Chapter 7 TIMERS, COUNTERS and T/C APPLICATIONS

Introduction

Timers and counters are discussed in the same chapter since most rules apply to both. Timers
and counters have been in existence for as long as relays and provide an important component in
the development of logic. Timers were constructed in the past as an add-on device to relays
slowing down the transition of the plunger from immediately opening or closing. The time delay
was accomplished with a pneumatic bladder that allowed the air to escape either quickly or
slowly depending on the setting of the timer. Quick was usually less than a second and slow was
usually between 30 and 60 seconds. Setting this kind of timer was an inexact science and today's
traffic lights are an example of the fickle nature of timers that seldom respond in exactly the
same from day to day and year to year.

For the first time, function blocks are introduced in the rung output position or coil position to
provide timer and counter functions. Function blocks allow inputs from the left and pass power
through to the right when the function is done or when various conditions are met. Either the
timer has timed out or the counter has counted to the preset. Function block usage differs from
manufacturer to manufacturer. Function blocks rely on a standard format to enter information
about the counter or timer. All variables in the function block must be entered correctly before
the device will operate.

Some timers are referred to as retentive. Retentive refers to the device’s ability to remember its
exact status such that when the circuit is again activated, the timer continues from the previous
point. Non-retentive timers reset to zero and start from zero each time the timer function block is
energized. Retentive is similar to blowing up a balloon. One does not blow a balloon up with
one blast of air. It takes quite a few. The retentive balloon has a finger along the neck of the
balloon holding the air already blown in captive. When more air is blown in, the new air is
added to the air already present. Many processes in the factory rely on logic needing this kind of
physical property to control a machine.

Other terms used in the timer and counter blocks are "preset” and "accumulated”. These words
refer to the preset or target amount and the "accumulated” amount that the timer or counter has
built to get to a preset. Times are really counts stored as integer numbers. Thus, counters and
timers are very similar. Timers increment a number regularly each time period (usually in
increments of 1 msec.).

Timers

Timers are used to provide logic when a circuit turns on or off. Traditional pneumatic timers
were provided as either on-delay timers or off-delay timers. Contacts were provided both
normally open and normally closed for each type of timer. The timer head was chosen as either
the on-delay type or off-delay type. PLCs allow for a quick change from one type to the other
with a few keystrokes on the programming panel.

Symbols for Timers:

Ch 7 Timers, Counters, T/C Applications 1

The following symbols are used for pneumatic timer contacts:

—QTO— On Delay (NOTC — Normally Open Time Close)
—OTO— On Delay (NCTO — Normally Closed Time Open)

—0O~_ O— Off Delay (NOTO — Normally Open Time Open)
I~

—O—T17 00— Off Delay (NCTC — Normally Closed Time Close)

Coils for pneumatic timers are drawn similar to relay coils except that TD is usually included in
the label. TD refers to time delay.

On Delay Coil
(TD101)

()
/ '

|
|
|
|
Delay after Coil Energize contact closes |
|

O |

- I |

|

|

|

|

|

I

|

Delay after Coil Energize contact opens

AOTOf

Timer Starts
Acc = Pre

Fig. 7-1 Pneumatic On Delay Timer Symbols and Timing Diagrams

Ch 7 Timers, Counters, T/C Applications

Fig. 7-2 Pneumatic Delay Timer from
Allen-Bradley

Off Delay Coil
(TD102)

()
N

Delay after Coil De-Energize contact closes

.

Delay after Coil De-Energize contact opens

Fig. 7-3 Pneumatic Off Delay Timer / /

Symbols and Timing Diagram TimerStarts Acc=Pre

While these timers are only a sampling of the types of different timers, their function describes
the main function of all timers, a time delay. While PLC vendors do not need to use the terms of
on-delay or off-delay, normally closed, normally open, held closed, or held open, these terms are
an important part of design of PLC circuits. Some vendors still use the terms to show linkage
between the PLC and the original timer circuits.

Allen-Bradley provides three timers; TON, TOF, and RTO. All are block-type instructions and are
located at the extreme right of each rung used. They are parallel to coils but may not be used in
series with each other or in parallel with coils. Each has two coils extending from its right.
These coils are not programmed separately. These coils appear when the timer function block is
programmed.

Ch 7 Timers, Counters, T/C Applications 3

Siemens Timers

First, we look at the Siemens Timer block and discuss the various types of timers available.

Comment VI Basic instructions
Hame Descniption Version
e [&] Timer operations
*IEC_Timer_0_D&" —
. Lt &/ T Generate pubse
é:é r i 9 & TON Generate on-delay
- &% TOF Generate affdelay
<> —{g] Ell- - - 2 TONR Tirne sccurnulator
H) TP} Start pubse timer
4] —ToN}- Start on-delay imer
) ~{TOF)- Sam offdelay timer
- MNetwork 2: .)| =(TONR)- Time accumulatar
Comment 4 AT Beset timer
I ~FT- Load tire duration
— ¥ [+1] Sounter cperations
1] Programming a PLC
5 M Creating a user program
5 M Displaying program infomation Timer Operations from Instruction List

9] References
‘-Juuum(sy.‘m Fig. 7-4a From Basic Instructions: Timer Operations
M General parameters of the instructions (S7-1200)
2 L Basic instructions (S7-1200)
3 1) LAD (S7-1200)
+ M B2 kgc cpeations (57-1200)
L] Timer operations (57-1200)
B TP: Garnrate puse (57-1200)
B TON: Generate cn-delay (57-1200)
Bl TOF: Ganarate off detay (57-1200)
B TONR: Time sccumuater (57-1200)
P (TP)— Start pudse timer (57-1200)
B —(TON) St on-delasy timer (57-1200)
P —(TOF }— Start off delay timer (57-1200)
P — TONR }—: Time accumudator (S7:1200)
~{ RT) Rleset tmer (57-1200) . . .
=-{p7>. w,,,,d;,m (57-1200) Timer Operations from Help List
+ M Courter cperations (S7-1200)
M Compacator operaticns (57-1200)
¢ M Math functions (57-1200)
M Move coeations (571200)
7 M Conversion cparations (S7-1200)
5 M Program control oparations (57-1200)
5 M Word logic operations (57-1200)
5 M Shé and rotate (S7-1200)
M FED (57-1200)
o H o ST

The instructions will be listed below with a brief description from the ‘help’ menu from the TIA
portal. A more thorough description may be found in the reference manual for Siemens or in the
help menu itself.

Ch 7 Timers, Counters, T/C Applications 4

TP: Generate pulse

“The instruction Generate pulse sets output Q for duration PT. The instruction is started when the
result of logic operation (RLO) at input IN changes from 0 to 1 (positive signal edge). The
programmed time PT begins when the instruction starts. Output Q is set for the duration PT,
regardless of the subsequent course of the input signal. Even if a new positive signal edge is
detected, the signal state at the output Q is not affected as long as the PT time is running.

The current time value can be queried at the ET output (Elapsed Time). The time value starts at
T#0s and ends when the value of duration PT (Preset Time) is reached. If duration PT is reached
and the signal state at input IN is 0, the ET output is reset.”

» | 7] Project21 Ead s
ﬁ)‘-.dd new device = = (== =
gl Devices & networks w Block title: “Main Program Sweep (Cycle)”

~ (i PLC_1 [CPU 1214C DC/DC/DC]
I]T Device configuration

%/ Online & diagnostics - Network 1:
s
w | Program blocks
ﬁ;‘-.dd new block
4 Main [0B1]

Comment

Comment

= “%DEBE1
w |4 System blocks #Tag_lnput "IEC_Timer_0_DE"
* - Program resources | | { ™ }—
@ IEC_Timer_0_DEB [DB1] #ElapsedTime
] r_._ﬂ Technelogy objects
] External source files
» e rLcags Fig. 7-4b Siemens IEC Timer from Tree
b g PLC data types w flag_Input
] Egj.'.'\-‘atch and force tables . #lapsedTime

These figures show pulse diagrams of the Generate Pulse instruction:

IN
Q
k— PT— k— PT— k— PT—
ET
PTH ‘

Fig. 7-5 Timing Diagrams for Generate Pulse Timer

Ch 7 Timers, Counters, T/C Applications 5

TON: Generate on-delay

“The instruction Generate on-delay delays setting of the output Q by the programmed duration
PT. The instruction is started when the result of logic operation (RLO) at input IN changes from
0 to 1 (positive signal edge). The programmed time PT begins when the instruction starts. When
the duration PT expires, the output Q has the signal state 1. Output Q remains set as long as the
start input is still 1. When the signal state at the start input changes from 1 to 0, output Q is reset.
The timer function is started again when a new positive signal edge is detected at the start input.”

These figures show pulse diagrams of the Generate On-Delay instruction:

IN
Q
«— PT— «— PT—
ET Fig. 7-6
pTL On-Delay Timer
Timing Diagrams

%DB1
“IEC_Timer_0_DB"

W0 .0 TOM 4.0
"Tag_1" Time "Timer_0_DE_dn"
] |

l | IN Q {)

T# 200MS — PT DO

ET- “elaps”

Fig. 7-7 On-Delay Timer Programmed in Ladder

Ch 7 Timers, Counters, T/C Applications 6

TOF: Generate off-delay

“The instruction Generate off-delay delays resetting of the output Q by the programmed duration
PT. The Q output is set when the result of logic operation (RLO) at input IN changes from 0 to 1
(positive signal edge). When the signal state at input IN returns back to 0, programmed time
(PT) starts. Output Q remains set as long as the duration PT is running. When duration PT
expires, the Q output is reset. If the signal state at the IN input changes to 1 before the duration
PT expires, the time is reset. The signal state at the output Q will continue to be 1.”

These figures show pulse diagrams of the Generate Off-Delay instruction:

«— PT— — PT—

ET
PT|-

A

Fig. 7-8 Off-Delay Timer Timing Diagrams

ONR: Time accumulator

“The Time accumulator instruction accumulates time values within a period set by parameter PT.
When the signal state at input IN changes from 0 to 1 (positive signal edge), the instruction
executes and the duration PT starts. While the duration PT is running, the timer values are
accumulated that are recorded when the IN input has signal state 1. The accumulated time is
written to output ET and can be queried there. When the duration PT expires, the output Q has
the signal state 1. The Q parameter remains set to 1, even when the signal state at the IN
parameter changes from 1 to 0 (negative signal edge).”

Ch 7 Timers, Counters, T/C Applications 7

These figures show pulse diagrams of the Time Accumulator instruction:

PT
ET

Fig. 7-9 Time Accumulate (or Retentive) Timer Timing Diagrams

These examples give the IEC 61131-3 equivalent of the ‘box’ instructions listed previously:

TE1™

Tag_lnput”™ MWEC_TIMER
| 5L. ? }dr-ﬁ;.'w. | Fig. 7-10 Start Pulse Timer Input
11 \IF !
| "Tag Time"
| “Tag_lnput” Myl EC_TIMER"
|} (Ton
| “TagTime”
Fig. 7-11 Start On-Delay Timer Input
“Tag_lnput™ ¥MVEC _TIMER
| | {T‘:’F:;'_' Fig. 7-12 Start Off-Delay Timer Input
“TagTime"
“Tag _Inpat MWEC _TIMER" . .
: Fig. 7-13 Accumulator Timer Input
Il (Fone)—] P
*“TagTime"

Ch 7 Timers, Counters, T/C Applications 8

---(RT)---: Reset timer

“The Reset timer instruction resets an IEC timer to 0. The instruction is only executed if the
result of logic operation (RLO) at the input of the coil is 1. If current is flowing to the coil (RLO
is 1), the structure components of the timer in the specified data block are reset to 0. If the RLO
at the input of the instruction is 0, the timer remains unchanged.”

The following example shows how the instruction works:

| |} { BT — Fig. 7-14 Reset Timer Example

---(PT)---: Load time duration

“The instruction Load time duration sets the duration of an IEC timer. The instruction is executed
in every cycle when the result of logic operation (RLO) at the input of the instruction has the
signal state 1. The instruction writes the specified time to the structure of the specified IEC
timer.”

The following example shows how the instruction works:

| “Tag_|nput_2~ TON_DE”
| (PT — Fig. 7-15 Load Time Duration Example
| “Tag_PT_2"

Ch 7 Timers, Counters, T/C Applications 9

Siemens Counters:

Next, we look at the Siemens Counter block and discuss the various types of counters available.

m— -
* [+1 Counter operations

& CTu Count up Fig. 7-16 Siemens Counter Operations

3 CD Countdown
& CTuD Count up and down

v [¢] Comparator operations

CTU: Count up

“The instruction Count up counts up the value at output cv. When the signal state at the Cu input
changes from 0 to 1 (positive signal edge), the instruction executes and the current count value at
the CV output is incremented by one. When the instruction executes for the first time, the current
count value at the Cv output is set to zero. The count value is incremented each time a positive
signal edge is detected, until it reaches the high limit for the data type specified at the Cv output.
When the high limit is reached, the signal state at the cuU input no longer has an effect on the
instruction.”

The following example shows how the instruction works:

“CTU_DE”
cTu
“Tagin_1° INT “TagOut
T cl a {9 I Fig. 7-17 Count Up Counter
Tagin_2°
 § R CV p—"Tag _CV*
Tag_PV" —— py

CTD: Count down

“You can use the Count_down instruction to decrement the value at output Cv. When the signal
state at the CD input changes from 0 to 1 (positive signal edge), the instruction executes and the
current count value at the Cv output is decremented by one. When the instruction executes the
first time, the count value of the Cv parameter is set to the value of the pv parameter. Each time
a positive signal edge is detected, the count value is decremented until it reaches the low limit
value of the specified data type. When the low limit is reached, the signal state at the CD input no
longer has an effect on the instruction.”

The following example shows how the instruction works:

Ch 7 Timers, Counters, T/C Applications 10

“CTO_DEB”

CTD
“Tagln_1" INT “TagOut”
|1 0 P .
. “ s Fig. 7-18 Count Down Counter
Tagln_2"
| | LD Cv |—"Tag_Cv"
Tag_ PV —— pyy

CTUD: Count up and down

“You can use the Count up and down instruction to increment and decrement the count value at
the cv output. If the signal state at the cu input changes from 0 to 1 (positive signal edge), the
current count value is incremented by one and stored at the Cv output. If the signal state at the CD
input changes from 0 to 1 (positive signal edge), the count value at the Cv output is decremented
by one. If there is a positive signal edge at the cu and CD inputs in one program cycle, the current
count value at the cv output remains unchanged.”

The following example shows how the instruction works:

"CTUD_DB"
CTUD

“Tagin_1" INT “TagOut*

| cu au f—nrit
“Tagln_2*

| | co QD |—TagOut_aD*
Tagln_3~

| | R oy f—"Tag_Cwv~
"Tagin_4~

| | LD

Tag_PV* ny Fig. 7-19 Combined Count
Up/Down Counter

Allen-Bradley SLC Timers and Counters
SLC Timer Layout:

Timer On Delay TON is the non-retentive instruction for on-delay timers. It is used to provide
signals that change state a time delay after the TON block is energized. TOF is the non-retentive
instruction for off-delay timers. RTO is the retentive timer instruction. It does not reset to an
initial value but rather stays at an accumulated value each time the input to the function block is

Ch 7 Timers, Counters, T/C Applications 11

energized. It 'retains' the count previously accumulated and continues on from that value. It
must be reset with a RES (Reset) command. Reset commands are useful for not only the retentive
timer instruction but also any timer or counter with a retentive nature.

Timers are addressed using the T4 file. Three words are used for each timer. These words are
set up in a fixed block format as follows:

Bit 15 14 13

EN| TT |DN Internal Use (do not reference)

Word 0

Word 1 Preset Value = T4:0

Accumulated Value
Word 2

I\

Word 0

Word 1 = T4

Word 2

I\

Word 0

Word 1 >~ T4:2

Word 2 B,

Fig. 7-20 SLC Timer T4 Table Layout

To program a timer and view its control contacts helps understand the functionality of the timer.

The example below shows the TON timer block with all types of contacts used referenced to
output coils. Build this circuit to show delay contacts in action. Another approach would be to
view the T4 data file from the project tree with the processor in On-Line Run Mode.

A major difference between A-B timers and counters and the Siemens’ equivalent is that the

control bits are built into the A-B devices. The control bits must be added per the Siemens’
explanations. What is tied to the Q output becomes the control bit for a Siemens function.

Ch 7 Timers, Counters, T/C Applications 12

L1 TON i Data File T4 -- TIMER
0000] E Timer On Delay L TENT——
0 Timer \ 0ffset EN TT DN BASE PRE
1746-1#16 | Time Base H— 00 0
Preset \ 00 0 0
Deoam 5 a -
o_ao0 0 0
T4:3 (0]
0001] E £ oo : 0
I 5 5 . 4
EH i
1746-0%18 00] 0
0o 0 1] 0
T4:3 o2 5 7 , y
oonz (— E <3
TT 1 00 0 0
1746-0%18 o 0 : :
v
T4:5 02 4 _’E
o0 =iz <o [T4:0/EN |
DH 2 :
1746-0%16 Symbol: | | ' :
Desc: | |
-] 3
‘T4 =1 Properties | Usage I Help |

Fig. 7-21 TON Timer with SLC Controller (and associated logic)

Preset (PRE) and Accumulated (AcC) values can be modified on-line as well as offline. These
values are adjusted many times after the program is running in order to eliminate any wasted
time in the cycle of a machine. To move a preset from .50 to .05 second can save hundreds or
even thousands of dollars in added productivity of a machine over a year’s time. As a rule, these
timers are set to the lowest possible value to not damage the machine or cause a problem.

Addresses may use either the specific bit/word or the mnemonic label:

T4:0/15 equal to T4:0/EN (enable contact)

T4:0/14 equal to T4:0/TT (timer timing contact)
T4:0/13 equal to T4:0/DN (done contact)

T4:0.1 equal to T4:0.PRE (preset word)

T4:0.2 equal to T4:0.ACC (accumulated word)
T4:0.1/0 equal to T4:0.PRE/0 (preset word, bit 0)
T4:0.2/2 equal to T4:0.ACC/2 (accumulated word, bit 2)

Entering the instruction requires a time base option. Time bases are .01, 0.1 or 1.0 second.
Presets are entered as multiple counts of the time base.

Time Base Preset Time Duration
.01 50 .5sec

.01 9999 99.99 sec

A 200 20.0 sec

1.0 30 30 sec

Ch 7 Timers, Counters, T/C Applications 13

A flashing circuit with two timers:

Q0o

ool

ooz

A Retentive Timer does not reset each time the Enable turns off. The AcC (accumulated value)
remains unchanged. To turn off a Retentive Timer, a RES (Reset) coil must be energized.

Qoaa

o0l

Along with timers, counters are introduced to provide counting functions similar to mechanical
counters. Function blocks allow inputs from the left and pass power through to the right when

T4:7 TON
- Timer On Delay - ENT
DN Titner T4
Time Base 10 —DH—
Preset 1=
Do 0=
T4:5 TON
] E Timer On Delay - ENT
DH Titner T4:7
Time Base 10 —DH—
Preset 1=
Do 0=
Flashing
Lizht
Cn 1 sec
Off 1 sec
T4:7 20
] E 0
TT 0
1761-Mirro

Fig. 7-22 Two TON Timers Used for Flashing Light Application

L0 RTO ———————
1 E Retentive Timer On |—(EN ——
0 Timer T4:3
1761-Micro Titne Base 10 —{DH—
Preset Q2=
Aemam 0=
I.0 T4:3
1 E RES "
1
1761-Micra

Fig. 7-23 Retentive Timer Application

the counting function is done. When done, the counter has counted to the preset.

Counters can be either up or down counters. Up counters count from zero to a preset while down
counters count down from preset to zero. When the target or preset is reached, the counter-done
turns on. Some counters allow counts above the preset and below zero. It is always wise to try

any counter using a push-button input before relying on it to control programs.

They require two numbers stored: a preset and an accumulated number. They need two inputs:
an enable and reset. And, they have an output that turns on when the accumulated equals the

preset.

Ch 7 Timers, Counters, T/C Applications

Counters differ from timers in that the accumulated count moves by one for each new leading
edge of the input. The count continues to move until the preset is reached. When the Preset
equals Accumulated, the output turns on. If more new leading edges are received, the count
continues to climb. The output stays on until the counter is reset. There is no need to have
retentive or non-retentive counters since all counters are reset with the RES command. It does
not matter how long a signal is on for a counter. The count will only increment one for each new
leading edge. Counts are retained after a power outage.

Counters may also be chained together to form very large counts. Counters can count to 32,767.
The number 32,767 therefore is the largest preset. If counts climb into the thousands and
millions, chaining of counters becomes a necessity.

Can a counter count both up and down? This is a necessity of some counters and all PLC
vendors must provide a means to do it. This function will be described later. Several examples
of counters will provide practical experiences of how counters are used.

As with all circuits in this book, it is encouraged that students construct the circuit and observe it
in action. If each building block is constructed correctly, the whole program has a much greater
chance of performing to expectation.

Allen-Bradley provides two counters: CTU and CTD. Both are block-type instructions and are
located at the right of the rung similar to timers. Counters trigger or count on a false-to-true
transition of the rung logic. Care must be taken to allow sufficient time for the signal to be read
by the input card or input point on the fixed I/O processor. If the time of the pulse is less than
the time of a scan, the signal will probably be missed. To accommodate higher pulse rates, PLC
manufacturers provide high speed counter modules capable of counting pulses to much higher
frequencies than by using the cTU and cTD function block.

Ch 7 Timers, Counters, T/C Applications 15

Counters are addressed using the C5 file. Three words are used for each counter. These words

are described as follows:

Bit 15 14 13 12 11 10

Word 0

CU|CD DN |OV |UN|UA Internal Use (do not reference)

Word 1

Preset Value

Word 2

Accumulated Value

Word 0

Word 1

Word 2

Bit 15:
Bit 14:
Bit 13:
Bit 12:
Bit 11:
Bit 10:

CuU
CD
DN
ov
UN
UA

Fig.

= Count Up Enable

= Count Down Enable
= Done Bit

= Overflow Bit

= Underflow Bit

-
> C50
=
> C51
,s

= Update Accum Value (used in high speed counter only — HSC)

7-24 SLC Counter C5 Layout

The Count Up Overflow bit is set when the accumulated value increments above 32767 to —
32768 and stays set until the RES instruction resets the count or the count is decremented by 1
back to 32767. The Done bit turns on when the accumulated value becomes equal to or greater

than the preset. Enable (either CU or CD) turn on when the rung condition is true.

The two counters below are independent. C5:0 is an Up Counter with an ACC starting at 0 and
incrementing by 1 with each occurrence of 1:0/0. When ACC = 99, the DN bit turns on.

C5:1 is a Down Counter with an ACC starting at 50 and decrementing by 1 with each occurrence
of 1:0/1. When ACC =0, the DN bit turns on. Each counter has a reset rung with discrete input

control.

To provide a counter that counts both up and down requires addressing the same C5: counter
address in both the cTU and CTD block. The accumulated value keeps the characteristic of the
CTU counter counting up from 0 to the preset value. This counter can count both positive and
negative if accessed by both the CTu and CTD block.

Ch 7 Timers, Counters, T/C Applications

16

10 CTU
oo 1 | Conmt Tp gy W
] Connter C50
1761-Micra Presat 99— DN 3—
Aeoomm 0=
10 C50
0001 J E {RES “—|
2
1761-Micro
10 CTD
000z 1 | Cennt Dewm D T ——
1 Connter C5:1
1761-Micra Presat 99— DN 3—
Aeoomm 0=
10 5
0003 J E {RES “—|
3
1761-Micro

Fig. 7-25 Count Up Counter C5:0, Count Down Counter C5:1

ControlLogix Timers and Counters

i H g TOM | TOF RTO CTU CTOD RES 2

4 v % Favorites A4 Add-On & Alarms A4 Bit h Timer/Counter 4 Input/O

&b ow| <abd

TON
Timer On Delay —CEN
Timer
Preset
Accum ?

el

¢ DN —

M p P @ M

{End)

Fig. 7-26 Compact Logix On Delay Timer

Timers and counters are designed in the ControlLogix platform to perform in the same manner as
with the SLC family. They must also be capable of functioning in alternate languages such as
Function Block Diagram. One nice feature of the ControlLogix timer is the lack of a
programmed time base. All timers have a .001 sec or 1 msec time base. Timer preset and
accumulated values are stored in DINT (Double Integer) values.

Ch 7 Timers, Counters, T/C Applications 17

Timer On Delay (TON)

The TON timer is a non-retentive timer that accumulates time when the instruction is enabled.
The instruction is available in FBD as TONR. It is also available in Structured Text as TONR. The
Preset is stored as a DINT and represents the duration of the delay. The Accum is stored as a DINT
and represents the total msec of accumulated time. The initial value is usually 0.

TOM
Timer On Delay —EN
Timer ?
Preset ? HDN—
Accum ?

Fig. 7-27 On-Delay Timer Being Programmed

These figures show pulse diagrams of the TON instruction:

.EN

|

T

|

.DN

Accum
Preset

/]

Timer Off Delay (TOF)

TOF

Fig. 7-28 Timing Diagram for On Delay Timer

— Timer OFf Delay

Timer
Preset
Accum

ral

CEN
- ON—

Ch 7 Timers, Counters, T/C Applications

Fig. 7-29 Off-Delay Timer Being Programmed

The TOF instruction is a non-retentive timer that accumulates time when the instruction is
enabled (rung-condition-in is false). The TOF instruction accumulates time until the TOF
instruction is disabled or the .ACC > .PRE. This instruction is available in function block and
structured text as TOFR.

These figures show pulse diagrams of the TOF Off-Delay instruction:

.EN

T)

.DN

Accum

Preset —

A

Fig. 7-30 Timing Diagram for Off-Delay Timer
Retentive Timer On Delay (RTO) and Reset (RES)

RTO ?
— Retentive Timer On |- EN e
Timer 7 (RES
Prezet ? DN

Accum ?

Use same Tag Name in both places:

Fig. 7-31 Retentive Timer Being Programmed
The RTO instruction accumulates time until it is disabled. When the RTO instruction is disabled, it

retains its .ACC value. You must clear the .ACC value, typically with a RES instruction referencing
the same Timer.

Ch 7 Timers, Counters, T/C Applications 19

These figures show pulse diagrams of the RTO and RES Timer Instructions

.EN

RES

TIT

.DN

Accum

Preset —

Fig. 7-32 Timing Diagram for Retentive Timer

Timers and Seal Circuit Combined

Stop_PB Start_PB TON
|/ E] F Timer On Delay BN ——
Timer Delay_Tmr
Delay_Tmr EM Prezet 1000 &£ DN 3—
] E Accum 0 &

Fig. 7-33 Using Timers in Seal Circuits

The rung above may not resemble a seal circuit but look at it closely. When Start PB is
energized, TON Delay_Tmr.EN turns on providing a parallel path around Start PB similar to other
seal circuits. Stop PB energized turns off the circuit. While the circuit should show a NO with
the Stop PB input, the use of the NC reminds us that the button was wired to NC contacts.

The seal circuit above is used quite often in sequential logic in which the machine moves from
state to state with each new state established with the start contact of the seal circuit. The timer
is useful to provide a time buffer between steps. Timers are necessary in this type of program
since the machine should be set to move smoothly from action to action. If no time delay is
provided between steps, the machine appears to travel in a jerky manner. Many machines will
not function well for long without the timer to allow a slight delay between steps. These
machines will appear to beat themselves to death.

Ch 7 Timers, Counters, T/C Applications 20

Timers may be used in chained operations. Timer 1 turns on timer 2 which in turn activates
timer 3, etc. Timers are useful in a number of applications using chained timer functions.

ControlLogix Counters

Counters are created in a fashion similar to the SLC counter. Counter types echo the SLC
counters. As with timers, counter tags must be created before being programmed.

Count Up (CTU)
cTu
— Count Up —CCU .
Counter 3 Flg. 7-34 Up Counter
Preset 7 (DN)— Being Programmed
Accum ?

When enabled and the .cu bit is cleared, the CTU instruction increments the counter by one.
When enabled and the .CU bit is set, or when disabled, the CTU instruction retains its .ACC value.
The instruction counts up with each new leading edge at the left of the block. Counts are stored
in the .Acc value and range from 23! to 23! (-2,147,483,647 to 2,147,483,647). The table of bit
assignments for the CTU and CTD counter follow:

.CU BOOL The count up enable bit indicates the CTU instruction is enabled.
.DN BOOL The done bit indicates that .ACC > .PRE.
.0V BOOL The overflow bit indicates the counter exceeded the upper limit of

2,147,483,647. The counter then rolls over to -2,147,483,648 and
begins counting up again.

.UN BOOL The underflow bit indicates that the counter exceeded the lower
limit of -2,147,483,647. The counter then rolls over to
2,147,483,647 and begins counting down again.

.PRE DINT The preset value specifies the value which the accumulated value
must reach before the instruction sets the .DN bit.
ACC DINT The accumulated value specifies the number of transitions the

instruction has counted.

Count Down (CTD)

CTD

Count Down = CD
Counter ?

Preset 77 DN—
Accum 7

Fig. 7-35 Down Counter Being Programmed

Ch 7 Timers, Counters, T/C Applications 21

The CTD instruction is typically used with a CTU instruction that references the same counter tag.
When enabled and the .CD bit is cleared, the CTD instruction decrements the counter by one.
When enabled and the .Cu bit is set, or when disabled, the CTD instruction retains its .ACC value.

Both the cTU and CTD instruction use the RES instruction to reset the counter’s .ACC value to zero.
This is the same RES instruction used to reset the Retentive Timer instruction RTO.

Timer and Counter Examples
When Pump_Run is toggled on, Delay_Tmr begins to time and Delay_Tmr.DN turns on 500 msec
after Pump_Run (Delay_Tmr.EN) turns on. With the counter, when Part_Present is toggled on,

Part_Count increments by one. When Part_Present is toggled 1000 times, Part_Count.DN turns on.

These two examples are separate and not linked. The tables for each look very similar, however.

Part_Present CTu
JE Count Up —{ CU——
Counter Part_Count
Preset 1000 s~ DN—
Accum 0+
Fig. 7-36a Compact Logix
TON-CTU Examples
Pump_Run TON
1 F Timer On Delay —{ EN ——
Timer Delay_Tmr
Preset 500 «—{DN)—
Accum 0+
Name zzle [vae | Foce Mask. *+[Sige Data Type |
— Delay_Tra (sl fonal TIMER
+ Dreday Tenr FRE 500 Decinal | DINT
+ Delay Tenr ACC 0 Decimal | BINT
Drelaye_Tene EM 0 Diacimal | BOOL
Dreldage Teor. TT 0 Diacimal BOOL
Deldaye_Toor DM o Dacimal BOOL
Pait_Prazem] Dacimal EOOL
= Pat_Count {e:a] {oesl COUNTER
+ Pait_Court FRE 1000 Decimal | DINT
+ Pait_Court ACC 0 Decmal DINT
Part_Count. CLI 0 Decimal BODL
Part_Courd. CD 0 Dacimal BOOL
Part_Court. DN o Dacimal |BODOL
Pat_Court. 0% 0 Decinal |BOOL
Part_Court. UN] Decinal | BOOL
Pump_Run 0 Decimal BOOL

The same examples are next shown with Siemens’ programming:

Ch 7 Timers, Counters, T/C Applications 22

wDB1
"IEC_Timer_0_DB"

TON
#Pump_Run Time

—] —mn Q

T#S00MS — PT ET- #Delay_Tmr

a2
"IEC_Counter_0_
pe”

c
#Pari_Present Int
—— ——
P

Q=
Ve #Part_Count

w #Pump_Run
Delay Tmr
#Part_Present
#art_Count

w] Project21
I Add new device
gh Devices & networks
» g PLC_1 [CPU 1214C DUDYDC)
Y Oevice configuration
& Online & diagnostics
w ' Program blocks
B Add new block
& Mein [081]
w 4 System blocks
- Program resources
@ '€C_Counter_0_DE [0B2]
@ IEC_Timer_0_DEB [DB1]

>

e ML CRREV. R R VRN N R

w) Project21
I Add new device
gh Devices & networks
w [PLC_1 [CPU 1214C DU/DCDC]
I Oevice configuration
% Online & diagnostics
v g Program blocks
I Add new block
& Voin [OB1)
v 4 System blocks
w 4 Program resources
@ IEC_Counter_0_DE [DB2)
¥ EC_Timer_0_De [081]

>
o O W h W N e

w

Fig, 7-41b Siemens
TON, CPU Example

IEC_Timer_0_DB

Name
<] v Stuanc
G{l ST
Qs
<. ET
<. RU
<. N
e Q

1EC_Counter_0_DB
Name
Qv Static

Data type

| Time

Time
Time
Bool
8ool

Data type

.
Q..
<l .
4l =
<] =
< =
<] =
4.

223826™¢g|e

J Bool

Bool
Bool
Bool
Bool
Bool
Int

Int

Fig. 7-36b Siemens S7-
1200 TON-CTU Examples

Start value Retain Visible in ...

<K

DOOOOHO

<<

Start value Retan Vissble in .
v
(v]
[v]
V]
v
v
v

v

DOOO0OO0OO

Siemens builds a data block (DB1, DB2) that stores the values of the timer and the counter. The
same values are found in the tags created in A-B’s program tag database.

Use the Monitor function to change timer values when several timers need to be adjusted online.
The use of the tag database to set timers requires planning to store timers in a common database
area. Siemens uses a watch table to change these values.

Ch 7 Timers, Counters, T/C Applications 23

The following screen shows an IEC timer set up for the Siemens PLC. The block constructed is
a Function Block (FB1) and the variables are Static. The data type selected is “IEC Timer” and
the name of the timer is “Static_1”. This version of the Siemens timer (and counter) gives the
same type of addressing as the Allen-Bradley with a tag (Static_1) providing all variables for the
timer.

Project10 » PLC_1 [CPU 1214C DUDCUDC] » Program blocks » Block_1 [FB1]

Devices
EEIFF D EE B T O T RE
Block_1
¥ _] Project10 ~ Name Data type Default value Retain Accessible f.. Writa... Visible...
B¢ Add new device 7 @ v Static
gh, Devices & networks 8 l@ = v static_1 IEC_TIMER Non-etain = = [«
~ [PLC_1 [CPU 1214C DC/DG]... 9@ = PT Time T Non-retain [v)] (v
IIY Device configuration sloa = ET Time T# Non-retain [v) v
% Online & diagnostics 1 @ = IN Bool fi Non-retain (v] %3]
~ |l Program blocks 12 <@ . Q Bool false Non-retain [v) (v
i'; Add new block 13 @ = bit Bool E f Non-ret.. [«] @ E] E]
4 Main [0B1] 14 = €
4 Block_1 [FB1] < i >
» (3 Technology objects = = =
» External source files =k HdF == —
» [PLC tags
» _ig PLC data types
» 55 watch and force tables
» L Online backups | #bit #Static_1
» [Traces 1 | § TON
» J,;OPCUAcommunicatlon n ' 1‘ujne)_‘
- #5tatic_1.ET
» 5. Device proxydata
8§ Program info v

From the Help Files of TIA Portal:
“Advantages of IEC timers and counters

The universal use of IEC timers and counters makes your program code more efficient.
This gives you the following advantages:
e The blocks can be called multiple times with newly generated instance data blocks.
e The IEC counters have a large counting range.
e Compared to S5 timers, IEC timers have better performance and greater time accuracy.

Procedure in STEP 7 TIA Portal

You declare IEC timers and counters in the program block where they are called or needed. The IEC
timer is a structure of data type IEC_TIMER, IEC_LTIMER, or TON_TIME and TON_LTIME, for example,
which you can also declare as a local tag in a block. The IEC counter is a structure of data type
IEC_SCOUNTER, IEC_USCOUNTER, etc.”

The IEC timer and counter are not encouraged except for the fact that they are the only
timers and counters available in the FB/DB programming area. This programming area is
preferred by many seasoned programmers for the majority of their control code. Thus, the
IEC timers and counters should not be ignored.

Ch 7 Timers, Counters, T/C Applications 24

The Count up and Count down combined counters for Allen-Bradley and Siemens are shown in
the example below:

Up Clu
Test_Count
10«
ur O«
Dn C1D
Test_Count
10
A\ 0.
Reset Test_Count
Preset MOV
ICE val
Oe
t Test_Count PRE

10«

Above is the Allen-Bradley Up Down Counter combination with each counter having the same
named counter. Below is the Siemens Up-Down Counter with all functions in the same device.

“CTUD_DB"
CTUD
“Tagin_1~ INT “TagOut”
{ } cu Qu { > I
“Tagin_2~°
{ | cD QD }—"Tagout_qo"
*Tagin_3"
1} R CV |—Tag_CV*
“Tagin_4~
{ | LD
Tag_PV — PV

Ch 7 Timers, Counters, T/C Applications 25

Seal Circuits with Time Delays

Seal circuits used to start and stop pumps, fans and other equipment many times must interlock
with switches to insure safe operation. For pumps, flow switches are used. For fans, pressure
switches or flow switches are selected. For conveyor belts, zero-speed or plugging switches are
used. If the switch fails or stops, the moving device is also to stop.

The problem is the starting operation. How does the device allow the circuit to start? A timer is
used for each of the devices in the process. For instance, if a pump is allowed to start, a timer is
also started which times out and then causes the flow switch to activate and stop the pump if low
flow is detected. The following circuit shows the operation of this kind of seal logic.

Stop_PB Start_PB Pump_H_Press Pump_Run
=M= JLC 1L oo,
e 10 1 C oS

Delay_Tmr.EN Delay_Tmr.DN
1€ 3/ E
1L 1 E
Pump_Run -TOM
] F Timer On Delay — EN——

Timer Delay_Tmr
Preset 500 &~ DN —
Accum [

Fig. 7-37 Example of Timer in Stop Circuit

In rung 1 above, the pump starts with 1:0/0 (Start_PB). Either the push button 1:0/1(Stop_PB) or
the combination of 1:0/2 (Pump_H_Press) or T4:3/DN shut the pump off. If 1:.0/1 turns off, the
pump shuts down. If 1:0/2 shuts off (low pressure), the pump will shut down but only after the
time delay of T4:3. The time delay allows time for the pump to build pressure enough to run
under normal conditions. If the pressure then fails (turns off), the pump will turn off. Usually
this circuit also includes a diagnostic rung which will turn on when the pressure switch fails and
the pump is on to alert the operator of the failure of the pump.

Ch 7 Timers, Counters, T/C Applications 26

XIO(C2_Alarm)

From Chapter 6, we remember the following problem:

N High Level L3
Conv C1 Q @ High Level L4
Conv C2 .
@])
Conv C3
Fig. 7-38 Conveyor High Level L1
Problem from Ch. 6 Bin 1
Low Level L2
We built Function/State and Signal Assignment Tables for it as follows:
Sensor Function/State Signal Assignment
L1 Bin 1 High Level 0
L2 Bin 1 Low Level 1
L3 Conv C2 Hopper High Level 0
L4 Conv C3 Hopper High Level 0
Actuator Function/State Signal Assignment
C1 Conv C1 Run 1
C2 Conv C2 Run 1
Cc3 Conv C3 Run 1

A zero speed switch is usually added to the conveyor to determine if it is running properly. A
sensor is attached to the end of the conveyor opposite the motor shaft. This sensor must sense a
motion or it will report that the conveyor is not running properly. The input is attached to the
shaft. It may be as simple as a bolt that is being read by a prox switch as it passes the switch
when the shaft is turning.

Speed sensor
attached here

Motor attached here

Ch 7 Timers, Counters, T/C Applications 27

Fig. 7-39 Conveyor used for Moving Product

Fig. 7-40

A zero speed switch is
built from a rotating
metal piece attached to
the shaft and a proximity
switch

As can be seen, both the signal on too long or off too long is reason to report that the shaft is not
turning. Both states must be checked. A reasonable time for the shaft to turn one revolution is
calculated and a little extra time is added for start-up or stop conditions. Then the timer is added

to the motor control program.
@:I L1

Shaft with Bolt Prox Switch

Sensor output
with shaft turning

Sensor output
with shaft not
turning

or

Sensor output
with shaft not
turning

Fig. 7-41 Conveyor Problem with Shaft Rotation Sensing

Ch 7 Timers, Counters, T/C Applications 28

High Level L3

s
Conv C1 (} (} Hi
ah Level L4
Comy G2 S
U @]
Conv C3
Fig. 7-42 Conveyor High Level L1
Problem from Ch. 6 .
Bin 1
Low Level L2
Conv_1_Shut
~Down
Timer.dn
| L To be added o stop portion of
-7 conveyor run circuit

What happens if a conveyor downstream stops working? One sensor is the zero speed sensor
from the downstream conveyor. Another sensor is found at the hopper at the beginning of the
downstream conveyor. This sensor will turn off the upstream conveyor.

build-up when
Downstream
Conveyor §tops

oo

Upstream Conveyor @
® v

Downstream
Conveyor

Fig. 7-43 Conveyor Problem with Build-up

The retro-reflective photo-eye is used here to sense a pile-up at the hopper in the conveyor.

Ch 7 Timers, Counters, T/C Applications

29

Fig. 7-44a Conveyor Problem with Build-up

Another timer is used to turn off the conveyor if the conveyor is to be turned off after all product
has cycled off the conveyor. The retentive timer is used for this function.

Fig. 7-44b Conveyor Problem with Material Tracking

Ch 7 Timers, Counters, T/C Applications

The program for the above conveyor system is shown here. First is the ‘fill” command that

drives the program. This rung drives all the logic in the remainder of the program.

Bin Low Bin Hi
Fill
Fill C3_Alarm
Fill Run_C3 C2_Alarm High_Level L4

Fill

Fill

Fill

Fill

Run_C2 C1_Alarm High_Level L3

Run_C3 Alarm_Reset |:| C3_Zero_Speed
C3_Zero_Speed
C3_Alarm

Run_C2 Alarm_Reset C2_Zero_Speed

C2_Zero_Speed

C2_Alarm

Run C1 Alarm Reset C1 Zero Speed

C1_7ero_Speed

C1_Alarm

TON
Timer
Preset
Accum

TON
Timer
Preset
Accum

TON
Timer
Preset
Accum

TON
Timer
Preset
Accum

TON
Timer
Preset
Accum

TON
Timer
Preset
Accum

C3 A
10000«
O«

C3 B
10000«
O«

C2_A
10000+«
O«

C2_B
10000«
O«

C1_A
10000+
O«

C1_B
10000+«
O«

Fill

Run_C3

Run_C2

Run_C1

C3_Alarm

C2_Alarm

C1_Alarm

The logic that turns on the motors is next. Each conveyor turns on and stays on as long as there

is a need to fill the bin. They stop only on a high level of any hopper which signifies a clog in

some way in the system. Also, the zero speed switch uses a timer to determine if the conveyor is
actually turning. Ifit does’t turn, the flag stays either on or off for a longer period of time which

stops the conveyor and stays off till the reset button is energized.

Ch 7 Timers, Counters, T/C Applications

31

Clocks and Timers

Timers can be used to design clocks. However, they tend to be inaccurate so real-time clocks
have been designed into most PLCs to give very accurate times that time stamp events. Clocks
programmed with timers lose accuracy when the timer is reset. Usually a scan or two is lost
(added) to the time so when the timer is started a 2 to 20 msec delay occurred. Over a day or
week, the timer may keep a fairly accurate clock but with time, the clock tends to get farther and
farther from the true time. Of course, if the timer is reset once an hour or day with a master reset
signal, the timer may mimic a very accurate clock.

More accurate clocks can be built if very long time delays are used. Avoiding the reset scan
allows the highest accuracy in clocks.

Since PLC timer simulated clocks are not accurate for most applications, look to the PLC vendor
to install a real-time clock. The real time clock is accurate to the same accuracy of the watch on
your arm. It is operated with a crystal timer and set by the program and operated by the clock
circuit separate from the scan time of the PLC. Most PLCs have built-in real time clocks.

While the A-B SLC-500 processors do not all contain the Real-Time Clock function, they are
defined in the larger SLC 5/03, 5/04, and 5/05. Status register addresses S:37 to S:42 define the
Real-Time Clock. These registers are defined as follows:

S:37 Clock/Calendar Year Range 0-65535
S:38 Clock/Calendar Month Range 1-12
S:39 Clock/Calendar Day Range 1-31
S:40 Clock/Calendar Hours Range 0-23
S:41 Clock/Calendar Minutes Range 0-59
S:42 Clock/Calendar Seconds Range 0-59

To disable the Clock/Calendar, write O's to all clock or calendar words in the range S:37 to S:41.

Ch 7 Timers, Counters, T/C Applications 32

Combining Counters and Timers

DB 2
DB 1 "IEC_Counter_0_

"IEC_Timer_0_DE" DB"

TON CTu

#Fart_at_Machine Time Int

= | | I 0 cu 0 —
T#S00MS — PT ET- #Delay_Tmr falze — R Cve #FPar_Count
1000 — PV
Fig. 7-45 Timer and Counter Combined

The circuit above uses a timer to provide signal conditioning for the counter
IEC_Counter_0_DB. If the input Part_at_Machine does not stay on for at least 500*(.001) sec =
.5 sec, the timer does not time out and the counter does not increment. Circuits similar to the one
above are typical for counting of parts. Proximity switchs are especially noisy with multiple
transitions on-off-on for each part sensed and need the type of circuit with timer ahead of the

counter protects against false counts. Many automotive plants use timer circuits to buffer
proximity switch logic to PLC programs.

Signal as
seen at

input card 0

Signal
used by
program A count

occurs here

Signal we would many
times like to see

Y Some programs would

be better if started at

this point rather than

waiting for the delay
The signal seen at the card many times will be jumpy and not settle for a significant delay period.
If the input signal is of this type and many times the prox switch or limit switch exhibits this type
of behavior, then a delay such as seen above is needed. The problem with the delay of the TON
timer is that the program is delayed from executing even though the switch ‘sees’ the device
needed to start the program. The third signal is the one we would more like to see and may be

Ch 7 Timers, Counters, T/C Applications 33

worth constructing if the program needs to execute immediately with the detection of the switch.
For the counter circuit, the delay is acceptable. For other programs, there should be
consideration given for the third signal which would start the user program.

Races using Timers and Counters

A common program to write for timers and counters includes a race condition to determine if a
condition is met in a certain amount of time. For instance, the problem to determine if a button
has been pushed two times in two seconds is an example of a race. In a race, two events start at
the same time. The counter must start counting as the timer starts timing. If the counter reaches
the preset prior to the timer reaches preset, the event is determined to be successful. Otherwise,
the events are both reset and allowed to start again.

For instance, the programming of the push button to determine if it has been pushed two times in
two seconds would resemble the following. The ons after the pushbutton is an option and not
necessary.

Push_Button P_B_OSR CTU
1 F [ons] Count Up H{CU—
Counter Event_Count
Preset Z & DN—
Accum 0 &
MEQ TON
Mot Equal Timer On Delay HCEN —— i i
Source A Ewvent_CountACC Timer Race_Timer Fig. 7-46 Race Using
0+ Preset 2000 & DN— Timer and Counter
Source B 0 Accum 0 &
Event_Count.DN Win
JE (I —
Race_Timer.DN Event_Count
1E (RES?

In the circuit above, the counter must reach the preset count of 2 before the timer reaches 2
seconds. The timer starts as soon as the counter is determined to have a non-zero accumulated
count. As soon as the counter increments to 2, the latch is set signifying the race was a success.
If the timer reaches preset first, the counter is reset and the process begins again.

The option 7.1F uses the race program above but with a change so that if the the count is non-
zero (cars present) and the switch does not change quickly (race fails), then move a longer preset
to the timer for the turn lane green light:

Add a switch imbedded in the road to sense when there is a back-up of cars wanting to
use the turn lane. If there is a back-up, use a longer time preset for the turn lane. If the
switch turns on rapidly, then there is no back-up. If the switch turns on but not in rapid
succession, there is a back-up.

Ch 7 Timers, Counters, T/C Applications 34

A Project for Stacking or Grouping Boxes
Example of Counters and Timers in Industrial Application

1. Forklift driver places a box on a conveyor:

(> Fig. 7-47a Single Box on

‘ Conveyor

2. The forklift driver pulls a cord energizing an input and starts the box moving to a second
conveyor that gathers/groups a set number of boxes:

Fig. 7-47b Adding the Second Conveyor and Controls
C 3)
| | |

Pullcord Conveyor 1 Photo-eye Conveyor 2
1:0/0 Run 0:0/0 1:0/1 Run 0:0/1

Conveyor 1 runs from when the pull cord is energized until the photo-eye sees the box in front of
the eye. It then continues to move until the eye is no longer covered. Conveyor 2 moves from
the instant the photo-eye sees the box until a delay after the box no longer is seen.

Fig. 7-47c Adding the Inputs and Outputs

N
C X
Pullcord Conveyor 1 Photo-eye Conveyor 2
In0 Run Out0 Inl Run Outl

The second conveyor doesn’t stop until a delay after the photo-eye does not see box.
Program for Control of Boxes on Two Conveyors:

Ch 7 Timers, Counters, T/C Applications 35

Pull_Cord_Fork_Lift PE_1_Timer.DN Run_Conv_1

P
LS

JE ==
J L 0

Run_Conv_1

El=
d L

-TON
Timer On Delay BN ——

Timer PE_1_Timer
Pre=zet 2000 &= D —
Accum 0 &

Fig. 7-47d Program for Moving Box to Second Conveyor (A-B)

&Pull_Cord_Fork_ EPE_1_Timer_
Lift Done #Run_Conv_1
L 1
— | /1 {
#Run_Conv_1
11
11
HDET
*IEC_Timer_0_DB"
TON " EPE_1_Timer_ |
¥PE_1 Time Done
i Q {)}
T® ET- =FE_1_Timer

Fig. 7-47e Program for Moving Box to Second Conveyor (Siemens)

Use of the Off-Delay for movement of the box past the photo-eye by a set-time positions the box
on conveyor 2. The second box placed on conveyor 1 would be positioned on conveyor 2 similar

to the first box.

Fig. 7-47f Additional Boxes on Second Conveyor

Pullcord
In0

;O/
N\

| |

Conveyor 2

Conveyor 1 Photo-eye
Run Outl

Run OutO In1

Ch 7 Timers, Counters, T/C Applications 36

Boxes are grouped on conveyor 2 until a preset count is reached. The preset in the Up Count
Counter sets the limit of number of boxes to be collected on the second conveyor.

PE_1_Timer.DN CTu
] F Count Up O —
Counter Conv_2_Box_Count
Preset T & DN —
Accum 0+

Fig. 7-47g Logic to Count Boxes until Grouping Complete (A-B)

DB 2
“IEC_Counter_0_
De"
#PE_1_Timer_ cy
Dane Int
| | cu 0 ==
alse — R "|IEC_Counter_0_
7 — PV v - DB".CV

Fig. 7-47h Logic to Count Boxes until Grouping Complete (Siemens)

When this counter counts to preset, the number of boxes on Conveyor 2 has counted to 4 and the
boxes are now ready to be moved as a group to a third conveyor.

. 3 R
| | | | | |
Photoeye 2 Conveyor 3
In2 Out2

Fig. 7-47i Boxes Moving to Third Conveyor

The question about modes will be discussed in a later chapter. To count the boxes off Conveyor
2 requires using a second counter or a down counter with the same address as the up-counter for
counting boxes onto conveyor 2 if using Allen-Bradley. For Siemens, an Up_Down Counter

may be used.

Ch 7 Timers, Counters, T/C Applications 37

Timers and counters are used together in a number of different kinds of programs. These show
just a few of their many uses in automation programming

Stepping Program for Machine

The following machine is designed to move a part down a conveyor and back to home. It was
originally introduced in Ch. 6. In this chapter, we add a timer at the end of travel to give the
conveyor some time to stop before reversing.

In the forward movement, the part is to be sprayed after being sensed by the photo-eye in the
middle of the conveyor. Once the part moves to the end of the conveyor, the conveyor reverses
and the part is moved back to the home position to be removed. A start button begins the action.

Part Travels Down

O Machine
—>
Start Button PB1 () ()
Partis Sprayed
2 7 5
Q O

—‘ }7 Delay Dwell at Right

Part Travels Back

- =
Q O

Part Stops, is

G Removed 6
Q @)

This program requires the operator start the movement by pushing a button. This action sets the
machine in motion. Logic can be developed using seal circuits for forward motion, reverse
motion and over-all motion. The spray action begins by the part passing the middle photo-eye.
The timer is added to let motion come to a stop before the conveyor reverses.

Ch 7 Timers, Counters, T/C Applications 38

Run_PB Stop_PB Daone

Running
Running Middle_PE
Middle_PE_Mem
Running Middle PE Right PE
Right_PE_DIy.EN
Running Right PE_DlyDN Left PE

Running

Running

Running

Right_PE_DIy.EN

Right_PE_DIly.DN

Part_Move Rt Middle_PE_Mem

Running

Middle_PE_Mem

TON

Timer Right_PE_Dly
Preset 500«
Accum O

Dane

Part_Maove Rt

Part_Move_ Lt

Spray_On

The timer allows the arm to slow to a stop before reversing and traveling back to the home or left

position. This type of logic in which a ‘running’ coil is used to allow the operation to proceed
and then coils to be turned on one by one till the operation completes is standard for many

programs such as this. This is a good example of timers used as seal or memory as well as time

delays. They serve both functions in this example.

Ch 7 Timers, Counters, T/C Applications

39

After All This

The original PLC manufacturer, Modicon, came to terms with timers in a much simpler manner

than either Allen-Bradley or Siemens. They used a single block that could be programmed either

as an On Delay or Off Delay, with either Non-retentive or Retentive capabilities:

13

9.2 Three Kinds of Timers

Three timer instructions are available for timing an event or creating a delay. They
measure time in seconds (T1.0), in tenths of a second {T0.1), and in hundredths of
a second (T.01). Each timer is a iwo-node function block:

Time accumulates when_| timer __ When ON,
ON with bottom Input preset accumulated time = timer preset
enabled
u - mset 1 T1 .ﬂJ’TU.'HT.O‘I | When ON'
1 = gnabled accumulated accumulated lime < timer preset
time

The fimer presetin the top node can be
t1 Adecimal ranging from 1 ... 999 in 16 bit CPUs and 1 ... 9999 in 24 bit CPUs
m1 Aninput register (3x)

O A holding register (4.x)

The bottom node indicates that the timer is incrementing as a T1.0, T0.1, or T.01
counter and contains a holding register (4x) that stores accumulated time.

A Caution If you cascade T1.0 timers with presets of 1, the timers
will time-out together; to avoid this problem, change the presets
to 10 and substitute a T0.1 timer. The same holds true for a T0.1
timer, in which case you can substitute a T.01 timer.

Ch 7 Timers, Counters, T/C Applications

40

The example above assumes that 10002 is closed (timer enabled) and that the
value contained in register 40040 is 0. Because 40040 does not equal the timer
preset (5), coil 00107 is OFF and coil 00108 is ON.

When 10001 is closed, 40040 begins to accumulate counts at 1 s intervals until it
reaches 5. At that point, 00107 is ON and 00108 is OFF.

When 10002 is opened, 40040 resets to 0, coil 00107 goes OFF, and 00108 goes
ON.

= Note If the accumulated time value is less than the timer preset val-
ue, the bottom output will pass power even though no inputs to the
block are present.

The above is from the Modicon 984 Systems Programming Manual and is the entire description
of timers for the Modicon 984 PLC. Similar timers were available for the Modicon 484 and 884.
How did they do it, provide all the timing functions necessary with just really one block? The
block is very versatile and can be used in a number of different modes and can be cascaded left-
to-right. This points out that the complete list of different timing functions is not really all that
necessary.

Most of my programming life was spent only knowing how to program the TON timer for a
specific PLC. With this one timer, one can get most of the functionality of the other timers with
only a few modifications. Is it worth looking into all the various timer types? Usually only if the
timers are used by someone else in a specific program, do we need to refer to the manual for
those timers other than the TON timer.

Ch 7 Timers, Counters, T/C Applications 41

Summary

The chapter on Timers and Counters introduces these devices and gives practical examples of
their use as well as timing diagrams for applications utilizing their specific qualifications.
Examples show a need to be able to use timers in seal or memory circuits. Use of timers and
counters together is discussed.

Siemens and Allen-Bradley based timers and counters are shown and examples of each type are
explained. While one might be interested in the specific attributes of each type, it is possible to
walk through the chapter and understand the various timers without learning how to use each of
the various types. To use the TON or on-delay timer in almost all occasions is possible with a
rare need to use alternates. This approach has been used by the author and has worked in
industry. This advice is to work extensively with the TON timer and learn its characteristics and
use the timer for as many applications as possible. If another type is absolutely necessary, then
read about it and use it as necessary. A search of the problems at the end of the chapter reveals
that they may all be solved with the TON timer.

An example of a conveyor system counting boxes is discussed and the use of timers and counters
to control the movement on the conveyors is shown.

One difference between the Siemens Up-Down Counter and the A-B Counters is that Siemens
uses a different counter instruction for up, down and up-down. A-B uses different instructions
for up and down but combines the two instructions to allow an up-down counter. The tag for the
up-down counter is the same tag. This may confuse at first but should be tried in the labs to see
the results. A troubleshooting note on the A-B up-down counter is that one may program one
up-count and one down-count counter with the same tag but not three or four counters with the
same tag. This will lead to unexpected results and a troubleshooting dilemma.

While Siemens uses multiple types of timer with the box structure and the IEC type, it is best to
settle with the box type and stack them left to right on the screen. A-B allows some stacking of
boxes from left-to-right as well. The student should be willing to try to stack instructions and see
if the processor will allow this action.

Ch 7 Timers, Counters, T/C Applications 42

Exercises

1. De-bounce Circuit Leading Edge:

Design a de-bounce circuit which will override the bounce of a limit switch on the
leading edge only. Allow no input that is not on for at least .5 second. Use
Limit_switch_1 as input.

2. For the following circuit, answer the questions below:

d)

second_Tmr.DN TON
]/ [E Timer On Delay " EN——
Timer Firzt_Tmr
Preset 1000 &= DN 3—
Accum 0 &
First_Tmr.D'M TOM
] F Timer On Delay — EN——
Timer Second_Tmr
Preset S00 & DM —
Accum 0 &
Second_Tmr.TT Fla=hing_Light
4/ {2

How long does the flashing light stay on?
How long does the flashing light stay off?
Modify the circuit so that the output is on for 1.3 seconds and off for 1.2 seconds.

Modify the circuit so that the output is on for 2.5 seconds and off for 1.7 seconds.

3. Design a program that turns on a latch when a button is pushed three times in less than 2

seconds.

4. A low pressure switch is to be added to a fan starter circuit. Assign inputs for stop, start and
low pressure. If the fan loses pressure, then it is to shut down. Design a start/stop seal circuit
that stops on low pressure. Remember that when the fan is off, pressure is low.

Ch 7 Timers, Counters, T/C Applications 43

5. Complete the following rungs to give a light that flashes on for 1.3 seconds and off for .2
seconds using Siemens’ timers:

g TON

[TON

| |
l O
Rewrite the flashing circuit using Siemens FBD, using A-B’s FBD.

6. To start asynchronous wound motors, resistors are connected in the rotor circuit to avoid a
high inrush current. After pushing the start button S1, the line relay is closed. Then relays

K2, K3 and K4 are closed, each after a time delay of 5 seconds. Write the program to start
M3.

: [mq’] « M e M

K3 K2
Yy Y OO W] W

IZaN — —
S \ — — %ﬂ
M 2] 2 4] (2]

7. A group of three motors should be controlled. Each motor is equipped with a revolution
monitoring device. If the motor turns, the sensor indicates “1” (otherwise “0”’). The switch
S1 activates the monitoring circuit. The failure indication (fault) is to light in the following
cases:
a. If two of the three motors failed longer than 10 seconds
b. If all three motors failed

The fault light is to stay lit until a reset switch is activated (acknowledged).

Ch 7 Timers, Counters, T/C Applications 44

Symboal Table

SYMBOL | ADDRESS | DATA | COMMENT
- [|etert TYPE
VM
N L 081 OB1__ | Main program
~~ Motor2 FC18 FC18
[M E = Input1 (1 0.1 BOOL | Motor 1 running
S Matori=1
s “\ll e Matora PLC Input2 |1 0.2 BOOL |Motor2 running
I‘\,_M y, 1] Fault Motor2= 1 :
- 5 Imput3 |10.3 BOOL | Motor3 running
i . — I Motor3=1
Activate Menitoring — =———— @ Input4 |10.4 | BOOL |Set
. f’{ Input5_[10.5 BOOL | Acknowledgment
Acinowledgment — T Qutputd [Q4.0 BOOL | Fault

8. Count and Time Program:

How many parts per minute are going past a certain process point? The counter is pulsed for
each part going past the sensor, which is connected to Input 1. The counting begins and the
timer starts timing through its 60 second time interval. At the end of 60 seconds, pulses
continue but do not affect the counter. The part count for the minute will remain in the
counter register until switch S is opened. Then the counter and timer are reset. When S is
closed again, another 60 second interval occurs with another part count saved at the end of
the 60 second period.

How would you make the process continuous with the last 60 second part count the one read?
How would you make the process show the average of the last 10 minutes’ part-count, the

last hour?

9. Rewrite the controls for the diagram below using the new actuator, function/state table:

% High Level L3

Conv C1 Q O High Level L4
Conv C2 N/

Conv C3
High Level L1

Bin 1

Low Level L2

Ch 7 Timers, Counters, T/C Applications 45

Sensor Function/State Signal Assignment
L1 Bin 1 High Level 0
L2 Bin 1 Low Level 1
L3 Conv C2 Hopper High Level 0
L4 Conv C3 Hopper High Level 0
P1 Conv 1 Running 1
P2 Conv 2 Running 1
P3 Conv 3 Running 1

Actuator Function/State Signal Assignment
C1 Conv C1 Run 1
Cc2 Conv C2 Run 1
Cc3 Conv C3 Run 1

10.

When this counter counts to preset, the number of boxes on Conveyor 2 has counted to 4 and
the boxes are now ready to be moved as a group to a third conveyor.

11.

12.

Photoeye 2 Conveyor 3
1:0/2 0:0/2

To count the boxes off Conveyor 2 requires using a second counter or a down counter with
the same address as the up-counter for counting boxes onto conveyor 2. Write the code that
moves the boxes off the conveyor.

The microwave is to be set for high for 1:30 (one minute, thirty seconds) to cook my
oatmeal. The oatmeal sometimes boils and bubbles out of the bowl if left on continuously
for 1:30 but the time is to be held at 1:30. Design a control circuit to guarantee 1:30 cooking
time with no over-flow mess. Use sensors as needed and a start button and ready light to
complete the control scheme. Design a function/state — signal assignment table to
accompany your program. This is a retentive timer application. Use a retentive timer from
either A-B or Siemens.

Design a de-bounce circuit which will override the bounce of a limit switch on the

leading edge only. Allow no input that is not on for at least .5 second. Use Limit_switch_1
as input.

Ch 7 Timers, Counters, T/C Applications 46

13. Siemens and A-B have different contact descriptors for the same functions. In the following,
the A-B contacts are listed. Fill in the Siemens’ equivalent:

TON
Timer_0

Allen-Bradley Siemens

Timer_0.EN

—

Timer_0.DN

—

Timer_O.TT

14. Convert the following Siemens Counter to its A-B equivalent:

“CTUD_DB”
CTUD

"Tagln_1" INT TagOut®

| | cu Qu b—«)—|
“Tagln_2*

| | cD QD |—"TagOut_aD*
“Tagin_3~

| | R Cy = Tag_Cwv~
Tagln_4~°

| | LD

Tag_PW~ PV

15. The following timing diagrams represent a type of timer. Show an example from Siemens
and Allen-Bradley to demonstrate the timer. ldentify in the example each variable and where
it is found in the program:

Ch 7 Timers, Counters, T/C Applications 47

EN

RES

DN

Accumt
Freset -

/—/

16. Using non-counter PLC instructions, write logic to perform the function of the counter
below:

“CTUD_DE"
CTUD

"Tagln_1" IMT “TagOut*

| cu au f—of
“Tagln_2*

| | cD QD |—"TagOut_aD*
“Tagin_3~

| | R Cw | "Tag_CWv~
Tagln_4~°

| | LD

Tag_PV" PV

17. A car wash with two bays has a pump supplying water pressure to the spray heads. If a bay
in use contact turns on, one pump automatically turns on. If a water pressure switch is not
satisfied (sufficient pressure) and a delay of 5 seconds occurs, a second pump turns on. If,
after the second pump turns on and water pressure is not satisfied and a 10 second delay
occurs, a third pump is turned on. All pumps stay on for the duration of the wash and turn
off after both bay in use contacts turn off.

Ch 7 Timers, Counters, T/C Applications

Bay 1 Bay 2

Primary Pump

Bay 1 iiagsze Water
inuse Pressure

S | . ES

Third Pump

Fill in Definition of Inputs:

Sensor Function/State Signal Assignment

Fill in Definition of Outputs:

Actuator Function/State Signal Assignment

Write Ladder Logic to Turn on the Outputs using Ladder Logic for the Problem above:
What could you do to enhance the logic for this process?
18. Change the problem above per:

A car wash with two bays has a pump supplying water pressure to the spray heads. If a bay in
use contact turns on, one pump automatically turns on. If a water pressure switch is not
satisfied (sufficient pressure) and a delay of 5 seconds occurs, a second pump turns on. If,
after the second pump turns on and water pressure is not satisfied and a 10 second delay

Ch 7 Timers, Counters, T/C Applications

occurs, a third pump is turned on. Pumps remain on until one of the bay in use contacts turns
off at which time pump 2 and 3 turn off and the timer circuits again may turn on additional
pumps if the pressure is not satisfied. If both contacts turn off, all pumps turn off.

19. Also, the following:

A car wash with two bays has two pumps supplying water pressure to the spray heads. If a
bay in use contact turns on, one pump automatically turns on. If a water pressure switch is
not satisfied (sufficient pressure) and a delay of 30 seconds occurs, a second pump turns on.
Pump 2 remains on until one of the bay in use contacts turns off at which time pump 2 turns
off and the timer circuit again may turn on pump 2 if the pressure is not satisfied. If both
contacts turn off, all pumps turn off.

Bay 1 Bay 2

<)

Primary Pump

E :;' Bay 1 Bay 2
in use Water

in use

Pressure
Second Pump —{ }— —{ }— A]ED\o—

Fill in Definition of Inputs:

Sensor Function/State Signal Assighnment

Fill in Definition of Outputs:

Actuator Function/State Signal Assignment

Ch 7 Timers, Counters, T/C Applications 50

Write Ladder Logic to Turn on the Outputs using Ladder Logic for the Problem above:

20. The following valve has two limit switches, one that energizes when the valve is closed and
one that is energized when the valve is full open. Write a ladder logic program that turns on

an alarm if the time turn from on to off or off to on exceeds 5 seconds. The alarm should
stay on until a reset button is energized.

=

V-1 ‘

21. A button can turn on a motor only once every 20 minutes. Write a ladder logic program that
prevents the motor from being turned on more often.

Ch 7 Timers, Counters, T/C Applications 51

Lab 7.1 The Traffic Intersection

A traffic intersection has the following three lane assignments:
East-West Thru
North-South Turn
North-South Thru

East-West Thru Direction

~ North-South
Thru and Turn
Directions

Two sets of traffic lights are found for each turn direction although the lab uses only one set.
Each turn direction has a set of three lights as follows:

® -
Q Yellow
‘ Green

Although traffic intersection logic tends to be very complicated in order to provide fool-proof
operation of the traffic intersection, a simplified chart of the operation of the lights can be used to
program the lights and operate the intersection. Each interval is an interval of time and after the
last interval, the process repeats from the top. The intersection’s operational chart:

Interval N-S Thru Lane N-S Turn Lane E-W Thru Lane
1 Green Red Red
2 Yellow Red Red
3 Red Green Red
4 Red Yellow Red
5 Red Red Green
6 Red Red Yellow

This lab consists of programming the nine lights to cycle through the proper sequence to control
traffic flow at the intersection described above.

Ch 7 Timers, Counters, T/C Applications 52

A helps program can be found accompanying this lab to start the process of setting up timers,
especially to cycle and repeat a sequence. Notice that two timers can be set up the same as six or
more timers to control such events as a flashing yellow or flashing red light. The same two
timers can be used for all such flashing functions. Thus, two timers are all that are needed if a
flashing sequence is needed.

Notice the EN, DN and TT contacts found with every timer. Timers start with T4:0 and proceed
upward. Use the TON timer, or the On Delay Timer. Addressing for timer contacts is T4:0/DN,
T4:0/TT, T4:0/EN. Refer to the Allen-Bradley Instruction Reference Manual for more detailed
information about the use of timers. Also, look at the helps program to view a basic cycling
program that works.

Also, the outputs must be programmed. Remember that only one output should be programmed
for each light. Outputs are programmed to allow multiple branches to turn on the selected
output. For instance, the top or bottom branch of the rung would allow the output to turn on.
This is a parallel branching function so either of these branches would turn on the output.

M
=d |] _/

Options for Lab 7.1

Lab7.1A Add a selector switch to delete intervals 3 and 4 during a rush hour.

Lab7.1B Add a selector switch to blink N-S lanes yellow, E-W lanes red for late-night.
Lab7.1C Add a short time delay between intervals 2-3, 4-5, and 6-1 while all lights are red.

Lab7.1D Add a push button to allow pedestrians to walk in all directions for an interval of
time while all lanes are red.

Lab 7.1E Add a push button that acts as a button in the pavement that will only allow a turn
lane signal if there has been a car activate the turn signal in the time prior to the
turn signal’s position in the cycle.

Lab 7.1F Add a switch imbedded in the road to sense when there is a back-up of cars
wanting to use the turn lane. If there is a back-up, use a longer time preset for the
turn lane. If the switch turns on rapidly, then there is no back-up. If the switch
turns on but not in rapid succession, there is a back-up.

Ch 7 Timers, Counters, T/C Applications 53

Hints for Lab 7.1

Program the timer circuit below to give the intervals needed. View the T4 Timer Table on-line
with the processor running. Notice the TT and DN contacts. Use the TT (or EN or DN) contacts
in logic to turn on the lights in order.

Td:5 ——TOH
0000 | - Tirmer Om Delay =CEN]
OH Tienet Td0
Tirme Base 10 |f—hu—
Pressi 5=
Acoum D=
Td 0 —TOH
ool _I _ Timner Cm Dulay —CEH ——
DH Tiensr T4:1
Timne Base 10 DN 3—
Pt 5=
Aoowm D=
Td:1 ——ToH ————
ooz 1 E Tizner Cm Dialay [
DH Titnes T42
Tiene Base 10 |—CDH—
Piuiat 56
Acouen D=
T43 —— T
oo J E Timez Om Dalay —CEN——
o) Timer T4:3
Tiene Base 10 DR —
Foaset 5=
Acoum D=
T43 ——ToH -
oo - Tiener Om Dulay —EN——
DK Titres
T Base 10 —DH™—
Prsisd G |
Accomn 0= |
Td4 r—Ton
o3 _! = 1 Timmer Cm Dielay N —
DH Ty T4:5
Tome Base 10 —{DH—
Presai 5=
Acomm 0=
T4:.0/TT T4:.0/TT
or

The logic to provide outputs and the outputs themselves may be combined. For instance, to turn
on a specific traffic light from the program above, program the following:

T4:0/TT 0:0/0 — Turns on Green Light
0
|

Ch 7 Timers, Counters, T/C Applications 54

The following Siemens program will provide the same function as the A-B program above:

You may use either the .Q bit or define timer output coils at each time interval.

WB1
“Timer1”
TON
“Timers".Q Time
—/F——m Q
T#35 PT ET
WDB4
“Timerd”
TOM
"Timer3".Q Time
— ————m Q
T#35 PT ET

B2
“Timer2"

TON
Time

B3
“Timer3®

TON
Time

WDBS5
“timers®

TOM
Time

WDB6
“Timers”

TOM
Time

The following Siemens uses the coils instead of .Q bit.

WDB1
“Timer1”
Y07 TON Y0 4
"bs" Time "bo"
—/——m Q { }
T#35 PT ET
%DB4
“Timerd"
WMO 3 TON %MO 5
|b2| 'ﬁme |b3|
—— ——m Q { }
T#35 — pT ET— -

You can try the following but it will not work properly. Do you know why?

timer5.ON TON
Timer timer1 EM
t D4 DN
D4
TON
Timer timer4 EN
reset D+ DN
04

The above A-B rung gives what result? Why?

Instead, use the following. Why will this work and not the above?

Ch 7 Timers, Counters, T/C Applications

B2
“Timer2"

HDBS
"Timers"

TON 0.1

Time “h1*
Q { }
ET

TON 0 6

Time “ha*
Q { }

mer timer2 - EN

04— DN

ACCUM 4=

timers EN
04— DN
0=

WDB3
“Timer3®

TON %Mo 3
Time *ha"

q——— }—

ET

DB 6
"Timers”

TOM MO 7
Time *h5"

q—— —

ET

timer3 EN
04— DN
04

timens EN
04— DN
0=

55

timerg.DN

Using the

TON timer1.DN TOM
Timer timer1 EM Timer timer2
Preset 04— DN Pre=et UL
Accum 0= Accum 0=
TON timer3.DN TON
Timer timer3 EN Timer timerd EM
Preset 04— DN Preset 0 sm— DN
Accum 04 Accum 0 4=
TON timers.DMN
Timer timers EN -
Preset 04— DN
Accum 0=

Force Table

timer2. DN
EM
DM
timer4.ON

TON
Timer timers EN
Preset 0 4m— DN
Accum 4=

With inputs, to verify a working input was relatively easy. Simply wire through the button to the
input terminal. If the input is working, the LED on the input block lights when the pushbutton is
energized. With outputs, life is not as simple. Both the wiring must be correct and the program
work as well for the lights to function properly. To divide the task into two parts, RSLogix 500
provides a force function to overwrite the program and force the output bits on. The Force Table
may be accessed through the System Tree.

=|-[2Z] Dwata Fllas
E Crogs Reference
[o0 - outeur
O n-weur
0O sz2-stans

0 es
[1a
0 cs
0O rs
0 wr

Fiorcs
0 - UTPUT 1

- BIARY
TIMER

- QOLNTER
CONTROL

- INTEGER

3 Data File 00 (hin] — OUTPUT Foices

15 14 13 12 11 10

0 n-weur
{2 Custom Data Monkors
[como - uneed
-_I Trends
=] [Dstsbaze

CE

[Doomo EE

Symbo | i =]

Desc: [|
| DataFie | e |

Force on outputs as necessary to turn on lights. When done checking lights, do not forget to

delete all forces.

Ch 7 Timers, Counters, T/C Applications 56

Lab 7.2 The Cash Register

Design a simple cash register similar to one found at McDonald’s or Burger King. To do this,
determine a menu of five or six items from the restaurant. Also, include a Total button or a clear
button or possibly both. Also, include a means for backing out of a mistake without starting over
from zero. Display the cost of the total order in the PLC at an address in the data table. Use
Floating Point Math with two decimal places.

For example:

Whopper Cancel Last
Combo Whopper
Whopper Dbl) New Order
Combo Fries
Whopper Jr) Total/Tax/Op
Combo Drink tional

Find the approximate prices from a McDonald’s or Burger King for the items you choose. When
an item is entered, its count is incremented automatically by one. If a button is entered multiple
times, the count is incremented to display the total count. If a mistake is made, the attendant
must be able to back up at least one entry and erase the last item or decrement that item by one.

Display the final total in the PLC (not on the display of the trainer).

Options to the lab:

Lab7.2A

Lab7.2B

Lab 7.2 C

Lab7.2D

Lab 7.2 E

Add logic for “To Go” order so that 6.25% tax is added if not “To Go”.

Add lights to buttons so that when an entry is made, the light lights.

Add logic to keep track of total number of each entry for the day.

Calculate profit for the day using your own profit numbers for each entry.
Automatically recognize that the entry of the individual items such as Whopper,

Fries, and Drink will be given the price of the Whopper Combo instead of the
individual prices.

Hints to the base lab:

Ch 7 Timers, Counters, T/C Applications 57

Notice that counters may be referenced as either Count Up or Count Down. If the count is
counting up, the count is incremented in rung 0000. If the count is counted down, the count is
decremented in rung 0001. Individual inputs are used to increment each product choice.
However, to decrement the count, a separate button labeled “Cancel Last” is used. This button
must remember the last product chosen and decrement that item. Use the logic in chapter 6
“Relay Instructions” to remember when a button was pushed.

I CTU
0000 1 E Conmt Up (R g gy N
1] Counter C5:0
1761-Micra Presst 99992 (D 31—
Lomum 0=
I CTD
0001 1 E Connt Dovwm D T ——
1 Counter C50
1761-Micra Preset 9999 |—i DN 3—
Leoam 0=

The circuit above is for trial purposes only. Do not use it “as is” in the logic of programs.

The amount of each product is held in the counter Acc value. To access these values, use the
addressing of €5:0.AccC (or €5.0.2).

Values of each product are multiplied by the amount of the item and the final total is summed
together.

L
oooz Mlultiply
Somree & CH50ACC
0=
Soarce B 159
159=
Deest M7:10

0=

The number in Source B may be either a constant (as is here), or a value from a N7 location. If
from an N7 location, the value that is to be used must be entered into that N7 location.

Ch 7 Timers, Counters, T/C Applications

58

You may use the Siemens’ HMI instead of the wired buttons. More information about
configuring the HMI may be found at:

http://www.youtube.com/watch?v=Gh0s4TIDGEE

Siemens SIMATIC S7-1200 Part 3 - Adding an HMI to a controller project: See how easy it is to
integrate HMI screens into the controller user program using the same Step 7 Basic Software
for both SIMATIC Basic HMI panels and $7-1200 Controllers. This is part three of a four part

series.

A Simple HMI Tutorial (Siemens)

Devices

EQQ

~ | 7] MyProject
K Add new device
hﬂh Devices & networks
» m Common data
(] Eﬂ] Documentation settings
] P_@ Languages & resources
v | Online access
» [53 SIMATIC Card Reader

Again, the Siemens processor is to be configured similar to before:

Devices

Add new device

Device name:

[PLC_1

FLC

~ [PLC
~ [sIMATIC 57-1200
~ (W cFU

» [l CPU 1211C ACIDCIRly

» [cPu 1211C DODOIDE

» [l CPU 1211C DCIDCIRY

» [l cPU 1212C ACIDCIRly

» [CPU 1212C DODCIDC

» [l cPU 1212C DCDCIRlY

» [l CPU 1214C ACIDCIRly

~ [CPU 1214C DOIDCIDC
I [sES7 214-1AE30-0xB0
Il 5557 214-1AG31-0xB0

» [l CPU 1214C DCIDCIRY

» [l CPU 1215C ACIDCIRly

» [CPU 1215C DODCIDE

» [l cPU 1215C DCIDCIRlY

+ [l Unspecified CPU 1200

[X
Device:
CPU 1214C DO/IDCIDC
Ordernc.: [6ES7 214-1AE30-0X80 |
Wersion: | V22 ‘ 'l
Description:

Work memory 50 KB; 24VDC power supply with
DI14 x 24VDC SINKISOURCE, DQ10 x 24VDC and
Al2 on board; 6 high=peed counters and 2 pulse
outputs on board; signal board expands on-
board 1/0; up to 3 communications modules for
serial communication; up to 8 signal modules
for 11O expansion; 0.1 ms/1000 instructions;
FROFINETinterface for programrming, HMl and
PLC to PLC communication

|5"" Topology view ||5Eh Network view ||T]f Device view |_

5O O 2

=] MyProject
i Add new device
iy Devices & netwaorks
» m PLC_1 [CPU 1214C DC/DC/DC]
» m Common data
» rj] Documentation settings
] % Languages & resources
» i Online access
» [SIMATIC Card Reader

Py [PLc

57-1200 rack

EIETE IO o—

<]

=H

1

Before and after addition of the signal board:
Ch 7 Timers, Counters, T/C Applications 59

http://www.youtube.com/watch?v=Gh0s4TIDGEE

a
s

o
l_--------

E7-1200 rack

- (g A0
« [l AQ1 112 bits

i [Battery boand

Addition of the HMI used in the labs:

Project tree HINN | Add new device

Devices

QO

¥ [] myFroject - [Hw
W + [SIMATIC Basic Fanel
EEI Devices & networks » E 3" Display
» [PLC_1 [CPU 1214C DC/DO/DC] » [4" Display

» [ii Commaon data
3 Documentation settings
» [Lenguages & resources
» [a Online access
» [57 SIMATIC Card Reader

~ [6" Display
£} KTPB00 Basic DP
[Cl KTP500 Basic DP Portrait
N

n KTPE00 Basic PN Portrait BAVERAT-DADT1-3AX0
e Gioo]

£l KTP600 Basic mono PN Portr...
» [107 Display
» [15" Display

The HMI Device Wizard:

Project tree m « [Jardware catalog
=

HQQ B
'Dhymjm

h Devices & networks
» [pLc 1 [cPu 1214C DODEIDC] PLC connections
» [HMI_1 [KTP500 Basic PN]
+ (4§ common data
» [5]) Documentation settings
» [@ Languages & resources
» jg Online access
» [SIMATIC Card Reader = o
w [AQ1 x 12 bits
Il sEs7 2324HA3
b [l Communications boards

‘CPU 1214C DCIDC/DC

Keep answering Next>>

Ch 7 Timers, Counters, T/C Applications

[l 5657 232-4HA30O
» (3 Communications boards

60

HMI Device Wizard: KTPeOO Basic PN

PLC connections

W - SIMATIC 57 1200

FROFINET (X1}

Keep answering Next>>

Project tree Nizard: Basic PN

* Devices & networks
» [PLC_1 [€PU 1214C DE/DCIDC]
» [HMI_1 [KTP60O Basic PN]
» [gh Commen data Screen layout
b @ Documentation settings
» Ei Languages & resources

» ﬁ Online access

b [SIMATIC Card Reader

Ch 7 Timers, Counters, T/C Applications 61

Project tree

By Devices & networks
» [PLC 1 [CPU 1214C DODODC]
» i HMI_1 [KTP600 Basic PN]
» m Common data
» [5]] Documentation setmtings
3 [i Languages & resources Alarms
3 Q Online access
b [SIMATIC Card Reader

Project tree M ard: KTP600O Basic PN

iy Devices & networks
» [PLC_1 [€PU 1214C DODOIDE]
» [HMI_1 [KTP600 Basic PN]
3 m Common data
2 @ Documentation settings
» [i Languages & resources
4 [i Online access
» [SIMATIC Card Reader Screens

Keep answering Next>>

Ch 7 Timers, Counters, T/C Applications 62

Project tree izard: KTP6 OO Basic PN

;I-. Devices & networks
v [PLC_1 [CPU 1214C DODOIDC]
» [j HML1 [KTPS0O Basic PN]
3 m Common data
2 @ Documentation settings
] [i Languages & resources
3 [i Online access
» (i SIMATIC Card Reader

System screens

Project tree izard: KTP60O0 Basic PN

iy Devices & networks
» [l PLC_1 [CPU 1214C DG/DC/DC]
» [HMI_1 [KTP600 Basic PN]
» m Common data
» [5]) Documentation settings
] [i Languages & resources

3 [a Online access

» [SIMATIC Card Reader

Buttons

Then Finish

From the Devices and Networks choice in the Project Tree:

Ch 7 Timers, Counters, T/C Applications 63

TA S 5
T4 Siemens -

MyProject

Project Edit View Insert Online Options Tools

o Yl saveprciect @ X % X 9 : T MEGEE Y cooine F coofiine fp 88 3¢ ||

Devices

vindow Help

MyProject » HMI_1 [KTP600 Basic PN] » Screens » Root screen

Totally Integrated Auton
|

Options

OO

- [] MyProject
ﬁMd new device
g%p, Devices & networks
» [PLC_1 [CPU 1214C DC/DCIDC]
» [HMI_1 [KTP600 Basic PN]
+ (4§ Common dats
» (5] Documentation settings
» [Languages & resources
» [ig Online access
» (5 SIMATIC Card Reader

G

SIEMENS | : SORERRRORE P =i b zu
Gy - [ROOtETEEN 10:59:5804M

welcome to HIML_1 (KTP&00:Basic PM)!

L LT e

ERREY RS R N R

LI = |

[<]

|~ | v | Basic objects

X N
[aa]

+ | Elements
N TR

ki

< ~ | Controls
|g Properties ||1'.Info y"ﬂ Diagnostics ‘ = 71 2@
Properties || Animations || Events | ! Q 'W ﬂ
General e
f:;‘:’ ! Settings Tooltip X
Name:

Root screen | ‘
e

Choose Devices & networks

Devices

MyProject » Devices & networks

OO

= |] MyProject
K Add new device
i Devices & networks
w [PLC_1 [CPU 1214C DC/DC/DC]
JIY Device configuration
%/ Online & diagnostics
[l Program blacks
[Technology objects
External source files
Q PLC tags
Tﬂ PLC data types
';%wmch and force tables
Bt Frogram info
E| Textlists
» [l Local modules
~ -] HMI_1 [KTP600 Basic PN]
JIY Device configuration

v v v v oww

% Online & diagnostics
T Runtime settings
b h Screens
b ﬁ Screen management
» (2 HMtags
laZi Connections
4 HM alarms
= Recipes
5] scheduled tasks
4] Text and graphic lists

#9 User sdministration

|E-? Topology view "h-g-b Network view

I Device view

B [ré nemore 11 connecton: T "
PMAE_1
[
PLC_1 HMI_1
CPU 1214C KTP&00 Basic PM I:I
pPMIE 2 | |
PNJIE_2
<] [[>]&
i
|§.Propertie5 ||"_i.‘.lnfo y"ﬂ Diagnostics |
General
General Add new subnet lz‘
Ethernet addres_.
b Advanced IP protocol E
| Time synchronizm... 4
(@) SetIP address in the project
v
1P address:
™ Subnetmask: | 255 . 255 . 255 . 0

and set up both the IP address and Subnet mask for the PLC as well as the HMI. You may need
to initialize the IP address of the HMI by setting the IP address up at power-up of the device.
You have about 1 second to tap on the screen when power is first applied to get to the set-up
screen. Set up the IP address of the HMI to 5 (192.168.0.5, 255.255.255.0). Read at the end of Ch.
15 about setting up a simulated HMI panel simulated on the computer screen.

Ch 7 Timers, Counters, T/C Applications

64

Project tree m 4
Devices Options
M QO 2 | N LN E

uf Device configuration

% Online & diagnostics
» |5 Program blocks
(WF™ Tcchnology objec
4 External source files
» (o PLCtags
» (g PLC data types
» [z Watch and force tables
E_W'i Program info
E] Textlists
» P_m Local modules
+ [HMI_1 [KTP600 Basic PN]
[I§ pevice configuration

% Online & diagnostics
1 Runtime settings
- h Screens
ﬁAdd new screen

F | Rootscreen
[screen_1
] rﬁj SCcreen management

» (2 HMitags
%24 Connections
[HM alarms

o Recipes

5] scheduled tasks

L_‘j Text and graphic lists

iSj‘ User administration
4 ﬁ Commaon data

To add a new screen, double click on “Add new screen” in the Project Tree.
To begin a design, select a button from the Elements Toolbox at right. Drag the button onto the screen.

La

neral
5

+ | Basic objects
/S @ @

+ | Elements

———
i)
w | Coptrols

A/E i

|§Properties ""_i.'.lnfo y||ﬁ Diagnostics
J Properties " Animations || Events |

General &
L Settings =

: Mame: |Screen_1
i Background color: I:I]zl o

I Grid color: .]z‘
[TSP, - - AI ,7‘

Entering a Button on the Screen and configuring the button to turn on a bit in the PLC

Button

The Button object allows you to configure an object that the operator can use in runtime to

execute any configurable function.

Button Layout

In the Inspector window, you customize the position, geometry, style, color and font types of the
object. You can adapt the following properties in particular:

e Mode: Defines the graphic representation of the object.
e Text / Graphic: Defines whether the Graphic view is static or dynamic.
e Define hotkey: Defines a key, or shortcut that the operator can use to actuate the

button.

You can only define a hotkey for HMI devices with keys.

Ch 7 Timers, Counters, T/C Applications

65

Mode for Button
The button display is defined in Properties > Properties > General >Mode in the Inspector window.

Mode Description

Invisible The button is not visible in runtime.

Text The button is displayed with text. This text explains the function of the
button.

Graphic The button is displayed with a graphic. This graphics represents the

function of the button.
Depending on the device, Text /Graphic is also available.

The Mode property settings are used to define whether the display is static or dynamic. The
display is defined in Properties > Properties > General >Text Or Graphic in the Inspector window.
Your options for the type Graphic include the following.

Type Option Description

Graphic Graphic Graphic OFF is used to specify a graphic that is displayed
in the button when the state is "OFF". If
you enable Graphic ON, you can enter a
graphic for the ON state.

Graphics list The graphic in the button depends on the

state. The entry from the graphics list
corresponding to the state is displayed.

To turn on the bit in the PLC, use Press:

Click
Press B
Releass | » Calculation script
Activate 7.‘ v Editbits
Deactivate ‘ InvertBit
Change 4l InvertgitinTag
' ResetBit
ResetBitinTag
SetBit
SetBitinTag
Chick
Press []
Release SetBit
Activate ! SetBitinTag
Deactivate : SetbitvhileKeyPressed
Change i ShiftAndMaszk
» Keyboard
» Keyboard aperation for screen objects
» Other functions
» Screens

Ch 7 Timers, Counters, T/C Applications 66

and then SetBitWhileKeyPressed:

Tshoma Fln=] B T USAsE: Asfs s =+ —: By B llls o gizeifs’

| ns [n_mnuﬂmu | Events

Click

P press
Relense
Activate
Deactivate
Change

1T BE

= SetBitWhileKeyPressed

[PLC_1 [CPU 1214C DODODC)

» gl Program blocks
¥ [Technology chjecs

¥ g M tags

[1#
Hame | Dota type
Nene
M|l et Bool

Tag (nputisutput)
<Add functians

The tag is built in the PLC for an internal bit and referenced to the SetBitWhileKeyPressed

function:

There are a number of input types for data entry from the HMI. They include:

Button

Symbolic Graphic
I/O Field , 1/O Field

v |Elements / /

I}

A

Bar Switch

Field D08 | Gﬁ/

Date/
Time
Field

Ch 7 Timers, Counters, T/C Applications

67

For Switch, the following choices are available:

Properties || Animations || Events

T 7T BHE
Change
Switch ON <Add function=
Switch OFF
Activate :
Deactivate [
.

Screen Navigation

You will also need to consider configuring screen navigation. For a production process
consisting of multiple sub-processes, you will configure multiple screens. You have the

following options to enable the operator to switch from one screen to the next in Runtime:

e Assign buttons to screen changes
e Configuring screen changes at local function keys

The procedure for configuring screens follows:

Before you create a screen change, define the plant structure and derive from it the screen
changes that you want to configure.

Create the start screen under Runtime Settings > General > Start screen.

You will need to assign a button to change the screen. You will need to configure a button in the

screen to switch between the screens on the HMI device during operation.

Ch 7 Timers, Counters, T/C Applications

68

Procedure

1. Double-click Screen_1 in the project navigation.

2. Move Screen_2 from the project tree to the open screen by drag&drop. A button with
the name Screen_1 is inserted.

3. In the Inspector window, select Properties > Events > Click. The ActivateScreen System
function is displayed in the "Function list".

|§. Properties ||"i.'. Info || ﬂ Diagnostics

| Properties || Events |
7T BE X

i Click

* ActivateScreen
Screen name Sereen_1
Object number i

Al function:

T

4. At the Object number attribute, define, if required, the tab sequence number of the
object on which the focus is to be set after a screen change. You can also specify a tag
that contains the object number.

Overview of HMI tag tables

HMI tag tables contain the definitions of the HMI tags that apply across all devices. A tag table
is created automatically for each HMI device created in the project. In the project tree there is an
HMI tags folder for each HMI device. The following tables can be contained in this folder:

e Standard tag table
e User-defined tag tables
o All tags

The following tables are also available in an HMI tag table:

e Discrete alarms
e Analog alarms

With the help of these tables you configure alarms for the currently selected HMI tag.

In the project tree you can create additional tag tables in the HMI tags folder and use these to sort
and group tags and constants. You can move tags to a different tag table using a drag&drop
operation or with the help of the Tag table field. You activate the Tag table field using the shortcut
menu of the column headings.

Standard tag table

Ch 7 Timers, Counters, T/C Applications 69

There is one standard tag table for each HMI device of the project. It cannot be deleted, renamed
or moved. The standard tag table contains HMI tags and, depending on the HMI device, also
system tags. You can declare all HMI tags in the standard tag table, or create additional user-
defined tag tables as you want.

User-defined tag tables

You can create multiple user-defined tag tables for each HMI device in order to group tags
according to your requirements. You can rename, gather into groups, or delete user-defined tag
tables. To group tag tables, create additional subfolders in the HMI tags folder.

All tags

The All tags table shows an overview of all HMI tags and system tags of the HMI device in
question. This table cannot be deleted, renamed or moved.

Discrete alarms table

In the Discrete alarms table, you configure discrete alarms to the HMI tag selected in the
HMI tag table. When you configure a discrete alarm, multiple selections in the HMI tag table is
not possible. You configure the discrete alarms for each HMI tag separately.

Analog alarms table

In the Analog alarms table, you configure analog alarms to the HMI tag selected in the HMI tag
table. When you configure an analog alarm, multiple selections in the HMI tag table is not
possible. You configure the analog alarms for each HMI tag separately.

Defining Limits for a Tag

For numerical tags, you can specify a value range by defining a low and high limit.
Additionally, you configure the system to process a function list whenever a tag value drops
below or exceeds its configured value range.

You may want to simulate the HMI screen instead of downloading to an actual screen. In this
case, the blue button at the top of the screen allows this action. It saves a great deal of time
setting up a separate HMI and you should not need the actual screen until using in the real world.

If you do not see numbers from the PLC appearing in the HMI screen or Inputs not working from

the HMI to the PLC, refer to the instructions at the end of Ch. 15 of this text for a set-up
procedure that must be followed to ensure that communication takes place.

Ch 7 Timers, Counters, T/C Applications 70

Instead of creating the same explanation for A-B, refer to the following Getting Results Guide.
It will get you up to speed on how to create an HMI screen or screes for the A-B PLC program.

Getting Results Guide @ Allen-Bradley

Studio 5000 View Designer Getting Results Guide

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ch 7 Timers, Counters, T/C Applications 71

https://creativecommons.org/licenses/by/4.0/

