Chapter 8 Math Functions

Introduction

The introduction of mathematical operations in the PLC provided major benefits to control logic.
Numeric data could be combined with logic to provide more powerful control strategies. For
instance, decisions could be made concerning mathematical operations concerning counts of
products, weights of a product, the temperature of an oven or any numeric variable in a process.

Siemens Math Instructions

The instructions are briefly divided into three categories: Compare Blocks, Math Blocks and
Move Blocks. First will be the Compare blocks:

~ [€] Comparator operations

Al CWP = Equal
Al CWP = Mot equal . .
° Fig. 8-1 Siemens
dl| CMP == Greater or equal .
Comparator Operations
Al CWP == Less or equal
4l ChP = Greater than
Al CMP < Less than
41 IN_RAMGE Value within range
41| CUT_RAMGE Value outside range
Al —OK]- Check validity
dl| -|NOT_OK|- Check invalidity

Again, instructions given have the TIA definition quoted below. The full definition for these
instructions can be found in the reference manual.

Compare Instruction

‘ £IM1

| Dint I Fig. 8-2 Siemens Compare
‘ WMEBO If Equal Operations

"IM2"

“You use the compare instructions to compare two values of the same data type. When the LAD
contact comparison is TRUE, then the contact is activated. When the FBD box comparison is TRUE,
then the box output is TRUE.

Relation type The comparison is true if:
== IN1 is equal to IN2
<> IN1 is not equal to IN2
>= IN1 is greater than or equal to IN2

Ch.8 Math 1

<= IN1 is less than or equal to IN2
> IN1 is greater than IN2
< IN1 is less than IN2”

In Range and Out of Range Instructions

IN_RANGE
Dint
» Fig. 8-3 Siemens Test If In

| Aap2 Range Instruction

minval Il

#IN1 — VAL

UMD
“Iaxdal® — MAX

“You use the IN_RANGE and OUT_RANGE instructions to test whether an input value is in or
out of a specified value range. If the comparison is TRUE, then the box output is TRUE.
The input parameters MIN, VAL, and MAX must be the same data type.”

Relation type The comparision is TRUE if:
IN_RANGE MIN <= VAL <= MAX
OUT_RANGE VAL < MIN or VAL > MAX

OK and Not OK Instructions

Fﬁuﬂﬂl-ﬂ Fig. 8-4 Siemens Test If
IN3 Data OK Instruction

ok —»

“You use the OK and NOT_OK instructions to test whether an input data reference is a valid real
number according to IEEE specification 754. When the LAD contact is TRUE, the contact is
activated and passes power flow. When the FBD box is TRUE, then the box output is TRUE.”

Instruction The Real number test is TRUE if:
OK The input value is a valid Real number
NOT_OK The input value is not a valid Real number

Ch.8 Math

Math Instructions

Mame Descripticn

w [£] Math functions
=T CALCULATE Calculate
£ ADD Add
=l sUE Subtract
=1 ML Multiply
1 DIV Divide . .
=1 moD Return remainder of divizion Flg' 8-5 Sl_emens Table of

Math Functions

=1 NEG Create twos complerment
=T Ine Increment
=l DEC Decrement
=1 ABS Form absclute value
= A Get minimurm
;A Get maximum
& LT Setlimitvalue
=M sQR Form square
=1 SQRT Form square root
2= L Form natural logarithrm
=M ExP Form exponential value
= sin Form sine value
=l cos Form cosine value
=1 74N Form tangent value
=l AsIM Form arczine value
=N ACOS Form arccosine value
1=1 ATAN Form arctangent value
=T FRAC Return fraction
=1 EXFT Exponentiate

Add, Sub, Mul, Div, Calculate

CALCULATE
Dint
EN ENO — Fig. 8-6 Siemens
Calculate Instruction

OUT:= (INT+ IN2JIN3

YADT0 ouT "Outl”
"INZ® — N2

D14
"INZ" — IN3 sk

Ch.8 Math

“You use a math box instruction to program the basic mathematical operations:

ADD: Addition (IN1 +IN2 =0UT)
SUB: Subtraction (IN1-1IN2=0UT)
MUL: Multiplication (IN1 * IN2 = OUT)
DIV: Division (IN1 /IN2 =0UT)

An Integer division operation truncates the fractional part of the quotient to produce an integer
output.

When enabled (EN = 1), the math instruction performs the specified operation on the input values
(IN1 and IN2) and stores the result in the memory address specified by the output parameter
(ouT). After the successful completion of the operation, the instruction sets ENO = 1.”

ENO status Description
1 No error
0 The Math operation result value would be outside the valid number range of the data
type selected. The least significant part of the result that fits in the destination size is
returned.
0 Division by 0 (IN2 = 0): The result is undefined and zero is returned.
0 Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.
0 ADD Real/LReal: If both IN values are INF with different signs, this is an illegal
operation and NaN is returned.
0 SUB Real/LReal: If both IN values are INF with the same sign, this is an illegal
operation and NaN is returned.
0 MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal
operation and NaN is returned.
0 DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN
is returned.
Mod
MOD
Din Fig. 8-7 Siemens
EN S Modulo Instruction
FIN1 1M YMD18
YpAD10 ouT - "outl”
"INZ® — IN2

“You use a MOD (modulo) instruction for the IN1 modulo IN2 math operation. The operation IN1
MOD IN2 = IN1 - (IN1/ IN2) = parameter OUT.”

Ch.8 Math

NEG

MEG

Dint Fig. 8-8 Siemens
EN ENO — Negation Instruction

FIMT — IM YMD18
ouT - "outl”

“You use the NEG (negation) instruction to invert the arithmetic sign of the value at parameter IN
and store the result in parameter OUT.”

Increment and Decrement

IMC
Dint

Fig. 8-9 Siemens
EM EMO f—

Increment Instruction

WAD10
"INZ" — INIDUT

“You use the INC and DEC instructions to:

Increment a signed or unsigned integer number value
INC (increment): Parameter IN/OUT value +1 = parameter IN/OUT value

Decrement a signed or unsigned integer number value
DEC (decrement): Parameter IN/OUT value - 1 = parameter IN/OUT value”

Absolute Value

ABS Fig. 8-10 Siemens

Dint Absolute Value Instruction
EM EMO =t

“WD10 ‘D18
"INZ® — N ouT - "Outl”

“You use the ABS instruction to get the absolute value of a signed integer or real number at
parameter IN and store the result in parameter OUT.”

Ch.8 Math

MIN and MAX
“You use the MIN (minimum) and MAX (maximum) instructions as follows:

MIN compares the value of two parameters IN1 and IN2 and assigns the minimum (lesser)
value to parameter OUT.

MAX compares the value of two parameters IN1 and IN2 and assigns the maximum
(greater) value to parameter OUT.”

Limit
LInMIT
Dint . .
Fig. 8-11 Siemens
EN ENO . .
B Limit Instruction
S00 A UMD18
URAD10 ouT "Outl”
"IN2" — 1M
1500 — MX

“You use the Limit instruction to test if the value of parameter IN is inside the value range
specified by parameters MIN and MAX. The OUT value is clamped at the MIN or MAX value, if the
IN value is outside this range.

If the value of parameter IN is inside specified range, then the value of IN is stored in
parameter OUT.

If the value of parameter IN is outside of the specified range, then the OUT value is the
value of parameter MIN (if the IN value is less than the MIN value) or the value of
parameter MAX (if the IN value is greater than the MAX value).”

Ch.8 Math

Floating-Point Math

You use the floating point instructions to program mathematical operations using a Real or
LReal data type:

SQR: Square (IN 2 =0UT)
SQRT: Square root (VIN = OUT)
LN: Natural logarithm (LN(IN) = OUT)
EXP: Natural exponential (e IN =OUT), where base e = 2.71828182845904523536
SIN: Sine (sin(IN radians) = OUT)
COS: Cosine (cos(IN radians) = OUT)
TAN: Tangent (tan(IN radians) = OUT)
ASIN: Inverse sine (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN
ACOS: Inverse cosine (arccos(IN) = OUT radians), where the cos(OUT radians) = IN
ATAN: Inverse tangent (arctan(IN) = OUT radians), where the tan(OUT radians) = IN
FRAC: Fraction (fractional part of floating point number IN = OUT)
EXPT: General exponential (IN1 IN2 = OUT)
SQR
Real . .
EN ENO Fig. 8-12 Slem_ens
Square Instruction
D22 P26 0
"IMg" IN OUTe “out2”
MOVE Operations
+ || Move operations
=1 MOVE Move value
T FieldRead Read field Fig. 8-13 Siemens
£T Fieldwirite Write field Move Operations
£ MOVE_BLEK Move block
£l UMOVE_BLE Move block uninterruptible
=1 FILL_BLK Fill block
£l UFILL_BLK Fill black uninterruptible
£ swar Swap

“Use the move instructions to copy data elements to a new memory address and convert from
one data type to another. The source data is not changed by the move process.
MOVE: Copies a data element stored at a specified address to a new address
MOVE_BLK: Interruptible move that copies a block of data elements to a new address
UMOVE_BLK: Uninterruptible move that copies a block of data elements to a new

Address”

Ch.8 Math

MOVE_BLK, UMOVE_BLK

“The MOVE instruction copies a single data element from the source address specified by the
IN parameter to the destination address specified by the OUT parameter. The MOVE_BLK and
UMOVE_BLK instructions have an additional COUNT parameter. The COUNT specifies how many
data elements are copied. The number of bytes per element copied depends on the data type
assigned to the IN and OUT parameter tag names in the PLC tag table.”

Fill
“You use the FILL_BLK and UFILL_BLK instructions as follows:

FILL_BLK: The interruptible fill instruction fills an address range with copies of a
specified data element.

UFILL_BLK: The uninterruptible fill instruction fills an address range with copies of a
specified data element.”

Swap

“You use the SWAP instruction to reverse the byte order for two-byte and four-byte data
elements. No change is made to the bit order within each byte. ENO is always TRUE following
execution of the SWAP instruction.”

Convert

“You use the CONVERT instruction to convert a data element from one data type to another data
type. Click below the box name and then select IN and OUT data types from the dropdown list.
After you select the (convert from) data type, a list of possible conversions is shown in the
(convert to) dropdown list. Conversions from and to BCD16 are restricted to the Int data type.
Conversions from and to BCD32 are restricted to the DInt data type.”

Round and Truncate

“ROUND converts a real number to an integer. The real number fraction is rounded to the nearest
integer value (IEEE - round to nearest). If the Real number is exactly one-half the span between
two integers (i.e. 10.5), then the Real number is rounded to the even integer. For example,
ROUND (10.5) = 10 Or ROUND (11.5) = 12.”

Ceiling and Floor

“CEIL converts a real number to the smallest integer greater than or equal to that real number
(IEEE - round to +infinity).

FLOOR converts a real number to the greatest integer smaller than or equal to that real number
(IEEE - round to -infinity).”

Ch.8 Math

Scale and Normalize

“SCALE_X scales the normalized real parameter VALUE where (0.0 <= VALUE <=1.0) in
the data type and value range specified by the MIN and MAX parameters:

OUT = VALUE (MAX - MIN) + MIN”

Allen-Bradley SLC Math Instructions

A Review of Math Function Blocks from SLC-500 Reference Manual:

“Instruction Name Purpose
ADD Add Adds source A to source B and stores the result in the destination
SUB Subtraction | Subtracts source B from source A and stores the result in the destination
MUL Multiply Multiplies source A by source B and stores the result in the destination
DIV Divide Divides source A by source B and stores the result in the destination and
the math register
DDV Double Divides the contents of the math register by the source and stores the
Divide result in the destination and the math register
CLR Clear Sets all bits of a word to zero
SQR Square Calculates the square root of the source and places the integer result in
Root the destination
SCP Scale with Produces a scaled output value that has a linear relationship between the
Parameters | input and scaled values
SCL Scale Data | Multiplies the source by a specified rate, adds to an offset value, and
stores the result in the destination
ABS Absolute Calculates the absolute value of the source and places the result in the
destination
CPT Compute Evaluates an expression and stores the result in the destination
SWP Swap Swaps the low and high bytes of a specified number of words in a bit,
integer, ASCII, or string file
ASN Arc Sine Takes the arc sine of a number and stores the result (in radians) in the
destination
ACS Arc Cosine | Takes the arc cosine of a number and stores the result (in radians) in the
destination
ATN Arc Takes the arc tangent of a number and stores the result (in radians) in the
Tangent destination
COS Cosine Takes the cosine of a number and stores the result in the destination
LN Natural Log | Takes the natural log of the value in the source and stores it in the
destination
LOG Log to the | Takes the log base 10 of the value in the source and stores the result in
Base 10 the destination
SIN Sine Takes the sine of a number and stores the result in the destination
TAN Tangent Takes the tangent of a number and stores the result in the destination
XPY X to the Raise a value to a power and stores the result in the destination”
Power of Y

Ch.8 Math

Some instructions are available for all processors. Some of the more advanced instructions are
only available with the more powerful processors.

An example of a math block used in logic follows:

BE3:2 ADD
001 1 E Add
5 Sonree A Y20
0= H
Somree B M2l Flg 8 14 A B SLC
0= ADD Instruction
Diast MrE2
0=

The ADD Block above adds the contents of N7:20 to the contents of N7:21 and saves the result in
location N7:22. This occurs only when B3:2/5 is true.

Using one-shot logic with the ADD Block:

B3:2 B3:3 ADD
oonz] F [0SR] 4dd)
5 0 Source & H7:20 Fig. 8-15 A-B SLC ADD
0= Instruction with One Shot
Somree B M2l
0=
Diast MyE2
0=

The ADD Block above adds the contents of N7:20 to the contents of N7:21 and saves the results in
N7:22 only on the leading edge of B3:2/5. The use of the one-shot allows only a single
occurrence of the calculation and is a very efficient way to execute math operations.

Use of the Continuous Execution Math Block:

ADD
ooz A4

Sonrce & N720
0=

SouseE w721 Fig. 8-16 A-B SLC
= .

Dist N7z Continuous ADD
0=

The ADD Block above adds the same data as earlier. In this example, however, execution of the
ADD Block occurs continuously (once each scan).

Use of Constants in Math Blocks:

Ch.8 Math 10

AT

0004 4dd)]
Source 4 H7:20 Fig. 8-17 A-B SLC Using
0= Constants in ADD Block
Source B 250
250=
Dest W22
0=

In this example, the ADD Block adds a variable (N7:20) to a constant (250) and places the results
in a variable location (N7:21).

The decision must be made when programming how to treat constants. If the number in Source B
above is never changed, then entering 250 into Source B is the preferred approach. If the
number is to be changed at a later date, however, use the addressing approach below and store
the number 250 in N7:21.

There is a dilemma with entering a constant in a storage location. This occurs if a second person
changes the value in the N7 location at a later date. The documentation of the listing does not
keep the constant’s value and the value of the constant 250 is lost unless it is kept in a rung
comment (a very good reason to have rung comments). A compromise is reached with the
addition of a rung to load the constant’s value to the variable location at power-up or with the
restart of RUN mode. This approach employs use of the first scan bit, S:1/15.

51 MOV
0001 1 E Move
15 Sonree 250
250=
Dest 721
o Fig. 8-18 A-B SLC Initializing
a Constant in ADD Block
ADD
000z Add
Somree & 720
0=
Source B 721
Q0=
Dest N7:22
0=

The above two rungs show an example of an ADD Block using a constant that may be changed but
is restored each occurrence that power is restored or the processor is returned to the RUN mode.

Multiple Step Calculations

A calculation may require more than one block as shown below in Fig. 8-8. If the file N7 is
used, the address refers to an integer. If the file F8 (not applicable to MicroLogix processors),
the number refers to a floating point number. Mixing of integer and floating-point numbers in
the operation may be used if floating point is allowed by the processor. Some of the instructions
listed in Table 8-1 are not allowed on the MicroLogix processors.

Ch.8 Math 11

Example of Use of Calculation Blocks:

Three numbers are stored in N7:8, N7:9 and N7:8. Find the average of these three numbers
using PLC logic. Store the results in N7:15.

ool

——4DD

ooz

o003

Compare Instructions

Another group of instructions use math expressions as contacts and are listed below. They form

4dd

Sonree & N2
0=

Semree B N9
0=

Dest HT:11
0=

—4&DD

Add

Sonrce & H7:11
0=

Souree B H7:10
0=

Diest HT:12
0=

DIV

Diivide

Semree 4 H7:12
0=

Semree B 3
O=

Diest HT:15
0=

the group of Comparison Instructions:

In this example, the
average of the numbers
in N:8, N7:9 and N7:10
are found. The average
is continuously being
calculated and stored in
N7:15.

Temporary storage
locations are used to
hold partial results of
the operation. These
locations are N7:11 and
N7:12.

Fig. 8-19 Multiple
Blocks Perform Single
Operation

“Mnemonic Name Purpose

EQU Equal Test whether two values are equal

NEQ Not Equal Test whether one value is not equal to a second value

LES Less Than Test whether one value is less than a second value

LEQ Less Than or Equal | Test whether one value is less than or equal to a second value

GRT Greater Than Test whether one value is greater than another

GEQ Greater Than or Test whether one value is greater than or equal to a second value
Equal

MEQ Masked Test portions of two values to see whether they are equal. Compares 16-
Comparison for bit data of a source address to 16-bit data at a reference address through
Equal a mask

LIM Limit Test Test whether one value is within the limit range of two other values”

An example of the Compare Block is seen below:

Ch.8 Math

LES E3:2
o001 Less Than (4=F) 7
Someh A " Fig. 8-20 A-B SLC
Scurce B 50 Compare Block
0=

This rung turns on B3:2/0 as long as the number in N7:20 is less than 50. N7:20 ranges from -
32768 to +32767

Math instructions are found at the output of a rung while comparison instructions are found as
contacts that allow the output to operate under certain conditions. In the example, when the
number in N7:0 is less than the number 100, the subtraction block will be performed. The

subtraction block subtracts the number in N7:3 from the number in N7:2 and stores the result in
N7:4.

LES S1TE
0000 Less Than (4<E) Subtract)
Somrce & H7.0 Source A H7:2 Fig. 8-21 A-B SLC Compare
0= 0=
Sorsces B 100 Sorsces B I Block followed by Math SUB
100= 0=
Dest N74
0=
Mixing of Relay Contacts and Compare Instruction:
E3:0 B30
oo 1 E J E
o 1
E3:0 Fig. 8-22 A-BSLC
32E Mixed Contact and
Compare Logic
LES 00
Less Than (4<E] O
Souree & H7:10 1
0= 1761-Micro
Source B M1l
0=

The circuit above shows the combination of Comparison and contact logic turning on an output
(0:0/2).

Ch.8 Math 13

Multiple Compare Instructions:

EQU B30
0001 Equal -
Sonrce d HN12 g
0=
Sonrce B 100
100=
BT .
Equal Fig. 8-23 A-B SLC
Souzce & rmg Multiple Compare Logic
=
Sonrce B 101
101=
BT
Equal —
Somrce d HN7:12
0=
Sonrce B 102
108=

The circuit above gives a combination of Comparison statements that turn on output B3:0/9. If
N7:12 is equal to any of the values 100, 101, or 108, the output turns on. This is an example of
‘OR’ logic. If N7:12 = 100 or N7:12 = 101 or N7:12 = 108, then turn on B3:0/9.

LIMIT Compare Block

The Limit Test (LIM) uses three values to determine if a value is within a certain limit. The three
values are:

- Low Limit
- Test Value
- High Limit

If the test parameter is a constant, then both the low and high limit values must be word
addresses. If the test parameter is a word address, then the low and high limit values may be
either a constant or word address.

The LIM instruction passes power when the test value is between the two limits of the lower and
upper limit. It is false when either above the high limit or below the lower limit. When the
lower limit is greater than the upper limit, LIM true when the test value is greater than the lower
number (stored in the upper limit) or less than the higher number (stored in the lower limit).

Ch.8 Math 14

o0l

ooz

LIM B30
Limit Test O
Liover Limn 100 2

100=

Test M7:20
0=

High Lim 200
200=

LIM B3:.0
Limit Test O
Linar Limn 200 3

200=

Test N2l
0=

Hizh Lim 100
100=

Fig. 8-24 A-BSLC
Limit Test Instruction

For example, in rung 0001 above, B3:0/2 will turn on if the value in N7:20 lies between 100 and
200. Inrung 0002, B3:0/3 will turn on if the value in N7:21 is greater than 200 or is less than
100.

Other Compare Examples

To insert high and low limits on a number, use the following circuit:

o0l

ooz

LES B30
Less Than (4<F) i
Source & I:1.0 o

0=
Sonarce B 3277 IO
327= Move
Source 3377
3277=
Drest .10
0=

GET B30
Greater Than (4=F) i
Source & I:1.0 1

0=
Sonarce B 16324 IO
165384= Move
Source 1a524
18584 =
Drest .10
0=

Fig. 8-25 A-B SLC
High and Low Limit

Test Instructions

When the number input into 1:1.0 ranges less than 3277 or higher than 16384, the number will be
limited to the high value of 16384 or to the low value of 3277.

Ch.8 Math

15

Comparison values to turn on a valve:

GRT 0:2
oooo Greater Than (4=E) <2 Fig. 8-26 A-B SLC Compar-
Sonree & W23 a . -
b= | 746.0% 16 ision to Turn on Valve
Soree B 450
450=

While the circuit above may be useful in turning on or off an output, usually a dead band must be
inserted in the circuit so that output O:2/0 will not chatter on and off. Results of the circuit of are
shown in the graph below. Note the chatter as the output turns on and off at a high frequency.
To slow the frequency to a much slower rate, the number in Source B must be made to vary and
change so that the output must climb higher than 450 when increasing but turn off at a lesser
value than 450 when falling.

For instance, if the output provided cooling to a process and the number 450 represents a
temperature setpoint. N7:23 represents the value of the temperature of the process. If the
temperature rises above 450 degrees, then turn on some cooling through output O:2/0. The
circuit may work well as is, but if the output tends to chatter on and off, a dead-band circuit must
be provided.

450 (Setpoint)

Temp

Output On Off On Off On Off On Off On Off On Off On Off On Off On Off On

Output turns On-Off per Rung 0000.

Fixing the High-Frequency On-Off with a Dead Band:

Ch.8 Math 16

GET 02
0000 Greater Than (4=F) 0
Sonroe A 723]
0= 1746 0*1 6
Sonrce B H7y:24
0=
02 B3l MOV
000l 1 E e Move
] 4 Somee 400
1746-0%15 400=
Diast H7y:24
0=
02 B3l MOV
000z = -E e Move
] 5 Somee 4500
1746-0%15 450=
Diast H7y:24
0=

Fig. 8-27 A-B SLC Logic
for Dead Band Application

The circuit above provides a dead-band between 400 and 450 degrees. When the temperature
rises above 450, the coolant solenoid turns on. When the temperature decreases to 400 degrees,
the coolant turns off. Providing a dead-band keeps the coolant solenoid from constantly turning
on and off. Care must be taken to initialize the circuit above to 450. One approach to this is
with a rung triggered by S:1/15 (First Scan). One could also place 450 into N7:24 manually.
The second approach is not as trustworthy, however, since programs tend to be written over and
constants lost with programs that change after the program has been working for days or even

years.

450 (upper setpoint)

400 (lower setpoint)

PV

Output

Ch.8 Math

Off

17

Use of Memory using Latch or Seal with Compare

Combination of memory circuits with compare operations was subtly introduced in the example
of the valve above. The two figures below provide functionally equivalent control of the dead-

band problem with the temperature controller. However, the circuits employ standard memory

logic to provide the same functional dead-band control.

GRT 0:2
0001 Greater Than (4=F) (L
Sonvme A NT:23 0
0= 1 746-0*16
Saurce B s Fig. 8-28 A-B SLC Logic
for Dead Band Application —
a Second Approach
LES 0:2
ooz Less Than (4<=F) Wi
Sonroe A H71:23 0
0= 1 746-0%16
Souree B 400
400

This program uses latch-unlatch logic to turn on and off the output with a dead-band of 50
between the turn-on at 450 and turn-off at 400.

GET B30
0000 Greater Than (A=F) 7
Sonrce A M7.23 1
Q= . .
Sozoe B 450 Fig. 8-29 A-BSLC _Loglc
450= for Dead Band Application —
a Third Approach
LES B30
000l Less Than (4=E) 0
Soarce A Hr.23 2
Q=
Somrce B 400
400=
B30 B30 02
0002 JE 3 .-
1 2 0
1746-0%18
02
1 LC
J I
0
1746-0%15

This program uses seal-circuit logic to turn on and off the output with a dead-band of 50 between
the turn-on at 450 and turn-off at 400. Seal-circuit logic may be the preferred logic to use since
it needs little additional logic to work correctly under all conditions.

Ch.8 Math 18

Start-up conditions must be considered for each of the three approaches. With the first circuit,
the initial status of N7:23 must be considered. Location N7:23 should be initialized to 450.
With the latch logic and the seal logic, the circuit will automatically initialize to a known value
in all cases which is preferred. In general, using a seal circuit eliminates unnecessary logic to
initialize the logic.

What is used as a memory component in the first of the three circuits above?

Status Table

When an arithmetic operation is performed, results from the operation are stored in the Status
Table in a manner similar to the operation of a microprocessor. If two numbers are added, the

carry and overflow are set or reset. Other operations use similar status bits. They are reviewed in
the Table 8-3 below: (from Allen-Bradley’s SLC-500 Instruction Reference Manual)

“With this Bit: The Controller:

S:0/0 Carry (C) Sets if carry is generated; otherwise cleared

S:.0/1 Overflow (V) Indicates that the actual result of a math instruction does not fit in the
designated destination

S:0/2 Zero (2) Indicates a 0 value after a math, move, or logical instruction

S:0/3 Sign (S) Indicates a negative (less than 0) value after a math, move, or logic
instruction

S:5/0 Minor Error Set upon detection of a mathematical overflow or division by zero. If

Overflow set upon execution of an END statement or a Temporary End (TND)

instruction, or an 1/O Refresh (REF), the recoverable major error code
0020 is declared.”

Also, from the same manual, on Changes to the Math Register, S:13 and S:14, the status words
for long integer math are described as follows:

“Status word S:13 contains the least significant word of the 32-bit values of the MUL and DDV
instructions. It contains the remainder for DIV and DDV instructions. It also contains the first
four BCD digits for the Convert from BCD (FRD) and Convert to BCD (TOD) instructions.

Status word S:14 contains the most significant word of the 32-bit values of the MUL and DDV
instructions. It contains the unrounded quotient for DIV and DDV instructions. It also contains
the most significant digit (digit 5) for the TOD and FRD instructions.”

Another table from the same reference book describes the math overflow or 32-bit integer math
function. It is as follows:

Ch.8 Math 19

“Address

Classification

Description

S:2/14

Dynamic Config

Math Overflow Selection Bit

Set this bit when you intend to use 32-bit addition and subtraction.
When S:2/14 is set, and the result of an ADD, SUB, MUL, or DIV
instruction cannot be represented in the destination address (underflow
or overflow),

- the overflow bit S:0/1 is set.

- the overflow trap bit S:5/0 is set, and

- the destination address contains the unsigned truncated least
significant 16 bits of the result.

The default condition of S:2/14 is reset (0). When S:2/14 is reset, and
the result of an ADD, SUB, MUL, or DIV instruction cannot be
represented in the destination address (underflow or overflow),

- the overflow bit S:0/1 is set,

- the overflow trap bit S:5/0 is set, and

- the destination address contains 32767 if the result is positive
or —32768 if the result is negative.

Note: The status of bit S:2/14 has no effect on the DDV instruction.
Also, it has no effect on the math register content when using MUL and
DIV instructions.

To program this feature, use the Data Monitor function to set or clear
this bit. To provide protection from inadvertent data monitor alteration
of your selection, program an unconditional OTL instruction at address
S:2/14 to ensure the new math overflow operation. Program an
unconditional OTU instruction at address S:2/14 to ensure the original
math overflow operation.”

This table shows a description of the operation to set S:2/14 when performing a 16 bit non-
signed arithmetic operation instead of a 15 bit signed operation.

Ch.8 Math

20

Status Table Math Section from RSLogix 500

Display of the Math portion of the Status Table can be seen by opening the Status Table file S2
and then the Math tab.

“=pataFile 52 -- STATUS g =181 x|

Man | Prec | Scan Times [Mah 10 | Chan 0| Ch ONodes | Chan 1| Debug| Enars |4 >

Math Overfiow Selected $:2/14 = 0] Math Registar flo word) 513 = [0 Fig. 8-30 A-B SLC Status
Overfiow Trap $:5/0= 0] Math Registar (hi word) 514 = [0 Tab|e’ Math Portion
Cany 5.0/0 =g} . - e
Ovarfon S0/ : Math Register (32 bit) 514 -5:13 = |0
Zero Bit §:0/2 - [g]
Sign Bit $:0/3 = 0]

Radx: I Stuctured A I
IEZ :Il Eropeniesl Usage I Help |

Notice the Math Register locations S:13 and S:14. The high order portion of the 32-bit number
is saved in the ‘hi word’ and the low order portion is saved in the ‘lo word’.

A very good example of 32-bit addition is included in the Allen-Bradley SLC-500 Reference
Manual. The introduction to the section on 32-bit math is important and should be reviewed prior
to tackling this subject.

In general, math is done with the programmer choosing to use either integers or floating-point

numbers. If possible, always use floating-point math. Integer math constantly must be
concerned with overflowing the range of the number 32767 or —32768.

Using Advanced Math Instructions

SCF
oooz Scale wiParameters
Input .10 i
0= Fig. 8-31 A-B SLC Scale
Input Min. igg with Parameters Instruction
=
Input Blax. 00
500=
Zcaled Min, 200
200=
Zraled Max. 250
250=
Chatpat H73
0=

A very useful command found under the Advanced Math tab of RSLogix 500, is the SCP or
Scale with Parameters block. The block above scales the input found at 1:1.0 from an expected

Ch.8 Math 21

input value ranging from 100 to 500 to an output value ranging from 200 to 250. This function
allows for scaling of input and output values, multiplication of any number by a second number
with an offset or any other mathematical operation of the form y = mx + b without performing
the operation of the programmer mathematically calculating m or b.

Math Overflow Problem

Rungs should be examined before entered to insure that the rung will not allow a numeric
overflow. The following is an example of a circuit that may experience an overflow:

ADD
aooo 4dd
Soaroe A HT.20 .
0= Fig. 8-32 A-B SLC Math
Source B } Overflow Problem
Drest H7T:20
0=

In the figure above, after the processor is turned to the run mode, the ADD Block of rung 0000 is
executed each scan rung 0000 is executed. Each scan the ADD Block is executed and 1 is added
to N7:20. Since the result is stored in N7:20, this location is incremented by 1. Since a scan
may take approximately 5 msec, in about 160 seconds, the number in N7:20 will reach 32767.
This instruction will fault the machine and the processor will turn off. The fault light will turn
on.

Care must be taken to not program rungs such as rung 0000 above unless the contents of N7:20
are reset or limited in another rung. Use one-shots before math operations as a general rule to
avoid situations such as the mistake above.

On the other hand, the use of a rung such as the one above may be useful in a program to
calculate time duration of a scan. If properly used with a timer, the ADD Block may be
programmed to calculate the average scan time of the program.

Status Table Contents on Faults
To clear a fault that stops the program from running and to diagnose the problem, click on s2 -
STATUS in the Data Files section of the Project Tree. Then click Errors and read the description

and analysis of the error in the window. An alternate method is simply reset the error from the
Command Line and hope the fault doesn’t reoccur. It usually does. Make that, it always does.

Ch.8 Math 22

SYS0-
SVe1-
§ Lo2.
=) DutaFies
B CrossReterence
D co-cuteur
D u-ineur
D s2-s1ans
[&3- Brusry
O - R
[¢s- commer
[R5- CONTROL
[w7 - nTeGeR
[8- FLoar
53] Force Fikes
B ¢0-cutpur
O n-neur
=] Custor Date Moridors
[como- Lntiteg

I

=10} x|

Man | Proc | Scan Times| Mah [10 | Chan] ChONodes | Chan 1| Dabog Evoss 4[]
fuomumws:m: ASCII Stmg Manpudation 5515 =]

0 h

Major Emor Evecuting Uses Fauk Rtn. 5543 =]
MOAM1 Referenced On Disabled St 504 <]

Batieny Low S:5/1 =] 4
Fau/Powesdown (Rung B 5:20 =
Fiet)s 21 E Coablsnb |
R [T 7
P 4 Bopete | eoe | teb |

Statup Protecion Faut 5:1/3 = Fas Roukne $.23+=
“;#Em*;“s‘g;-@ e MxEnaS6x[n__] Fig. 8-33 Errors are described in
Math Overfiow Trap 5540 = | 1pon - -
[:undﬁv;uuﬁ:s»yh S =] the Error Description window.

The CompactLogix Processor L16ER-BB1B gives the following properties page which is similar
to the above SLC status page:

ﬁ Controller Properties - rd *

MNaonvolatile Memaory Capacity Intemet Protocaol Port Configuration Metwork Security Alam Log

General

Vendor:
Type:
Revision:

Mame:

Description:

Major Faults Minaor Faults Date/Time Advanced SFC Execution Project

Rockwell Automation./Allen-Bradley
176%-L16ER-BB1B CompactLogix™ 5370 Cortroller Change Controller...

31.0M

|4

Expansion 1/D: | p Modules iy 1. DANGER: When online, if the modules present do
not match the modules specified in the project,

Slot;

- = unexpected control may occur. The Expansion [/0
- - setting must match the actual number of modules.

The RSLogix help topic "Access Runtime Controller Configuration and Status” describes the

following:
S:FS First Scan flag
S:N Negative flag
S:Z Zero flag
S:v Overflow flag
S:C Carry flag
S:MINOR Minor Fault flag

Any other processor information must be obtained by using the GSV (get system variable)

instruction.

Ch. 8 Math

23

When entering a GSV/SSV instruction, specify the object and its attribute to access. In some
cases, there will be more than one instance of the same type of object. Be sure to specify the
object name. For example, each task has its own TASK object that requires specifying the task
name to gain access.

These are the GSV/SSV objects. The objects available for access are dependent on the controller.

AddOnlnstructionDefinition
Axis

Controller
ControllerDevice
CoordinateSystem
CST

DF1

FaultLog
HardwareStatus
Message

Module
MotionGroup
Program
Redundancy
Routine

Safety

SerialPort

Task
TimeSynchronize
WallClockTime

Siemens gives similar results with the following pages when choosing the properties tab. We are
not able to see every similar device for Siemens listed above. However, the help function for
TIA provides a broad range of options for finding similar functions. We will discuss in Chapter
18 OB100, the Siemens start-up object block. This is the block containing instructions for start-
up of the machine or re-initializing the machine after a shutdown.

Ch.8 Math 24

PLC_T [CPU T274C DUDTDC] %
General || 10 tags ” System constants || Texts |
» General
P PROFINET interface [X1]
» DI14iDQ 10 Project information IE‘
P AIZ
» AQ1 signal board Name: ‘PLC_I ‘
} High speed counters (H5C)
» Pulse generators (FTO/PWIML i ‘WEVEM ‘
Startup Comment: -~ - -
Cyele Fig. 8-34 Siemens
Communication load o H
System and clock memory I R Propertles Pages
» Webserver ml slot: ‘1 |
User interface languages l Rack: ‘0 |
Time ofday
» Protection & Security . X
Catalog information
Connection resources
Overview of addresses
Short designation: | CPU 1214C DC/IDCIDC |
Description: |Work memory 75 KB; 24WDC power supply with DI14 ¥ 24VDC ~
SINKISOURCE, DQ10 x 24VDC and AI2 on board; 6 high-speed counters
and 4 pulse outputs on board; signal board expands en-board 110; up
to 3 communication modules for serial communication; up to 8 signal
modules for /0 expansion; 0.04 msi1000 instructions; PROFINET
r oK | | Cancel ‘
PLC_T [CPU T2T4C DUDGDC] [
General System constants " Texts |
show hardware systern constanta
Name Type Hardware identi. |Used by Cormment
2 Local~MC Hw_SubModule 51 PLC_1
& Local~Common Hw_SubModule 50 PLC_1
2 Local-Exec Hw_SubModule 52 PLC_1
2 Local Hw_SubMhodule 49 PLC_1
& Local~PROFINET_ interface_1 Hw_Interface 64 PLC_1
2 Local~HSC_1 Hw_Hsc 257 PLC_1
2 Local-HSC_2 Hw_Hsc 258 PLC_1
2 Local~H5C_3 Hw_Hsc 259 PLC_1
& Local-HSC 4 Hw_Hsc 260 PLC 1
2 Local~HSC_5 Hw_Hsc 261 PLC_1
& Local-HSC 6 Hw_Hsc 262 PLC 1
2 Local-Al_2_1 Hw_SubModule 263 PLC_1
& Local-DI_14_DQ_10_1 Hw_SubModule 264 PLC 1
2 Local-Pulse_1 Hw_Pwm 265 PLC_1
2 Local-Pulse_2 Hw_Pwm 266 PLC_1
2 Local-Pulse_3 Hw_Pwm 267 PLC_1
&2 Local~Fulse_4 Hw_Pwm 268 PLC_1
& Local-PROFINET interface_1~Port_1 Hw_Interface 65 PLC_1
0K | | Cancel

Use of Add Blocks

Use of Add blocks using the same Source and Destination addresses may be used. When
programmed, a one-shot should be added to guarantee that the Add block does not continue for
many scans. As an example, consider using a button to add 5% or 1% to a value in N7:29 in the
range 1000 to 5000. The range of the ADD is 40 if 1% is chosen or 200 if 5% is chosen.

The circuit may be programmed as follows:

Ch.8 Math 25

Qaaa

ool

1%% add

Il EZ0
] E [N osR 7]
0]
1746-F1O41
5% add
I:1 E30
] E [MosR 7]
1 1
1746-FIO41

A0
Add
Souree & 729
0=
Source B 40
40=
Diest 729
0=
A0
Ldd
Source & 729
0=
Souree B 200
200=
Diest 729
0=

Fig. 8-35 Example
of 1% or 5% ADD
for Variable

The two ADD Blocks above increment a number in N7:29 by either 1% or 5%.

The following circuit decrements the number in N7:29 by 1% or 5%.

i}

o0l

To protect the limits of 2000 or 5000 in N7:29, add the following:

1% sub
I:1 EZ0
] E [MosR 7]
2 2
17486-F1041
5% sub
I:1 EZ0
1 E—Low]
3]
174&-FI041

SUE
Sabtract
Source A 729
0=
Source B 40
40=
Drest 729
0=
SUE
Sabtract
Source A 729
0=
Source B 200
200=
Drest 729
0=

Ch.8 Math

Fig. 8-36 Example of

1% or 5% Decrement
for Variable

26

GRT MOV
ooao Greater Than (4=F) Move
Somrce d 729 Sonroe S000
0= 5000=
Sonrce B S000 Drest 729
5000= 0=
LES L
oool Less Than (4=E) Move
Somrce d 729 Sonroe 1000
0= 1000=
Sonrce B 1000 Drest 729
1000= 0=

CPT Calculation Block

Fig. 8-37 Example of

Limit Protection for
Variable

The cPT or Compute instruction is a very flexible instruction that is accessible only on SLC 5/03

through 5/05 processors. It provides expression statements similar to a computer language.

« SLC Instruction S

File Edt Bookmak Optons Help

et Help

Qorvents| index | Bock | pi | - |

CPT [Compute]

Use with processors Example of Instruction

SLC 503 08302 CPT
SLC 5104 0S401 Compute i
SLC &/05 08500 Dest B34

0000000000000000
Expresssion SQR((N71%*2)+(N72++2))

(Pararneters shown are examples only,
your dets will vary)

’ Description

When rung conditions are true to this output instruction, the copy, arthmetic, logical, or conversion operation residing
in tha expression field of this instruction is performed and the result Is sent to the destination. You may use ingdexed or
nolrecl addressing to represent addresses In this instruction

The execution tme of a Compute instruction is longer than that of a single anthmetic operation and uses more
Instruction words

. Entering Parameters

Destination |5 the address that indicates where the result of the copy, anthmetic, logical, or corwersion operation
shown in the Expression will be stored. The destination can be 3 word address or the address of a floating-point data
element

Expressions - The expression 1S 2ero or more lines, with up to 28 characters per line, up 1o 255 characters
Instructions that can be used In the Expression include. + -, * 1 (DIV), SQR, - (NEG), NOT, XOR, OR, AND, TOD, FRD,
LN, TAN, ABS, DEG, RAD, SIN, COS, ATN, ASN, ACS, LOG, and ** (xPY). The execution of a CPT instruction Is longer
than a single arithmetic operation and uses more instruction words

Note Whether or not an address Is valid In the expression operator is determined by the operator it Is associated

with. For example, since the SQR Instruction allows direct, indexed, and |ngirect addresses, then any operand
associated with the SQR operator in an expression is allowed 1o be a direct, Indexed, or indirect address

Fig. 8-38 The Compute Block Instructions

=l

The cPT or Compute instruction is a very flexible instruction that is accessible only on SLC 5/03

through 5/05 processors. It provides expression statements similar to a computer language.
Multiple variables may be manipulated similarly to a statement in the language BASIC.

Ch.8 Math

27

Mixing Counters and Math

With the math instructions available, it is now possible to combine circuits using relay contacts
and coils, timers, counters and math operations. Coordination between the various rungs will
continue to become more complicated as each new instruction is introduced.

L
(nml=

CTT

Count Tp oy S

1 Conmter C5:0

Preset a0 | DN —

bomm 0=

o

oo0

Fig. 8-39 Example of
ML Mixing Counting and Math

Multiply

2 Source & CHOACC

Q=

B30 Source B H7:10

H 0=
3 Drest W1l

0=

b
mo

L

o001

Mixing of Data Types

A very good feature of the PLC/5 and SLC architecture in general is the ability to mix numeric
types in the same instruction. For instance, the instruction below adds the contents of F8:2 to
N7:10 and places the results in B3:18. As can be seen, 0+ 0=0.

ADD
0001 4dd
Somree & Fa:2 Fig. 8-40 Example of
0.0= i
s B 710 Mixing of Data Types
0=
Dhast B3:18
0000000000000000=

To mix numeric types, the difference between integer and floating point numbers must be taken
into consideration. If an F location is added to an N location and the result is placed in an F
location, the fraction will be kept. However, if the result is placed in an N location, the fraction
will be lost. If this is desired, then mixed formatting is to be used.

Ch.8 Math 28

CompactLogix Math Instructions

H CHMP LIM MER EQJ MHE® LES GRT LER GEGQ

k

A Alarms A Bit A Timer/Counter A Input/Output 4 Compare A Com

Compare

If the CMP instruction finds the expression true, the rung-condition-out is set to true.

Compare

ChP

Fig. 8-41 A-B CompactLogix

Ewpression [value_1 *walue_Z] - value_3 < value_4 Compafe Instruction

If you enter an expression without a comparison operator, such as value_1 + value_2, or value_1,
the instruction evaluates the expression as follows:

If the expression is non-zero, tung-condition-out is set to true. If the expression is zero, the rung-
condition-out is set to false. See the following:

Compare
Expreszion

wvalue_1

Limit Test (CIRC)

Example of Low Limit < High Limit:
0 <value > 100, set light_1. If value < 0 or value > 100, turn off light_1.

LI
Lirmit Test [CIRC)
Lo Limit 0
Test value
n*
High Limit 100

Fig. 8-42 A-B CompactLogix
Compare Instruction
Compared to Zero

—

Example of Low Limit > High Limit:
When value > 0 or value < -100, set light_1. If value < 0 or value > -100, clear light_1.

Ch.8 Math

fight
<3 Fig. 8-43 A-B CompactLogix
Limit Instruction Testing for

Value In Range

29

LIM— light_1
Lire ot [E] ©2—1 Fig. 8-44 A-B CompactLogix
ow Limit 0 S . .

Limit Instruction Testing for
e T Value Outside the Range
High Limit 00

Mask Equal

The following example shows a true rung-condition-out for an MEQ command:

value ! AR GR R AR AT value_2 [A[Tof o R o[[[1 [a]0[a]a]
mask 1 TR kR olo]olo] mask 1 A HMh B A ololofo]
Masked [af1Joft fof [0l il Bl be e Masked [of1 [t fof [oft Tl [Tafefe be Te |
MED
b azk. Equal
Source walue_1
- . .
Miﬁmm—m m—””—nl;;lj : Fig. 8-45 A-B CompactLogix
2H1111_1111_1111_0000 € Masked Equal Instruction
Compare value_2 True Rung Condition
2H0101_0101_1111_0000 €

The following example shows rung-condition-out for an MEQ command that failed or was false:

valve ! MATOAR R AR AT value_2 [af1]of R ol [T [[o]ofelo]
rmask_1 [ofofofofofofololoTofofof 1l] rnask_1 [ofofofnfofofololoTofolofT1l1h
Masked [y T ffe be b Do Be T be B TR T Mazked [y [ficbe be b D be be T b fefoloofo]
MEQ
b azk Equal
Source walue_1
2H0101_Mo1_1111_1111 € . .
Mask mask_1 Fig. 8-46 A-B CompactLogix
) E#DDDD_DDDD_DDDDJ?H ;‘ Masked Equal Instruction
ornpare value s
2H0101_0101_1111_0000 € False Rung Condition
Equal

If value_1 is equal to value_2, set the rung-condition-out to true for the EQU command.

EQu
Equal
Souced value 1 . _
IERS AN Fig. 8-47 A-B CompactLogix
Source B wvalue_2 Equal Instruction
[

Ch.8 Math 30

Not Equal

If value_1 is not equal to value_2, set the rung-condition-out to true for the EQU command.

NED
M at Equal
source s “’E"“E—ﬂ]i_ Fig. 8-48 A-B CompactLogix
Source B walue 2) Not Equal Instruction
0%

Less Than (A<B)

If value_1 is less than value_2, set the rung-condition-out to true for the LES command.

LES

it Fig. 8-49 A-B CompactLogix
ne Not Equal Instruction

Source B walue_2
0&

Greater Than (A>B)

If value_1 is greater than value_2, set the rung-condition-out to true for the GRT command.

ZRT
Greater Than [A:B] b——— . .
Source A value_1 Fig. 8-50 A-B CompactLogix
0 Greater Than Instruction
Source B walue_2
0&

Less Than or Eql (A<=B)

If value_1 is less than or equal to value_2, then set the rung-condition-out to true for the LEQ
command.

LEQ
Less Than or Eql [4<=B . .
coslimakal -l Fig. 8-51 A-B CompactLogix
0e Less Than or Equal Instruction
Source B wvalue_2
0+

Ch.8 Math 31

Grtr Than or Eql (A>=B)

If value_1 is greater than or equal to value_2, then set the rung-condition-out to true for the GEQ
command.

GEC
(artr Than ar Eql [4:=B] . .
Source s walue_1 Fig. 8-52 A-B CompactLogix
g« Greater Than or Equal Instruction
Source B walue_2
0+

Compact Logix Compute/Math Instructions

H CPT RAODD SUE MUL DIM MOD S@R MEG ABS b

A Timer/Counter A Input/Output A4 Compare h Compute/Math 4 Mo

Compute

For the example, the CPT instruction, evaluates value_1 multiplied by 5 and divides the result by
the result of value_2 divided by 7, placing the final result in result_1.

CPT

—— Compute Fig. 8-53 A-B CompactLogix
Dest ey Compute Instruction
Exptession [vahss_15)/{value_2/7)

Add

The ADD instruction adds Source A to Source B and places the result in the Destination.

ADD
— Add . .
Source & flnat_valgeﬂ_l_ Fig. 8-54 A-B CompactLogix
Source B float_walue_2 ADD Instruction
o€
Dzt add_result
o€

Subtract

Subtract float_value_2 from float_value_1 and place the result in subtract_result.

Ch.8 Math 32

sUB

— Subtract . .

Source & float_value_1 Fig. 8-55 A-B CompactLogix
0.0* SUB Instruction

Source B float_value_2

0o+

Dest sublract_result

0o

Multiply

Multiply float_value_1 by float_value_2 and place the result in multiply_result.

MUIL

— Mult in Q. i} ;

SGHEEA float_value_1 Fig. 8 56 A-B C_OmpaCtLogIX
00+ Multiply Instruction

Sowce B !Ioat_valué_E
no*

Dest mulbiplye_result
no*

Divide

Divide float_value_1 by float_value_2 and place the result in divide_resuilt.

Dl
— Divide ; ;
Sowce A floak a1 Fig. 8-57 A-B CompactLogix
oo+ Divide Instruction
Sowce B float_valee_2
og*
Dzt divide_result
oo+

Modulo

Divide dividend by divisor and place the remainder in remainder. In the example, 3 goes into 10
three times with remainder 1. The value remainder is saved in the destination.

0D
= Maodulo . .
S-:?urzeﬁ« dividend Fig. 8-58 A-B CompactLogix

10+ ;
e R Modulo Instruction
kL2

Dzt rernamder
1%

Square Root

Calculate the square root of value_1 and place the result in sqr_result.

Ch.8 Math 33

Negate

—— Square Root

S0R

value_1
] =

Dest sar_result

no#*

Source

Fig. 8-59 A-B CompactLogix
Square Root Instruction

Change the sign of value_1 and place the result in negate_result.

Absolute Value

MEG

—— Megate

walue_1
] *
Dest negate_result

D(‘

Source

Fig. 8-60 A-B CompactLogix
Negate Instruction

Place the absolute value of value_1 into value_1_absolute. In the example, the absolute value of

-4 is +4.

Move Instructions

M

ABS

Abzalute Value

Source walue_1

s

Dest walue_1_abzolute

4

MO MUM AMD OR

Fig. 8-61 A-B CompactLogix
Absolute Value Instruction

WOR MOT SWPE CLR ETD |}

A InputiOutput A Compare A Compute/Math A Moveilogical A File/l

If you want to:

Use this instruction:

copy a value

copy a specific part of an integer
move bits within an integer or

between integers

clear a value

MOV
MVM
BTD

(@]
-
P

Ch.8 Math

34

mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Move_MOV.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Masked_Move_MVM.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Bit_Distribute_BTD.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Clear_CLR.htm

Move (MOV)

The MOV instruction copies the Source to the Destination. The Source remains unchanged.

S
— Move — . .
Source Fig. 8-62 A-B CompactLogix
Dest Move Instruction

An Additional Look at the Juice Condenser

The Juice Condenser project was introduced in chapter 5 and discussed again in chapter 6. The
juice condenser problem includes memory that the use of numbers encourage a new look.

The operation included a fill, a condensate portion and a drain. These operations were not to be
overlaid but rather were to be consecutive. This leads to a memory circuit that includes more
than one set of events.

Agitator

O —°J'°— Start
;i Done/Ready

V-2

=

High Level

S~ I
Half Level g Heat

_.,11:.,_7H

Temperature Sw e

=

V-1 |
(Fig. 5-1 The Juice Maker)
Fig. 8-63 Processor Needing Numbers for States

Ch.8 Math 35

Each memory circuit must be exclusive of the other two events and must occur in a proper
sequence. For example, the fill operation must occur first, then the condensate operation and
finally the drain operation. This may be expressed using a number representing the state of the
operation. For example:

| EQU [~ This rung passes power when
State_No the Fill operation is running
1

| EQU [This rung passes power when the
State_No Condensate operation is running
2

| EQU [This rung passes power when the Drain
State_No operation is running
3

Fig. 8-64 Step Numbers for the Process

The three operations must be done in order. This requires that before the first operation starts,
the requirement that there is not a fill, condensate or drain action presently active must be
determined. This can be expressed in the start portion of the fill operation as:

Start
Operation
| N y
ov]
Eg?e No " 1 Fig. 8-65a Method of

- State_No Moving Between States

0

Succeeding operations must likewise be programmed using a start portion with the prior
operation present.

Ch.8 Math 36

Conditions

allowing
Condensate
to begin
|| | | -
ov .
o] Fig. 8-65b Method of
State_No 2 Moui 5 S
= State_No oving etween States
1 cont.
Conditions
allowing
Drain to
begin
|| | |
EQU [] Mov
State_No 3
= State_No
2

The conclusion of this problem is left as an exercise.

Ch.8 Math 37

Paper Making Process

A process with logic, timers, compare and math is a mixing tank for making paper. The process
works as follows:

1.
2.

ok~

Addition of Addition of

A tank is filled to medium level with water.
The tank continues to fill with water and paper is added through a loss-in-weight

feeder.

A stirrer starts as soon as the paper begins to be added and continues until a batch is

made and dumped and the level falls to the low level.

The water finishes when the high level is reached and the paper finishes being added.
The water and paper continue to be mixed until the paper is thoroughly mixed into a

slurry by use of a timer.
The tank is emptied by pumping the mixture out of the tank until the low level switch
is reached. Then the process of making a new batch begins again.

Water Pulp

Y

Y

High Level

Medium Level

Water is added through a valve.

Paper is added through a scale with a
numeric input and an output to run. The
input is a number with the amount of
weight in a hopper. When the output is
on, the hopper on the scale will discharge
paper. The scale weight will decrease.
When the scale weight has decreased a set
amount, the batch is done and the output
is turned off. This is called a loss-in-weight
feeder. The hopper is filled from above
when the hopper is not being used. The
hopper is filled by an operator manually.

Drain Pump
i |lowlevel 7)—
\
[
Agitator
Fig. 8-66a Paper Making Process Described

The most difficult part of the program is the control of the loss-in-weight feeder. The number is
read as an integer and may be at any value in a range. The program is to start at this value, turn
on an output and watch the number representing the weight decrement a set amount and turn off

the o

utput.

Ch.8 Math

38

Addition of

Water
. Starting a new batch:
High Level Tank is empty
Water starts filling
Medium Level
Drain Pump
—————— |LowLevel (j
I
Agitator

Fig. 8-66b Paper Making Process Described

Addition of Addition of
Water Pulp

Water fills to Medium Level
Agitator starts
Paper starts filling

High Level

Medium Level

Drain Pump

Low Level ()
N\

Agitator

High Level Water fills to High Level
Paper fills to weight set- point
Agitator continues to run for preset time

Medium Level

Drain Pump

Low Level ()
N\

Agitator

Ch. 8 Math

39

High Level Tank begins to empty

Agitator continues to run

Medium Level

Drain Pump
Low Level

Agitator

Fig. 8-66¢ Paper Making Process Described

High Level
Agitator turns off
Pump continues to drain tank

Medium Level

Drain Pump
W
Agitator
High Level Pump turns off for time delay
after level drops below low
level. Tank is drained, ready
for next mix.
Medium Level
Drain Pump
T < Low Level (:
I N\
Agitator

Fig. 8-66d Paper Making Process Described

To start the program for the paper-making process, begin by providing a start-up rung. The rung
must provide a memory circuit (probably a seal circuit) to start the process. The program uses an
action by an operator to start the mixing operation. It is always good to check all the level
switches for proper status but the low level switch is the only switch that must be checked for

Ch. 8 Math 40

proper level prior to starting. The low level switch must be off. The other two switches may be
checked as well but are secondary to the low level switch for control of the batch. If either one
of these two switches report a water level, the switch should be replaced or cleaned. It is not
working properly or the low level switch is not working properly. Alert a maintenance person if
this is a problem of any magnitude.

Where to begin the rest of the program is the responsibility of the programmer. Concentrate on
one event at a time. Write down the requirements.

First, water must be added
Next, paper is added through a loss-in-weight scale
Next, other ingredients are added
Next, stirring occurs

When the paper pulp is to be added, start with a box of pulp and a vibratory feeder. Add the

following:

Feeder with

/N /N
Q Scale (Weight
Measurement)

Q
Q ¢ Into Vat

Pulp_Add Pulp_Start_0S

Pulp_Start

Pulp_Add

Pulp_#Add

Fig. 8-67

WMov

<
<@— \ibrator
Pulp in Box |«a—

Pulp_Start

Source Active Wt

SUB

00w

Start_Wt

0.0«

Start_Wt

0.0

Active_Wt

00w

Dest Amount_Dumped

Source & Amount_Dumped

0.04
ource B Target Wt
0.0 4

urce & Amount_Dumped

0.04
ource B Target Wt
0.0 4

0.0

Vibrator

Done

Paper Making Process — Loss in Weight Feed

Ch.8 Math

41

Stepping Program for Machine

The following machine is similar to the conveyor of previous chapters except we now are filling
a box with material coming from a process line. The name of this device is a festooner. The
machine moves back and forth placing the material in the box. The box is weighed and when a
weight is achieved, the box is full. There is usually an automatic knife that cuts the material and
starts the material in a second box. The logic is similar to the previous conveyors in that there is
a motor that drives the product to the right and then to the left. End of travel photo-eyes reverse
the movement. The end of process is achieved when a weight is exceeded. A start button begins
the action. Provide a .5 sec dwell when the photo-eye sees the product to stop the movement
before reversing the motor.

Festooner

Lays material in box
O by moving back and

Start Button PB1 forth
—_—
- =2

—_

/

N\ N\
Fig. 8-68a Festooner Process

An actual festooner is pictured below with no box included. The material is placed on the table
without enclosure. In the program on next page, the right-most bit of Count_Cycle is used to
drive the machine right or left.

Fig. 8-68b
Festooner Process

Ch. 8 Math 42

Run_FB Stop_PB Done

Running

Running Running_0S
ONS

Running Count_Cycle.0 Right_PE

Right_PE_DIy.EN

Running Right_ PE_Dly DN Right_05
ONS

Runmning Count Cycle 0 Left PE

Left PE_DIy.EN

Running Left PE Dy DN Left OS5
ONS

Running Right_PE_DIyEN Count_Cycle 0

Running Left PE_DIyEN Count_Cycle.0

Ch. 8 Math

Running
MOV
Source Actual_Wt
1«
Dest Start_Wt
O«
MOV
Source 1
Dest Count_Cycle
De
TON
Timer Right_PE_Dly
Preset 500«
Accum O«
ADD
Source A Count_Cycle
O
Source B 1

Dest Count_Cycle
O«

TON

Timer Left PE_Dly
Preset 500«
Accum O«
ADD

Source A Count_Cycle

O«

Source B 1

Dest Count_Cycle

De
SUB
Source A Actual_Wt
1«
Source B Start_ Wt
O
Dest Weight_Added
De
GRT Done
Source A Weight_Added
Qe
Source B 100

Arm_Right_Move

Arm_Left_Move

43

Number Systems
Decimal numbers

All number systems are positional in that each digit is weighted differently. For example, to
write the number 287.54 represents 287.54 units of something. The 2 at the extreme left is the
most important digit and is usually referred to as the most significant digit. The 4 on the right of
the number is the least significant and is usually not as highly desired as the number on the left.
For instance if 287.54 represented $287.54, we would be very interested if the number were
$387.54 or even $187.54, especially if this was a bill we were to pay. On the other hand, we
could hardly care if the 4 at the right of the number were a 5, 3, 8, 9 or whatever. The weights of
the number represent the following:

2-100+8-10+7-1+5-01+4-0.01
or:

2-10°+8-10'+7-10°+5-8-1+4 .82

Binary numbers

Binary numbers are used in microprocessors, programmable logic controllers, and in all digital
circuits. The binary number system only contains 2 digits: 0 and 1. Each digit is called a 'bit' and
can contain either the value 0 or 1. The binary number system is like the decimal number system
a positional number system and is written in the same general manner as decimal except that 10*
is replaced with 2%

On- 2"+ . +ds-28+d3-22+dy- 2+ - 20

Here dx is the n™" digit (counting from right to left). If the number is an 8-bit number (called a
byte), n is 8 (8 digits) and the binary number is 10101001, then it is calculated like this:

1 0 1 0 1 0 0 1
1-27 +0-26+1-25+0-2+1-2°+0-22+0-21+1-20
1-128+0-64+1-32+0-16+1-8 +0-4 +0-2 +1-1

= 169 (decimal)

or

101010012 = 16910

Ch.8 Math 44

Another example:
10011101

1 0 0 1 1 1 0 1
1-27 +0-25+0-25+1-2+1-2°+1-22+0-2t+1-2°
1-128+0-64+0-32+1-16+1-8 +1-4 +0-2 +1-1

= 15710
or
10011101, = 15710

The radix of binary numbers is 2.

Hexadecimal Numbers

Hexadecimal numbers have 16 different digits (radix 16). The 6 first letters of the alphabet are
used for the last 6 digits in the hexadecimal system. The digitsare 0, 1, 2, 3,4, 5,6, 7, 8,9, A, B,
C, D, E and F representing the decimal numbers 0, 1, 2, 3,4,5,6, 7, 8,9, 10, 11, 12, 13, 14 and
15 respectively. Upper case for A-F is optional.
The weights of numbers in hexadecimal is as follows:

On- 16"+ ... +ds-16%+ds- 162+ dp - 16 + dy - 16°
dn is the n" digit (counting from right to left). This is the same as in any positional number

system. If the number is a 4-digit number, n is 4 (4 digits) and the hexadecimal number is 5A2E
or:

5 A 2 E
5.16% +10-162 +2-16'+14 - 16°
5-4096+10-256+2-16 +14-1

= 23086 (decimal)
or

5A2E1s = 2308610

Ch.8 Math 45

Octal Numbers

The octal number system is used a little in plc texts and an explanation is as follows:

The octal number system contains 8 digits numbered from 0 to 7. To convert from octal to
decimal, apply the following general formula:

dn-8"1+ ... +ds-8+d3-8+dy-8+d;-8°
dn is the ™ digit (counting from right to left).
A conversion of the octal number 2417 to decimal follows:

2 4 1 7
2-8 +4.8+1.8'+7.8°
2-512+4.-64+1-8 +7-1

= 1295 (decimal)

or

24175 = 12951
Converting between the binary and hexadecimal numbers:

To convert from binary to hexadecimal, simply line the bits in 4 bit groups as follows:

1001011101011010,
Binary 1001 0111 0101 1010
Decimal 9 7 5 10

Hexadecimal 9 7 5 A

or 10010111010110102 = 975A16

Hexadecimal numbers are usually easier to remember because they are shorter than binary
numbers.

Ch.8 Math

46

Another example:

E551A0F816

Hexadecimal E 5 5 1 A 0 F 8
Decimal 14 5 5 1 10 O 15 8
Binary 1110 0101 0101 0001 1010 0000 1111 1000

=111001010101000110100000111110002

The table shown below summarizes the digits.

Binary Octal Decimal Hexadecimal
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

Ch.8 Math

Binary Addition

0+0=0
0+1=1
1+0=1

1+1=0carryl
1+0+carry=0carry 1l
l+1+carry=1carryl

These are the rules for binary addition.

To see binary addition at work:

Carry 1111

Number 1 01001101100
+ Number 2 01011011010
Results 10101000110

Binary addition may take place in ladder logic. Instructions are provided to carry out this
function (ADD), but it is worthwhile to examine the process of binary addition using ladder
logic. In Figs. 8-35 and 8-36, logic to add two numbers using only combinational logic is
shown.

Since Bit 0 does not have a carry_in, half-adder logic may be employed but only for this bit. It

can be seen that half-adder logic is simpler than full-add logic by comparing Fig. 8-35 (Half-
Adder) to Fig. 8-36 (Full Adder).

Word Address

Bit Address
Fhamber 1 Huwmber 2 Result
N7:0 H7:1 N7:2
0001 JE 3 L‘-A/ \’ p
0 0]
Fig. 8-69
Fhamber 1 Humber 2
] —— Logic
0 0
Number 1 Number 2 Carry
N7:0 N7:1 N7:3
0002 J E J E D
0 0 1

The number in location N7:0 is added to the number in N7:1. The result is stored in location

N7:2. The carry is located in N7:3. The same locations are used for remaining bits of the word
shown in Fig. 8-36. Full adder logic for each remaining bit from 1 to 15 is required. The logic
must be duplicated for each bit. Carry_In is from the prior bit. The Carry_In for bit 1 is found in

Ch.8 Math

Carry_Out of bit 0.

0001

0002

It is worth noting that to actually build this logic requires a great deal of time unless the Copy-
Paste function is employed. Once the logic is built, changing the bit numbers in the logic is all

Number 1 Number 2 Canry_In Result
N70 N7:1 N7:3 N7:2
J F e R B '
1 C L/

1 1 1 1

Number 1 Fumber 2 Canry_In

N70 N7:1 N7:3 F|g 8-70
=
1 1 1 Full Adder

Number 1 Number 2 Canry In

N70 N7:1 N7:3
] | [
1 1 1

Humber 1 Humber 2 Canry_In
N70 N7:1 N7:3
L 1L 1%

1 C J i -
1 1 1

Number 1 Number 2 Canry_In Carry_Onut
N70 N7:1 N7:3 N7:3
£ S | S S <>

1 1 2
Number 1 Number 2 Carry_In
N70 N7:1 N7:3
L]
| A 1 Full Adder
Carry Logic
Number 1 Number 2 Carry_In

N7:0 N7:1 N7:3

ﬁ,h 1 E JE
- . J

1 1 1

Number 1 Number 2 Carry_In
N7:0 N7:1 N7:3

JE JFE J1E
JC d C J C
1 1 1

that is required for succeeding bits from 2 to 15.

Ch. 8 Math

49

Binary Subtraction

To perform binary subtraction, the easiest method is to find the 2’s complement of the second
number and then add the two numbers together. To find the 2’s complement, invert all the bits
(1’s complement and add 1).

To find the 2’s complement:

number 01 001101011
1’'s complement 10110010100
+1 1
2’s complement 10110010101

Then add the 2’s complement to the first number.

A second method of finding the 2’s complement requires the use of a memory bit. The rule
requires that bits from the original number be copied to the 2’s complement number starting at
the right-most bit. The rule applies until a “1”” is encountered. The first “1” is copied but a
memory bit is set after which the bits are “flipped”. Try this rule. It works and may be
employed using ladder logic and a Latch bit to quickly find the 2’s complement of a number.

Again, logic must be added to complete the function using rungs similar to rungs 4 and 5 of this
figure but using bits 2 through15.

2's Complement

Memory
E30
oool £y
u]
Mumber 2's Complement Flg 8'71
H70 H7:1
0002 J1E - R}Jng 1,2,_3
0 0 Bit O Logic
2's Complement
Humber Memory Rung 4, 5
N0 B30 - . .
0003 1 E o Bit 1 Logic which
0 D must be repeated
e — for Bits 2-15
Humher Memory 2-3 Complement
N0 B30 N7l
0004 JE = o

1 1] 1

2's Complement
Number Memory
w0 Ez.0

3-E 1 E
1 a
2's Complement
Mamber Memory
N0 E3:0
aoos] E i
1 0

Ch.8 Math 50

Binary Comparisons

To find if two numbers are equal, use the Equal Block. Use of combinational ladder logic may

be employed as well. Using combination logic may be easy to employ but should not be used in
PLC programming instead of the Equal Block. See below an example of the use of

combinational ladder logic to determine if the number in N7:0 is equal to the number in
C5:3.ACC. Notice that only the high bite or bits 8-15 are being checked for equality. If all bits

are to be checked, the rung must double in size to check for the 8 additional bits (bits 0-7).

ool

W70 C553.400 M0 C53.ACC
1 E 1 E 1 E 1 E
L I I J I

15 15 14 14
W10 C5:5.40C W0 C5:3.4CC
3£ 3-E 3-E 3

15 15 14 14
W70 C5:3.400 M0 C53.ACC
1 E 1 E 1 E 1 E
L J I I J I
13 13 12 12
W10 C53.400 M0 C53.ACC
col= 3-E 3£ 3£
13 13 12 12
W70 C5:5.400C N0 C5:3.ACC
1 E 1 E 1 E 1 E .
1 1 C 1 C 1 -
11 11 10 10 Flg 8-12
W70 C5:5.400C N0 C5:3.ACC
3-E 3-E 3-E 3-E
11 11 10 10
W70 C5:3.400C W0 C5:3.ACC E3:0
q1E I E I E q1E oy
L I - L I L -
9 a g g]
W70 C5:3.400C W0 C5:3.ACC
| = | |

= = = =

9 a g g

Ch.8 Math

51

Radix

The term “radix” is used to describe the number base used to display numbers. For B3, notice

the natural radix is binary although several other bases may be used.

[l rutipoint Monitor
[L] Procram Filas
"R svso-
i 5Y51 -
- Lz,
B0 Deta Files
_ Crose Reterence
A o0 - outPUT
L n-mpur
LA s2-sTATUS
L [B3 - ENARY
L O T4 THER
"M cs - COUNTER
" [Re - conNTROL
" [N7 - NTEGER
=IO Fe-FLOAT
[0 Force Files
- o0 - oUTRUT
o[H-meuT
F {23 Custom Data Monitors
[com - Untitled
E-] Database

Likewise, for integer numbers, decimal is the natural base used although any of the same group

=
1
=

o o Q0 o 9 0 o 99 o o
= = T = T = N = T = I = T = T = =]
= T = T — T~ T — T — I — T~ T — T |
o o 2 o o 8 o 9 9 o

1= — B — N — I — N — N — N — N — B — B — |

(=== == = = = =g o

o o Qo o o O o O oo O OE
o O B o o o o o o O
o o 2 o o 0 o o o o okl

un

o o 0 o o 0 o 0 o o oy

=T = T = T = T = T = = R = T = T = T =
o o Q0 O O 0 o 9 o o oFS
o o o o o o o o o O O
o o0 B e o o0 oo o ofs

| Fladec [Enay =]

n

0

0

0

1]

1}

0

0

0

0

1]

A

[B30/0
Symbo [
Desc: |

P

Fropetlies |

Usage |

Fig. 8-73 Use Radix to Display Binary Layout

as binary can be chosen.

§ wo2.
() Dats Filas
B Cross Refarence
[co-cureur
R
[} s2-staTUS
[] 83.8neRY
[} 14-TMER
[} cs-counrer
[=8- conTROL
[w7 - wieceR
[ra.FLoaT
B[] Force Fies

=

~+Data File N7 (dec) — INTEGER

=10

Jf

| Rade|Decmal

Symbet |

Octal

Desc: |

e O

HexBCD

Fig. 8-74 Use Radix to Display Integer Layout

Ch. 8 Math

52

Accessing a "slice" of a tagged data type

PLC tags and data block tags can be accessed at the bit, byte, or word level depending on their

size. The syntax for accessing such a data slice (Siemens) is as follows:

"<PLC tag name>".xn (bit access)

"<PLC tag name>".bn (byte access)

"<PLC tag name>".wn (word access)

"<Data block name>".<tag name>.xn (bit access)
"<Data block name>".<tag name>.bn (byte access)
"<Data block name>".<tag name>.wn (word access)

A double word-sized tag can be accessed by bits 0 - 31, bytes 0 - 3, or word 0 - 1. A word sized
tag can be accessed by bits 0 - 15, bytes 0 - 2, or word 0. A byte-sized tag can be accessed by bits

0 - 8, or byte 0. Bit, byte, and word slices can be used anywhere that bits, bytes, or words are

expected operands.

| | BYTE

WORD

Mote

Walid data types that can be accessed by slice are Byte, Char, Cann_Any, Date, Dint,
OWord, Event_Any, Event_Att, Hw_Any, Hw_Device, HW _Interface, Hw_|lo, Hw_Pwm,
Hw_SubMaodule, Int, OB_Any, OE_AtL, OB_Cyclic, OB_Delay, QB_WHIMNT, CB_FPCY CLE,
OBE_STARTUR, OB_TIMEERROR, OB_Tad, Port, Rtm, Sint, Time, Time_Cf_Day, UDInt,
Ulnt, USInt, and Word, PLC Tags of type Real can be accessed by slice, but data block tags
of type Real cannot.

Examples
In the PLC tag tahle, "DW" is a declared tag of type OW CORD. The examples show bit, byte,
and waord slice access:
LAD FBD S6L
Bit acceas WO 1 B IF "DW".xll THENW
|_ "Dl — R
— —_— END_IF;
Byte accese D - IF "DW".h2 = "DW".h3
I - | Byte THEW
| e "D b2 — INT E
oW b S T i END_IF;
Ward access B out:= "DW".w0 AND
word "DH" .wl;
EN EHO -
"Dy w0 — [our D™
R AR | IN2 s o]

Ch.8 Math

53

Accessing a tag with an AT overlay (Also Siemens)

The AT tag overlay allows you to access an already-declared tag of a standard access block with
an overlaid declaration of a different data type. You can, for example, address the individual bits
of a tag of a Byte, Word, or DWord data type with an Array of Bool. To overlay a parameter,
declare an additional parameter directly after the parameter that is to be overlaid and select the
data type "AT". The editor creates the overlay, and you can then choose the data type, struct, or
array that you wish to use for the overlay.

Example
This example shows the input parameters of a standard-access FE. The byte tag B1 is
overlaid with an array of Booleans:
m B Byte
w Al AT B1" Array [0.7] of Bool
- AT[0] Eoal
u AT[1] Eoal
= AT[2] Bool
] AT[2] Eoal
B AT Bl
= AT[S] Baal
L] AT[E] Eool
= AT[7] Eoal
Takle 4-8 Dveday of a byte with a Boclean array
7 B § 4) 2 1 o
ATIN AT AT[) AT AT AT[A] ATIR] AT[T]
Anaother example is a OWord tag overlaid with a Struct
L Loy Diword
+ Dl _Struct AT DM Struct
" 51 ‘iford
. 52 Byte
U 53 Byte
The overlay types can be addressed directly in the program logic:
LAD FBD SCL
£AT1] & IF WAT[1] THENW
wAT[1) — e
— o i END_IF;
S0 Strer 51 . IF (#DW1l Struct.51 =
. Ward WH16H000C) THEM
-I Word |_ HDW_Struct 51 — N .
W ERODDE W CHODDC — INE EBD _LE ;
outl := HDW1l Struct.52;
MOVE L -
EM ENO -
#OW_Smruce 53 — IN & OUT! =[N & oum
MW _Struct 52— 1M ENG -
Ch.8 Math 54

Allen-Bradley Data Slice

Below is an example of an expansion of a 32-bit word test_tagl with the tag displayed as a DINT

and the bits addressed sequentially starting with bit O through bit 31.

Ch.8 Math

Soope: EﬁMainF‘rngram v Show: A&l Tags - T
Name zg|& | Data Type Description External Access Constant | Skyle
—|-test_tagl DINT Readwrite] Drecimal

test_tagl.0 | BOOL Readw/rite Decimal
test_tagl.l | BOOL Read w/rite Decimal
test_tagl.2 | BOOL Fieadfarite Decimal
test_tagl.3 | BOOL Readfwrite Decimal
test_tagl.4 | BOOL Fieadfarite Decimal
test_tagl.5 | BOOL Readfwrite Decimal
test_tagl.6 | BOOL Fiead i rite: Decimal
test_tagl.¥ | BOOL Readfwrite Decimal
test_tagl.8 | BOOL Fiead w/rite Decimal
test_tagl.3 | BOOL R Read/Write | Decimal
test_tagl. 10 | BOOL Fiead i rite: Decimal
test_tagl.11 | BOOL Read/w/rite Decimal
test_tagl.12 | BOOL Read w/rite: Decimal
test_tagl.13 | BOOL Read/w/rite Decimal
test_tagl.14 | BOOL Read w/rite: Decimal
test_tagl.15 | BOOL Feadfarite Decimal
test_tagl.16 | BOOL Read w/rite: Decimal
test_tagl. 17 | BOOL Readrite Decimal
test_tagl.18 | BOOL Read w/rite Decimal
test_tagl.19 | BOOL Readrite Decimal
test_tagl.20 | BOOL Read w/rite Decimal
test_tagl.21 | BOOL Readw/rite Decimal
test_tagl.22 | BOOL Read w/rite Decimal
test_tagl.23 | BOOL Readw/rite Decimal
test_tagl.24 | BOOL Readwrite Decimal
test_tagl.26 | BOOL Read w/rite Decimal
test_tagl.26 | BOOL Fieadfarite Decimal
test_tagl.27 | BOOL Readfwrite Decimal
test_tagl.28 | BOOL Fieadfarite Decimal
test_tagl.23 | BOOL Readfwrite Decimal
test_tagl.30 | BOOL Fiead i rite: Decimal
| test_tagl.31 | BOOL Readfwrite Decimal

55

Summary of Addressing Individual Bits

For a 16 bit integer, we have:

o
o
o
o
o

Bit 1/1{1{1/1{1|0{0(0]0]0
5/4(3/2/1/0|9|8|76/5 43210

Siemens M 0000O0O0OOO0OO11111111

Siemens Addr

Logix .o
1111119876543210
543210

SLC rrrr

Data Slice Last Look

With the above table, we can assign contacts or coils referencing specific bits in the word
test_tagl. These examples show addressing for the most significant or sign bit.

test_tagl.x15

—{ }7 Siemens Addr

test tagl.15

—{ }— A-B Logix

N7:0/15
—{ }7 A-BSLC

Ch.8 Math

Summary

In summary, the chapter discusses manipulation of numeric data in the PLC. Math Function
Blocks were described first. Math Function Blocks replace the relay coil at the right of a rung.
Execution of the function block happens with either regular or one-shot contacts. The Math
Function Block may also be programmed to execute continuously.

Compare Instructions allow power to pass in a manner similar to relay contacts. A Compare
Instruction, LIM, was discussed and found to control a contact over a range of numbers.
Comparison Instructions with memory were used to provide a dead-band for switching on or off
an output. Various memory circuits were demonstrated in programs to provide this control
algorithm.

The Status Table in coordination with math operations was discussed. Several Status Table
locations described the use of math operations and locations of math holding registers. Thirty-
two bit integer math was briefly described. The status table is also used to control the 32-bit
math operation. Floating point math as well as floating-point_integer math instructions were
also discussed.

The SCP or Scale with Parameters Instruction was summarized. A method of protecting against
numeric overflow was described. ADD and SUB blocks to add or subtract 1% or 5% from a
number were also programmed.

Use of Instruction Help with the example of the CPT block was also given. Logic was
developed showing the mixing of logic for counters and math.

A paper-making process was described with many implications for the use of math in PLC logic.

Various number systems were described including decimal, hexadecimal and octal. The Radix
box in RSLogix 500 was described.

Labs and exercises follow.

Ch.8 Math 57

Exercises

10.

11.

12.

Write a rung to turn on a coil when the value in int_1 > 20 and int_2 < 25.
Write a rung to turn on a coil when the value in int_1 < 20 or float_1 > 8.
Write a rung to turn on a coil when the value in byte_3 < 120.

Multiply 10 * int_1 and display results in an integer variable.

Divide the contents of int_4/(constant = 4).

Write logic to create six time intervals as in the traffic light problem but using only one
timer: (Only provide enough code to illustrate the concept.)

Two numbers are stored in float_1 and float_2. If these numbers represent the sides of a
triangle, find the length of the hypotenuse.

Write a single rung to turn on an output when the value in int_1 is less than 200, greater
than 1000 or equal to 555:

The accumulated number of widgets on the production line is found in counter
widget_count_accum. Each widget is worth 35 cents. Write ladder logic to show in
total_cost the total worth of widgets on the line. What are the numerical limitations of
your calculation?

Write a rung of logic that turns on when the number in int_1= 22. Use only relay contacts
and one output coil.

Three numbers are stored inint_1, int_2 and int_3. Find the average of these three
numbers and store the results.

The following conveyor system has five outputs, lights for percent complete of packages
going down conveyor 1 to conveyor 2. Write a program to turn on these lights based on

the fact that packages must pass photoeye 1 to enter the storage area and pass photoeye 2
to exit.

Ch.8 Math 58

Storage

13.

14.

15.

16.

17.

18.

19.

Storage area not Storage Storage Storage
area ep1pty emp/ty area E}O% area S}O% area /fuII
AN A AN AN AN
/O\ /O\ /O\ /O\ /O\
. Photoeye 1 Photoeye 2
Packages in N NI Packages out
- " /O\ /O\ - >
Conveyor 1 > Temporary (Conveyor 2 >
storage for 100
| packages |

Use Fig. 8-25 and describe how to program high and low limit tests with Siemens and
CompactLogix Ladder Logic.

Use Fig. 8-27 and describe how to program a dead band application with Siemens and
CompactLogix Ladder Logic.

Find the equivalent instruction to the SCP instruction for the Siemens and CompactLogix
processors.

Describe a program statement to add 1% to the full scale value of a variable using the
Siemens and CompactLogix processors.

Write the loss-in-weight portion of the paper-making process in which weight is lost from
a scale that feeds pulp to the batch. The scale is represented by a number that must
decrease a set amount from an arbitrary number downward a set amount. During the feed
cycle, an output is on running a loss-in-weight feeder, usually a vibratory feed device.

Finish the Juice Condensate program using numbers for states.

Convert the following seal circuit to a S/R circuit.

A C D E F

. =0
Val 1

F 250

| |

Ch.8 Math 59

20. Write logic to place the material in the festooner box:

Festooner

Lays material in box
O by moving back and

Start Button PB1 forth
—>
— =2

—

/

/\ /\

21. The festooner pictured above now lays material in a box by moving an arm back and forth.
The action reverses after a small time delay after hitting the end-of-travel photo-eye. The
box is considered complete when the weight exceeds 100 pounds or 50 back-and-forth
actions — whichever occurs first. Design an 1/O table and write a program in Ladder Logic to
perform the action.

22. The festooner pictured above is changed to lay material into the box with an arm that moves
left and right with the following conditions:

The sensors at each end stop the movement and, after a short time delay, reverse the motion.
The scale under the box records the weight at the beginning of the fill. The arm stops close
to when 100# is met. The arm is to come to rest at the left sensor. If the weight isn’t yet at
100# but closer to 100# than if the arm were to move through another pass, the arm is to stop
and the operation is over. The goal is to place as close to 100# material as possible with the
fill ending at the left sensor.

23. Write a program that turns on a heater when the temperature falls less than 300 °F and turns
off the heater when the temperature exceeds 325 °F for the liquid in a vessel. The
temperature is input in a variable labelled ‘temp’. In a table, define each variable used by

type.

24. Design a ramp up block for the lab below using the servo motor (Ramp to setpoint).

Ch.8 Math 60

Lab 8.1 Integer Math

Lab 8.1a Using only contacts and coils, add two integer numbers found in two integer
numbers. Counts may be 8 bit, 16 bit or 32 bit in length.

Lab 8.1b Using only contacts and coils, subtract one integer number from another integer.

Lab 8.1c Using only contacts and coils, multiply two integer numbers.

Use the following as a guide to labs 8.1:

Lab 8.1d Using only contacts and coils, create an equivalent of an up counter. Use inputs
for counting up and count reset. Turn on an output when the count equals a
preset. For memory, use latch or coil outputs. Make the counter 8 bits long or
from 0 to 255. Use a constant in an integer location for the compare (between 0
and 255).

Lab 8.1e Using only contacts and coils, create an equivalent of a down counter. Use inputs
for counting down and count reset. Turn on an output when the count equals a
preset. For memory, use latch or coil outputs. Make the counter 8 bits long or
from 0 to 255. Use a constant in an integer location for the compare (between 0
and 255).

Ch.8 Math 61

Again, quoting from the Siemens Easy Book: “

6.5.1

6.5.2

Watch tables and force tables

You use "watch tables" for monitoring and modifying the values of a user program being
executed by the online CPU. You can create and save different watch tables in your project
to support a variety of test environments. This allows you to reproduce tests during
commissioning or for service and maintenance purposes.

With a watch table, you can monitor and interact with the CPU as it executes the user
program. You can display or change values not only for the tags of the code blocks and data
blocks, but also for the memory areas of the CPU, including the inputs and outputs (I and Q),
peripheral inputs (I1:P), bit memory (M), and data blocks (DB).

With the watch table, you can enable the physical outputs (Q:P) of a CPU in STOP mode.
For example, you can assign specific values to the outputs when testing the wiring for the
CPU.

STEP 7 also provides a force table for "forcing" a tag to a specific value. For more
information about forcing, see the section on/forcing values in the CPU|(Page|340) in the
"Online and Diagnostics" chapter.

Note
The force values are stored in the CPU and not in the watch table.

You cannot force an input (or "I" address). However, you can force a peripheral input. To
force a peripheral input, append a ":P" to the address (for example: "On:P").

Cross reference to show usage

The Inspector window displays cross-reference information about how a selected object is
used throughout the complete project, such as the user program, the CPU and any HMI
devices. The "Cross-reference" tab displays the instances where a selected object is being
used and the other objects using it. The Inspector window also includes blocks which are
only available online in the cross-references. To display the cross-references, select the
"Show cross-references" command. (In the Project view, find the cross references in the
"Tools" menu.)

Note

You do not have to close the editor to see the cross-reference information.

You can sort the entries in the cross-reference. The cross-reference list provides an
overview of the use of memory addresses and tags within the user program.

® \When creating and changing a program, you retain an overview of the operands, tags
and block calls you have used.

® From the cross-references, you can jump directly to the point of use of operands and
tags.

e During a program test or when troubleshooting, you are notified about which memory
location is being processed by which command in which block, which tag is being used in
which screen, and which block is called by which other block.

Ch.8 Math 62

Lab 8.2

In this lab we are introduced to the PWM output of the Siemens 1200 PLC. Described below is

PWM and RAMP

the configuration of the PWM output channels of the first 4 outputs of the Siemens S7-1215
DcDeDc processor. The configuration shown is just part of the process to program a pwm output.

PLC_1 [CPU 1215C DC/DCIDC]

Parameter assign...
Hardware cutputs
1i0 addresses
- PTO2/PWM2
General
Parameter assign...
Hardware outputs
1i0 addresses
~ PTO3IPWNM3
General
Parameter assign...
Hardware cutputs
1i0 addresses
- FTO4/PVIM4
General
Parameter assign...
Hardware outputs
1i0 addresses

e T e B

- PTO1/PWM1
General

Paramet
Hardware cutputs
li0 addresses
~ FTO2/PVNZ
General
Parameter assign...
Hardware outputs
1O addresses
* FTO3/PWNE
General
w PTO1/PWNIT
General

eterassign

L]

Parameter assign...
Hardware ou
IO addresses
* PTO2/PWNZ
General

are outputs

Parameter assign...
Hardware outputs
/0 addresses

~ PTO3/PWM3
General
Parameter assign...

» Parameter assignment

> Hardware outputs

v PTO1/PWM1T
General
Parameter assign...

Parameter assign...
Hardware outputs
1iO addresses

IO addresses

3 | —
Automatic update

Ch. 8 Math

63

The picture below is a hobby servo controller. The movement and control is based on a number

in the output word associated with the output. With a configuration as above, the pulse width is

determined by the servo specification. The specification below shows 1500 micro seconds or 1.5
msec duration. Both servo applications below use the HS-422 servo motor.

0.5-1ms

-«"» 1.5ms

DutyCycle (%) 0% 3%

PulseWidth (Ticks) 0

12% 100%

65535
Full PWM Range (16-Bit Resolution)

<

DeepBlueMbedded.com

ANNOUNCED SPECIFICATION OF
HS—422 STANDARD DELUXE SERVO

1.TECHNICAL VALUES

CONTROL SYSTEM
OPERATING VOLTAGE RANGE

OPERATING TEMPERATURE RANGE

TEST VOLTAGE
OPERATING SPEED

STALL TORQUE

OPERATING ANGLE
DIRECTION

CURRENT DRAIN

DEAD BAND WIDTH
CONNECTOR WIRE LENGTH
DIMENSIONS

WEIGHT

: +PULSE WIDTH CONTROL 1500usec NEUTRAL
14.8VTO 6.0V

:-20 TO +60°C

T AT 4.8V AT 6.0V

: 0.21sec/60° AT NO LOAD
: 3.3kg.cm(45.820z.in)

: 45%0NE SIDE PULSE TRAVELING 400usec

: CLOCK WISE/PULSE TRAVELING 1500 TO 1900usec
: 8mA/IDLE AND 150mA/NO LOAD RUNNING

: Busec

: 300mm(11.81in)

: 40.6x19.8x36.6mm(1.59x0.77x1.44in)

: 45.59(1.60z)

Ch.8 Math

0.16sec/60° AT NO LOAD
4.1kg.cm(56.930z.in)

64

The instruction for driving the PWM output is the CTRL_PWM instruction. This instruction is
explained in the Easy Manual and copied below:

Programming made easy
6.3 Powerful instructions make programming easy

6.3.7 Pulse-width modulation (PWM)

The CTRL_PWAM instruction is available in the Pulse group of the Extended instructions.

Table 6-20 CTRL_PWM instruction

LAD / FBD SCL Desciption
"CTAL PWM "etrl pwm db" (The CTRL_PWM instruction provides a fixed cycle
0B PWM:=W#16#0, time output with a variable duty cycle. The PWM
CTRL_PWM ' ENABLE:=False, output runs continuously after being started at the
i ENO - BUSY=> bool out , specified frequency (cycle time). The pulse width is
;mm SlilTJlj\S(-. STATUS=> word out_); | Varied as required to affect the desired control.

When you insert the CTRL_PWM instruction in your code block, you create the DB for the
instruction from the "Call options" dialog. The CTRL_PWM instruction stores the parameter
information in the DB and controls the data block parameters.

Duty cycle can be expressed, for example, as a per-
centage of the cycle time or as a relative quantity (such

- ® -
as 0 to 1000 or 0 to 10000). The pulse width can vary
@) from O (no pulse, always off) to full scale (no pulse,

always on).

@ Cycle time
@ Pulse width time

The PWM output can be varied from 0 to full scale, providing a digital output that in many
ways is the same as an analog output. For example, the PWM output can be used to control
the speed of a motor from stop to full speed, or it can be used to control position of a valve

from closed to fully opened.

Ch.8 Math

65

Lab 8.2A

This lab requires the number in QW1000 to be modulated between two numbers to engage the
vacuum and disengage the vacuum. The numbers and command to turn the vacuum on and off
must be determined by trial and error.

13

Home > Lynxmotion > Robotic Arms > Arm Accessories > Lynxmotion Vacuum Gripper Kit OvyOD®
Be the first to review this product
. usp $41.95
Lynxmotion Vacuum
. . Qty
Grlpper Klt N 10 to 100 USD
by Lynxmotion 12 $40.69 each

100 and more
USD $39.47 eac

© Instock

ADD TO CART

Product Highlights

- Compatible with ALS5 series of robotic arms

- Pickup any small light object that has a smooth exterior Add to Add to
finish Wishlist Compare
- Requires super-glue and common hand tools to Ask our experts
construct
Ask a question on the
- Uses one servo channel RobotShop

cg
@ Support

Description

- Compatible with AL5 series of robotic arms
- Pickup any small light object that has a smooth exterior finish
- Requires super-glue and common hand tools to construct

Uses one servo channel

The Lynxmotion Vacuum Gripper Kit is a fun accessory to the AL5 series of robotic arms. This unique
gripper uses an inexpensive syringe as the vacuum source. In the testing manufacturer was able to hold
3.5 ounces for over 30 minutes. The gripper will pickup any small light object that has a smooth exterior
finish. The Vacuum Gripper uses one servo channel which removes/adds air to the vacuum tube.

Ch. 8 Math 66

Lab 8.2B

This lab requires the number in QW1000 to be modulated between two numbers to open and
close the gripper. The numbers and command to open and close must be determined by trial and
error. There must be a ramping of the numbers between the open and close values in order to
move the gripper gradually instead of in a jerking manner. The speed of the move should be a
variable controlled by the program.

Home > Robots to Build & Experiment > Robots & Kits > Robotic Arms & Grippers > Large Robot Gripper “ L 4 m @
Be the first to review this product
; usp $19.50
Large Robot Gripper
by DFRobot

@ In stock

Product Highlights
- 2 DOF robot gripper

- Bigger clamping range with slotted jaw

- Able to grip objects tighter

. Add to Add to
- Servo slot to fit most servo Wishlist Compare

Ask our experts
@ Ask a question on the

RobotShop

cog >

Home > Robots to Build & Experiment > Robot Parts > Robot Construction Kit Parts > Lynxmotion SES V1 Parts > Hitec HS-422 Servo Motor n L J m @
Fdkk ok 43 Review(s) Add my review
Hitec HS-422 Servo b
by Hitec
@ Instock ADD TO CART
Product Highlights Add to Add to
- Speed (sec/600): 0.16 Wishlist Compare
- Torque (Kg-cm/Oz-in): 4.1/57
que (Kg) Ask our experts
- Size (mm); 41 x 20 x 37 Compare RC Servo
- Weight (g/oz): 45.5/1.6 Motors
Ask a question on the
RobotShop

g
@ Support

The time to close and time to open should be programmable and controlled. The speed at which
these grippers close should be a variable in the program. The signal is wired as shown below.

> i’/,.;\'_/

Ch. 8 Math 67

From the Hitec Manual:

Pulse Data
All Hitec servos require 3-5V peak to peak square wave pulse. Pulse duration is from 0.9mS to 2.1mS
with 1.5mS as center. The pulse refreshes at 50Hz (20mS).

Voltage Range
All Hitec Servos can be operated within a 4.8V-6V. range.
Only the HS-50 operates exclusively with 4 Nicad cells (4.8 volt).

Wire Color Meanings
On all Hitec servos the Black wire is 'ground’, the Red wire (center) is 'power' and the
third wire is 'signal’.

Direction of Rotation
All Hitec servos turn Clockwise direction (CW)

The circuit below shows the electrical connection and design to be used in the program for
controlling the two grippers:

Circuit from S7-1200 Signals to the Hitec
Output HS-422 Servo Motor
0-24V PWM Signal
O pwMm O @sv
Output Yellow
3.6K 5V O——O Red
(Middle)

™ This circuit may be from either a dedicated
1K 5V<_> power supply or from a zener circuit
referenced from the 24 V circuit

M O O QO Black
ov
High NHrfE r
Number Ramping umbe Ramping
Low Low Low Low
Number Number Number

Circuit for Vacuum Gripper Circuit for Hand Gripper

Ch.8 Math 68

The following figures outline the method of setting up the PWM output for the PLC and servo.
The next figure shows the PWM instruction which must be added to the program. It may be
inserted in any OB that is active. This instruction is inserted in OB1.

v Network 1: |

M0 .0

265
"Local~Pulse_1"

EN

= P\

EMABLE

“DB1
"CTRL_PWN_DE"
CTRL_PWM
END

FALSE

BUSY ==iF&lze
16%0000

STATUS [— 1650

The configuration of the PWM for output on output 0.0 for the above servo is as follows:

General " 10 tags " System constants H Texts |
b HSC4 1

" H:CS Pulse generators (PTO/PWM)

P HSCH

PTO1/PWM1

grc generotors

LR > General

General
Enable

Parameteras...
Hardware out...
IO addresses
» PTO2/PWMZ
General
Parameter as...
Hardware out...
IO addresses
w PTO3PWME

T~ T <

General

vl

Enable this pulse generator

Project information

Name: |Pulse_1

Comment:

This must be done before the program is loaded and run. It should also be saved before running.

Ch.8 Math

69

The following sets up the pulse duration for the servo above that requires a pulse duration of 20
msec.

General | [Texts

» HSC4 |
il > Parameter assignment

» HSCE

igFPulse generators

w PTO1/PYWNIT
General
Parameter as...
Hardware out...
I/O addresses

v PTO2/PWNZ2
General
Parameter as...
Hardware out...
I/O addresses

w PTO3/PVWNM3
General

- e -

> Hardware outputs

The following sets up the output word for entry of the pulse length in QW1000 (includes 1001):

| Goneral [10tags | ystemeonstanis [Texs |

P HSC4
P HSCS
P HSCE
h@ Fulse generators .
* PTO1/PWMIT
General
Parameteras...
LTS T > |0 addresses
1/0 addresses
w PTOZIPWM2
generel
Parameter as... T B
Hardware out... __
IIO addresses !
v PTO3/PWME Automaticupdate [
General |

The above initialization allows the user (program) to input values in the QW1000 location to test
the servo using the Watch Table:

Project18 » PLC_1 [CPU 1214C DUDUDC] » Watch and force tables » Watch table_1

#F & il 242 TN

i Neme = Address Displayformat Monitorvalue Modifyvalue ¥ Comment
[| [=l] =qwiooo DEC [*J1200 [f200] i A
- <Add new>

Ch.8 Math 70

The experiment concludes with the values for the limits of QW1000 found. Completely
clockwise is 175 and completely counter-clockwise is 1275. The servo ranges from 0 to 180° in
the process. The power supply shown is a good way to provide the +5V and +24 V to the
process. This power supply has a variable supply A and B that can be set to close to +24 V.

The experiment does not end here. This lab continues with a program in Lab Text Ch. 8. The
inclusion of four servo controllers in Ch. 13 in the discussion of arrays and Lab Text Ch. 31
where the program for moving of the robot built with the four servo controllers is discussed.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Ch. 8 Math 71

https://creativecommons.org/licenses/by/4.0/

