Edge Evaluation of OS

Fig. 6-56b Seal Circuit with OS

 Ch 6 Basic Memory Circuits 42

Second Look at the Juice Condenser

Since last chapter, several problems have been introduced, and the juice condenser problem was

partially solved but a total solution was delayed until the memory circuit was discussed. The

juice condenser problem includes memory that may require a second look.

The operation included a fill, a condensate portion and a drain. These operations were not to be

overlaid but rather were to be consecutive in nature. This leads to a memory circuit that includes

more than one set of events.

V-2

High Level

Half Level

V-1

Temperature Sw

Agitator

Heat

Start

Done/Ready

Fig. 5-1 The Juice Maker

Each memory circuit must be exclusive of the other two events and must occur in a proper

sequence. For example, the fill operation must occur first, then the condensate operation and

finally the drain operation. This may be expressed using three seal circuits:

Operation

running
start

operation
stop operation

Operation
running

Fig. 6-57

 Ch 6 Basic Memory Circuits 43

The three operations may be represented by three seal circuits as follows with modifications to

follow:

Fill Runningstart
operation

stop operation

Condensate
Running

start
operation

stop operation

Drain
Running

start
operation

stop operation

Fill Running

Condensate
Running

Drain
Running

The three operations must be done in order. This requires that before the first operation starts,

the requirement that there is not a fill, condensate or drain action presently active must be

determined. This can be expressed in the start portion of the fill operation as:

start

operation
Drain

Running
Fill

Running
Condensate

Running

Succeeding operations must likewise be programmed using a start portion with the prior

operation present.

Fig. 6-58

Fig. 6-59

 Ch 6 Basic Memory Circuits 44

condition(s)
allowing start Start for

condensate
portion

Fill
Running

condition(s)
allowing start

Start for
drain portion

condensate
Running

The conclusion of this problem is left as an exercise.

Several of the other problems at the end of the chapter use similar memory of logic. The logic

may be described also as ‘state logic’ and this will be discussed further in chapter 11. For now,

we will use multiple bits to describe states and use the state information to drive the remainder of

the programming.

Problem statements for the following three processes also require similar treatment:

Memory Circuit Not Necessarily the Output

This problem’s problem statement hints that the conveyor C1 should start with the Start Button

PB1. But an additional condition involves conveyor C2. C1 needs to turn on and off based on

the condition of conveyor C2. This suggests a seal circuit that does not include C1 directly but

indirectly. The seal or memory circuit should be an internal bit coil that turns on with the PB1

and turns off when the box has cleared PE1. The conveyor C1 Run should be linked to the

Conveyor 1 internal Run bit and the C2 Run bit as shown in the figure below:

Start Button PB1

Conveyor C1 Conveyor C2

Photoeye PE1Box

PB1
Photo-
Eye TE

C1_Run
Internal

C1_Run
Internal

C1_Run
Internal

C1_Run
Output

C2_Run

Fig. 6-60

Fig. 6-61

 Ch 6 Basic Memory Circuits 45

A method for development of the stop bit Photo-Eye TE would be to use a one-shot on the

trailing edge of the Photo-eye signal as follows:

Photo-
Eye PE1

Photo-
Eye TE

One
Shot

Dummy
Bit

ONS

Memory Circuits for Competing Resources

The following conveyor system at first appears very complex but may be divided into a number

of smaller areas and programmed by area. For instance, if a bin goes low, it calls for material.

The call can only occur if there is not a fill operation already in progress with the other bin. The

memory circuits then are developed as follows:

High Level L3

Low Level L2

High Level L5

Low Level L4

Conv C1
High Level L1

Low Level L0

Screw Conv SC1

Conv C2 Left Conv C2 Right

Storage Bin 1

Bin 1 Bin 2

Bin 1
Low
Level

Bin 1
High
Level

Bin 2
Filling

Bin 1
Filling

Bin 1
Filling

Fig. 6-63a Project with Two Surge Bins

Fig. 6-62

 Ch 6 Basic Memory Circuits 46

Bin 2
Low
Level

Bin 2
High
Level

Bin 1
Filling

Bin 2
Filling

Bin 2
Filling

Fig. 6-63b Project with Two Surge Bins

We then work back toward the top of the process. The two memory circuits above determine the

state of Conveyor 2. If Bin 1 is filling, then Conveyor 2 Left is on. If Bin 2 is filling, then

Conveyor 2 Right is on. If Conveyor 2 is running, then the Screw Conveyor SC1 is on.

Stepping Program

The fill operation for the Storage Bin 1 is handled in a separate memory circuit with its own

memory circuit using low and high level to set and turn off the memory circuit. The method of

working from the bottom to the top is used in many process programs to control flows.

The following process hints at a stepping program that moves through a number of steps to make

a batch. Here the level switches above L0 are intended to determine the fill level for the

ingredient. If the solid ingredient delivered from Bucket BE1 is to be delivered first, it is implied

that this ingredient fill from Level L0 to Level L1. Since this is not usually the case since a liquid

is usually added first, we can assume that either the liquid from Pump P1 or Pump P2 is

delivered first to the batch. Then possibly the screw conveyor and finally the second liquid are

to be delivered. The batch content and mix procedure are not the topic of interest here, but rather

the direction the mix is to take to be made. Many systems such as this are more flexible with a

scale weighing the ingredients. Here, the placement of the level switches is extremely critical

and fixes the ingredient amounts at the level of the switch. If the weather is more or less humid

or the ingredient is not at the precise right density, this method is not good if accuracy is needed.

Logic involving
Step 1

Logic involving
Step 2

Logic involving
Step 3

Fig. 6-64a Multiple Feed Batch Operation

 Ch 6 Basic Memory Circuits 47

Low Level L0

Bucket BE1

Screw Conv SC1

Pump P1

Pump P2

Agitator A1

High Level L4

Bin 1

Screw Conv SC2

Level L1

Level L2

Level L3

 Fig. 6-64b Multiple Feed Batch Operation

Downstream Developed First

The problem below has the following general requirement that logic from one section is fed

upstream. For problems such as this, the down-stream portion must be activated first. For

instance, the last conveyor must run before the conveyor feeding it is allowed to run. Otherwise,

you may be the person with a shovel cleaning up a pile of coal at the in-feed to a conveyor.

Always make sure the down-stream item is running and the down-stream hopper is not plugged

in order to run a conveyor. Then move back to the conveyor feeding it and continue upstream to

the first conveyor. (The first is last and the last is first.)

High Level L1

Low Level L2

Conv C1

Bin 1

Conv C2

Conv C3

High Level L3

High Level L4

Fig. 6-65a Feed System with Multiple Conveyors

 Ch 6 Basic Memory Circuits 48

Bin
Filling

Run
Conveyor

C3

Bin
Low
Level

Bin
High
Level

Bin
Filling

Bin
Filling

Run
Conveyor

C3

Run
Conveyor

C2

Hopper L4
Not Full

 Fig. 6-65b Feed System with Multiple Conveyors

Working back toward Conveyor 1 yields similar results to the logic shown above.

Stepping Program for Machine

The following machine is designed to move a part down a conveyor and back to home. In the

forward movement, the part is to be sprayed after being sensed by the photo-eye in the middle of

the conveyor. Once the part moves to the end of the conveyor, the conveyor reverses and the

part is moved back to the home position to be removed. A start button begins the action.

Start Button PB1

Part Travels Down
Machine

Part is Sprayed

Part Travels Back

Part Stops, is
Removed

Fig. 6-66a

 Ch 6 Basic Memory Circuits 49

This program requires the operator start the movement by pushing a button. This action sets the

machine in motion. Logic can be developed using seal circuits for forward motion, reverse

motion and over-all motion. The spray action begins by the part passing the middle photo-eye.

Logic for
Movement

Left to Right

Logic for Spray

Logic for
Movement

Right to Left

Fig. 6-66b

Logic for this machine will be further discussed in later chapters. For now, it is left to the

student to create logic to turn on these three coils either using seal circuits or S-R blocks.

Summary

This chapter is useful in the development of logic using memory circuits. The prior chapter was

interested in the development of combinational logic. This chapter began the discussion of

sequential logic. More on sequential logic will follow.

The fill sequence or empty sequence from a bin or tank requires a memory circuit. This was

shown in a number of examples.

Writing of Siemens and Allen-Bradley contact and coil instructions was reviewed. A number of

instructions were added in the discussion including memory instructions as well as one-shot or

edge trigger instructions.

Emphasis was placed on converting from one style of memory circuit to another. For Siemens

and most European designers, the S-R logic dominates. In the US, seal circuits are dominant.

To convert from one to the other is a requirement of this chapter. Also, to convert from off-

dominant to on-dominant logic is necessary. Also, reasons for using the off-dominant versus the

on-dominant logic were discussed.

The various edge trigger instructions from Siemens as well as Allen-Bradley were discussed and

examples provided. The purpose of these instructions was addressed as well.

Several example problems were introduced using the memory circuit concept. When more than

one state is required, then several memory bits must be used to implement the overall logic.

 Ch 6 Basic Memory Circuits 50

Exercises

1. Finish the evaluation of the logic in Table 6-4.

2. The tank is now being filled automatically from the pump. When the tank is low, the pump

turns on and fills the tank. The tank is emptied as needed by the manufacturing process using

the water. Design the circuit to control the pump.

Upper Level Sw

Fill Pump P1

Lower Level Sw

Sensor Function/State Signal Assignment

LH Upper Level

LL Lower Level

Actuator Function/State Signal Assignment

Pump Pump Liquid In 1

Pump Run

Pump Run

Upper Level

Sw

Lower Level

Sw

 Ch 6 Basic Memory Circuits 51

3. Convert the following to an on-dominant seal circuit:

A B C D

E

E

4. Convert the following seal circuit to a latch/unlatch circuit, to an S/R circuit.

A B C D

E

E

F

5. Convert the following seal circuit to a latch/unlatch circuit, to an S/R circuit.

A B C D

G

E
G

F

6. Convert problem 4 to an on-dominant circuit.

7. Name an action in real-life that requires the unconditional start seal circuit instead of the

unconditional stop seal circuit.

8. Write an on-dominant seal circuit with Input1 on turning the circuit on and Input2 on turning

the circuit off.

9. Write an off-dominant seal circuit with Input1 off turning the circuit on and Input2 on turning

the circuit off.

10. For the Conveyor Belt System, convert to seal circuits. This is a real-world problem from

Siemens’ literature in which the program is stated as a written description, I/O list and

program. All that is required by this problem is to re-write the rung logic to convert the

various rungs from S/R logic to seal circuits. (Ignore one-shots on Reset branch logic.)

The following is from a Siemens programming text showing the use of both memory circuits

(S/R) and edge trigger or one-shot logic.

 Ch 6 Basic Memory Circuits 52

 Ch 6 Basic Memory Circuits 53

11. Convert the following to Ladder Logic. First convert to Siemens S/R logic, then A-B seal

logic:

Input1

Input2

&

Input3

Input4

&

Input5

Input6

>=1

S

R Q

Input7 Output1

>=1

 Ch 6 Basic Memory Circuits 54

12. Convert the following to Ladder Logic. First convert to Siemens, then A-B.

 >=1
Input 1

Input 2
 P &

 S

 R Q

Input 3

 NInput 4 Output

13. Write the program in the PLC to turn on lights H1 and H2 to satisfy the following timing

diagram. By activating switch S1, the light H1 is switched on. If S1 is activated again, a

second light H2 becomes switched on. By activating S1 the next time, both lights are

switched off. Use one-shot logic to complete. The pattern repeats…

t

S1

t

H1

t

H2

14. Write the logic in Ladder to satisfy the following control problem. Drain Valve V1 operates

independently. When the tank level reaches Low Level L0, turn on Fill Pump P1 to fill the vessel.

High Level L1

Low Level L0

Drain Valve V1

Fill Pump P1

 Ch 6 Basic Memory Circuits 55

15. Write the logic in Ladder to satisfy the following control problem. Fill Valve V1 operates

independently. When the tank reaches High Level L1, turn on Drain Pump P1 to empty the

vessel.

High Level L1

Low Level L0

Fill Valve V1

Drain Pump P1

16. Write the logic in Ladder to satisfy the following control problem:

Start Button PB1

Conveyor C1 Conveyor C2

Photoeye PE1Box

A box is placed on the first conveyor (C1). Then the operator pulls the pull-cord and the

conveyor starts if C2, the second conveyor, is also running. If not, the conveyor C1 waits

until C2 starts and then turns on. The box moves on C1 until the trailing edge passes a

photo-eye between the two conveyors. Then C1 stops and waits for another box. For this

problem, the programmer does not control conveyor C2 but only has a contact from the

conveyor C2 reporting its run status.

 Ch 6 Basic Memory Circuits 56

17. Write the logic in Ladder to satisfy the following control problem:

High Level L3

Low Level L2

High Level L5

Low Level L4

Conv C1
High Level L1

Low Level L0

Screw Conv SC1

Conv C2 Left Conv C2 Right

Storage Bin 1

Bin 1 Bin 2

The process depends on a level switch in the two bins at the bottom (Bin 1 and Bin 2). For

either bin to fill, it must be at a low level. Then the conveyor C2 will turn on and Bin 1 or

Bin 2 will call for material until the high level is met for the bin being filled. The Screw

Conveyor will run delivering material to the conveyor for a fill to either bin. The direction of

Conveyor C2 must be correct as well (forward or reverse). Also, Storage Bin 1 has a high

and low level switch and will be filled from above by conveyor C1 as needed.

 Ch 6 Basic Memory Circuits 57

18. Write the logic in Ladder to satisfy the following control problem:

Low Level L0

Bucket BE1

Screw Conv SC1

Pump P1

Pump P2

Agitator A1

High Level L4

Bin 1

Screw Conv SC2

Level L1

Level L2

Level L3

The main tank will fill with conveyor SC1 and bucket elevator BE1 as well as liquid from

pumps P1 and P2. To make a batch, fill to a level with L1. Then fill to a second level with

L2. Then turn on the agitator and fill to a final level with L3. When done, agitate for a time

and dump using SC2.

19. Write the logic in Ladder to satisfy the following control problem:

High Level L1

Low Level L2

Conv C1

Bin 1

Conv C2

Conv C3

High Level L3

High Level L4

 Ch 6 Basic Memory Circuits 58

20. Write the logic to satisfy the following control problem:

The Juice Condenser

V-2

High Level

Half Level

V-1

Temperature Sw

Agitator

Heat

Start

Done/Ready

Fig. 5-1 The Juice Maker

A description of the above process is as follows:

For saving transportation cost for apple juice, the juice is condensed in a process of evaporation.

The water is evaporated in the tank using heat. The process of the process includes the following

steps:

1. Operator pushes the start pushbutton.

2. Valve V-2 opens and fills to the high level switch and then closes.

3. Heating occurs with the heat element on and stays on until the level reaches the half level

or the temperature rises above 80o C. The temperature switch turns on when the temp

reaches 80o C and turns off when the switch falls below 80o C.

4. Heating is enabled by the high level switch on and the agitator is always on as long as the

half level switch is satisfied.

5. When the half level switch is not satisfied, the condensing process terminates and the

tank empties through V-1. After the tank starts emptying, 30 seconds is timed and the

tank is assumed to be emptied. The Done/Ready light is turned on and the next cycle is

allowed via the Start button.

 Ch 6 Basic Memory Circuits 59

21. Read the following description and design a start/stop circuit to satisfy the requirement:

(from Dave Perkon, Technical Editor for Control Design who writes the following as a test for

those he may interview for a controls job)

“During the interview I simply asked, in writing, that the applicant draw a start/stop circuit

ladder diagram using the following hardware: a normally open pushbutton, a normally

closed pushbutton, a pilot light and a DPDT relay. I also noted the requirement was to turn

on the green pilot light when the momentary start button was pressed and turn off the light

when the momentary stop button was pressed. I also asked the applicant to add wire

numbers, device designators and relay contact cross references.”

22. The problem introduced above in Fig. 6-66 moves a part left to right, then back to home.

After moving past the center photo-eye, the part is sprayed. The part is sprayed until the part

arrives at the right photo-eye at which point the spray turns off and the conveyor reverses

direction traveling back to home position at left. Write a program to control the action described.

Start Button PB1

Part Travels Down
Machine

Part is Sprayed

Part Travels Back

Part Stops, is
Removed

 Ch 6 Basic Memory Circuits 60

23. Write the logic in Ladder to satisfy the following control problem:

High Level L3

Low Level L2

High Level L5

Low Level L4

Conv C1
High Level L1

Low Level L0

Screw Conv SC1

Conv C2 Left Conv C2 Right

Storage Bin 1

Bin 1 Bin 2

High Level L7

Low Level L6

High Level L9

Low Level L8

Bin 3 Bin 4

Conv C3 Left Conv C4 LeftConv C3 Right Conv C4 Right

The process depends on a level switch in the four bins at the bottom (Bin 1-4). For any bin to

fill, it must be at a low level. Then the conveyor C2 will turn on as well as either C3 or C4 to fill

the appropriate bin. The direction of C2, C3 and C4 must be correct as well (forward or reverse).

Also, Storage Bin 1 has a high and low level switch and will be filled from above by conveyor

C1 as needed.

Fill in Definition of Inputs:

Sensor Function/State Signal Assignment

 Ch 6 Basic Memory Circuits 61

Fill in Definition of Outputs:

Next, write the ladder logic to fill any bin that falls below the low level:

24. The problem moves a part left to right and into a sanding station. The sander only turns on

after PE 2 sees the part. When the part reaches PE 3, the sander turns off and the part returns to

the left to PE 1.

Write a program in Ladder to control the action described when the start button is pushed and the

system automatically repeats the travel right, then left five times. Include a short time delay at

each end of travel.

Start Button PB1

Part Travels Down
Machine

Part is sanded

Part Travels Back

Part Stops, is Removed
after 5 passes

PE3

PE2
PE3

PE3

PE3PE1

This work is licensed under a Creative Commons Attribution 4.0 International License.

Actuator Function/State Signal Assignment

https://creativecommons.org/licenses/by/4.0/

