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Chapter 8  Math Functions     
 

Introduction 
 

The introduction of mathematical operations in the PLC provided major benefits to control logic.  

Numeric data could be combined with logic to provide more powerful control strategies.  For 

instance, decisions could be made concerning mathematical operations concerning counts of 

products, weights of a product, the temperature of an oven or any numeric variable in a process. 

 

Siemens Math Instructions 
 

The instructions are briefly divided into three categories:  Compare Blocks, Math Blocks and 

Move Blocks.  First will be the Compare blocks: 

 

 

 
 

Again, instructions given have the TIA definition quoted below.  The full definition for these 

instructions can be found in the reference manual. 

 
Compare Instruction 
 

  
 

“You use the compare instructions to compare two values of the same data type. When the LAD 

contact comparison is TRUE, then the contact is activated. When the FBD box comparison is TRUE, 

then the box output is TRUE. 

 
Relation type The comparison is true if: 
     ==   IN1 is equal to IN2 
     <>   IN1 is not equal to IN2 
     >=   IN1 is greater than or equal to IN2 

Fig. 8-1   Siemens 

Comparator Operations 

Fig. 8-2   Siemens Compare 

If Equal Operations 
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     <=   IN1 is less than or equal to IN2 
     >   IN1 is greater than IN2 
     <   IN1 is less than IN2” 

 
In Range and Out of Range Instructions 
 

 
 

“You use the IN_RANGE and OUT_RANGE instructions to test whether an input value is in or 

out of a specified value range. If the comparison is TRUE, then the box output is TRUE. 

The input parameters MIN, VAL, and MAX must be the same data type.” 

 
Relation type  The comparision is TRUE if: 
IN_RANGE  MIN <= VAL <= MAX 
OUT_RANGE  VAL < MIN or VAL > MAX 
 

 
OK and Not OK Instructions 
 

 
 

“You use the OK and NOT_OK instructions to test whether an input data reference is a valid real 

number according to IEEE specification 754. When the LAD contact is TRUE, the contact is 

activated and passes power flow. When the FBD box is TRUE, then the box output is TRUE.” 

 
Instruction  The Real number test is TRUE if: 
        OK   The input value is a valid Real number 
  NOT_OK  The input value is not a valid Real number 

 
  

Fig. 8-3   Siemens Test If In 

Range Instruction 

Fig. 8-4   Siemens Test If 

Data OK Instruction 



  

Ch. 8   Math  3 

 

Math Instructions 
 

 
 

 

Add, Sub, Mul, Div, Calculate 
 

 
 

  

Fig. 8-5   Siemens Table of 

Math Functions 

Fig. 8-6   Siemens 

Calculate Instruction 
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“You use a math box instruction to program the basic mathematical operations: 
 

ADD:  Addition (IN1 + IN2 = OUT) 
SUB:  Subtraction  (IN1 - IN2 = OUT) 
MUL:  Multiplication  (IN1 * IN2 = OUT) 
DIV:  Division  (IN1 / IN2 = OUT) 

 

An Integer division operation truncates the fractional part of the quotient to produce an integer 

output. 

 

When enabled (EN = 1), the math instruction performs the specified operation on the input values 

(IN1 and IN2) and stores the result in the memory address specified by the output parameter 

(OUT).  After the successful completion of the operation, the instruction sets ENO = 1.” 
 
ENO status   Description 

1   No error 
0   The Math operation result value would be outside the valid number range of the data 

type selected. The least significant part of the result that fits in the destination size is 
returned. 

0   Division by 0 (IN2 = 0): The result is undefined and zero is returned. 
0   Real/LReal: If one of the input values is NaN (not a number) then NaN is returned. 
0   ADD Real/LReal: If both IN values are INF with different signs, this is an illegal 

operation and NaN is returned. 
0   SUB Real/LReal: If both IN values are INF with the same sign, this is an illegal 

operation and NaN is returned. 
0   MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal 

operation and NaN is returned. 
0   DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN 

is returned. 
 

Mod 
 

 
 

 

“You use a MOD (modulo) instruction for the IN1 modulo IN2 math operation. The operation IN1 

MOD IN2 = IN1 - (IN1 / IN2) = parameter OUT.” 

 

 

Fig. 8-7   Siemens 

Modulo Instruction 
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NEG 
 

 
 

“You use the NEG (negation) instruction to invert the arithmetic sign of the value at parameter IN 

and store the result in parameter OUT.” 

 

Increment and Decrement 
 

 
 
“You use the INC and DEC instructions to: 

 

Increment a signed or unsigned integer number value  

INC (increment): Parameter IN/OUT value +1 = parameter IN/OUT value 

 

Decrement a signed or unsigned integer number value 

DEC (decrement): Parameter IN/OUT value - 1 = parameter IN/OUT value” 

 

Absolute Value 
 

 
 

“You use the ABS instruction to get the absolute value of a signed integer or real number at 

parameter IN and store the result in parameter OUT.” 
 

 

  

Fig. 8-8  Siemens 

Negation Instruction 

Fig. 8-9  Siemens 

Increment Instruction 

Fig. 8-10  Siemens 

Absolute Value Instruction 
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MIN and MAX 
 
“You use the MIN (minimum) and MAX (maximum) instructions as follows: 

 

MIN compares the value of two parameters IN1 and IN2 and assigns the minimum (lesser) 

value to parameter OUT. 

 

MAX compares the value of two parameters IN1 and IN2 and assigns the maximum 

(greater) value to parameter OUT.” 

 

Limit 
 

 
 

“You use the Limit instruction to test if the value of parameter IN is inside the value range 

specified by parameters MIN and MAX.  The OUT value is clamped at the MIN or MAX value, if the 

IN value is outside this range. 

 

If the value of parameter IN is inside specified range, then the value of IN is stored in 

parameter OUT. 

 

If the value of parameter IN is outside of the specified range, then the OUT value is the 

value of parameter MIN (if the IN value is less than the MIN value) or the value of 

parameter MAX (if the IN value is greater than the MAX value).” 

 

  

Fig. 8-11  Siemens 

Limit Instruction 
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Floating-Point Math 
 
You use the floating point instructions to program mathematical operations using a Real or 

LReal data type: 

 
SQR:  Square (IN 2 = OUT) 
SQRT:  Square root (√IN = OUT) 
LN:  Natural logarithm (LN(IN) = OUT) 
EXP:  Natural exponential (e IN =OUT), where base e = 2.71828182845904523536 
SIN:  Sine (sin(IN radians) = OUT) 
COS:  Cosine (cos(IN radians) = OUT) 
TAN:  Tangent (tan(IN radians) = OUT) 

  ASIN:  Inverse sine (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN 
ACOS:  Inverse cosine (arccos(IN) = OUT radians), where the cos(OUT radians) = IN 
ATAN:  Inverse tangent (arctan(IN) = OUT radians), where the tan(OUT radians) = IN 
FRAC:  Fraction (fractional part of floating point number IN = OUT) 
EXPT:  General exponential (IN1 IN2 = OUT) 
 
 
 

 

 

 
MOVE Operations 
 

 
 

“Use the move instructions to copy data elements to a new memory address and convert from 

one data type to another. The source data is not changed by the move process. 

MOVE: Copies a data element stored at a specified address to a new address 

MOVE_BLK: Interruptible move that copies a block of data elements to a new address 

UMOVE_BLK: Uninterruptible move that copies a block of data elements to a new 

Address” 

 

Fig. 8-12  Siemens 

Square Instruction 

Fig. 8-13  Siemens 

Move Operations 
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MOVE_BLK, UMOVE_BLK 
 

“The MOVE instruction copies a single data element from the source address specified by the 

IN parameter to the destination address specified by the OUT parameter.  The MOVE_BLK and 

UMOVE_BLK instructions have an additional COUNT parameter. The COUNT specifies how many 

data elements are copied. The number of bytes per element copied depends on the data type 

assigned to the IN and OUT parameter tag names in the PLC tag table.” 

 

 

Fill  
 
“You use the FILL_BLK and UFILL_BLK instructions as follows: 

 

 FILL_BLK: The interruptible fill instruction fills an address range with copies of a  

 specified data element. 

 UFILL_BLK: The uninterruptible fill instruction fills an address range with copies of a 

 specified data element.” 

 

Swap 

 

“You use the SWAP instruction to reverse the byte order for two-byte and four-byte data 

elements. No change is made to the bit order within each byte. ENO is always TRUE following 

execution of the SWAP instruction.” 

 
Convert 
 
“You use the CONVERT instruction to convert a data element from one data type to another data 

type. Click below the box name and then select IN and OUT data types from the dropdown list. 

After you select the (convert from) data type, a list of possible conversions is shown in the 

(convert to) dropdown list. Conversions from and to BCD16 are restricted to the Int data type. 

Conversions from and to BCD32 are restricted to the DInt data type.” 

 

Round and Truncate 
 

“ROUND converts a real number to an integer.  The real number fraction is rounded to the nearest 

integer value (IEEE - round to nearest). If the Real number is exactly one-half the span between 

two integers (i.e. 10.5), then the Real number is rounded to the even integer.  For example, 

ROUND (10.5) = 10 or ROUND (11.5) = 12.” 

 
  

Ceiling and Floor 
 
“CEIL converts a real number to the smallest integer greater than or equal to that real number 

(IEEE - round to +infinity). 

FLOOR converts a real number to the greatest integer smaller than or equal to that real number 

(IEEE - round to -infinity).” 
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Scale and Normalize 

 

“SCALE_X scales the normalized real parameter VALUE where ( 0.0 <= VALUE <= 1.0 ) in 

the data type and value range specified by the MIN and MAX parameters: 

 
 OUT = VALUE ( MAX - MIN ) + MIN” 

 

Allen-Bradley SLC Math Instructions  
 

A Review of Math Function Blocks from SLC-500 Reference Manual: 

 

“Instruction     Name         Purpose 
ADD Add Adds source A to source B and stores the result in the destination 

SUB Subtraction Subtracts source B from source A and stores the result in the destination 

MUL Multiply Multiplies source A by source B and stores the result in the destination 

DIV Divide Divides source A by source B and stores the result in the destination and 

the math register 

DDV Double 

Divide 

Divides the contents of the math register by the source and stores the 

result in the destination and the math register 

CLR Clear Sets all bits of a word to zero 

SQR Square 

Root 

Calculates the square root of the source and places the integer result in 

the destination 

SCP Scale with 

Parameters 

Produces a scaled output value that has a linear relationship between the 

input and scaled values 

SCL Scale Data Multiplies the source by a specified rate, adds to an offset value, and 

stores the result in the destination 

ABS Absolute Calculates the absolute value of the source and places the result in the 

destination 

CPT Compute Evaluates an expression and stores the result in the destination 

SWP Swap Swaps the low and high bytes of a specified number of words in a bit, 

integer, ASCII, or string file 

ASN Arc Sine Takes the arc sine of a number and stores the result (in radians) in the 

destination 

ACS Arc Cosine Takes the arc cosine of a number and stores the result ( in radians) in the 

destination 

ATN Arc 

Tangent 

Takes the arc tangent of a number and stores the result (in radians) in the 

destination 

COS Cosine Takes the cosine of a number and stores the result in the destination 

LN Natural Log Takes the natural log of the value in the source and stores it in the 

destination 

LOG Log to the 

Base 10 

Takes the log base 10 of the value in the source and stores the result in 

the destination 

SIN Sine Takes the sine of a number and stores the result in the destination 

TAN  Tangent Takes the tangent of a number and stores the result in the destination 

XPY X to the 

Power of Y 

Raise a value to a power and stores the result in the destination” 
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Some instructions are available for all processors.  Some of the more advanced instructions are 

only available with the more powerful processors.  

 

An example of a math block used in logic follows: 

 

  
 

The ADD Block above adds the contents of N7:20 to the contents of N7:21 and saves the result in 

location N7:22.  This occurs only when B3:2/5 is true. 

 

Using one-shot logic with the ADD Block:  

 

  
 

The ADD Block above adds the contents of N7:20 to the contents of N7:21 and saves the results in 

N7:22 only on the leading edge of B3:2/5.  The use of the one-shot allows only a single 

occurrence of the calculation and is a very efficient way to execute math operations. 

 

Use of the Continuous Execution Math Block: 

 

 
 

The ADD Block above adds the same data as earlier.  In this example, however, execution of the 

ADD Block occurs continuously (once each scan). 

 

Use of Constants in Math Blocks: 

 

Fig. 8-14  A-B SLC 

ADD Instruction 

Fig. 8-15  A-B SLC ADD 

Instruction with One Shot 

Fig. 8-16  A-B SLC 

Continuous ADD  



  

Ch. 8   Math  11 

 

 
 

In this example, the ADD Block adds a variable (N7:20) to a constant (250) and places the results 

in a variable location (N7:21).   

 

The decision must be made when programming how to treat constants. If the number in Source B 

above is never changed, then entering 250 into Source B is the preferred approach.  If the 

number is to be changed at a later date, however, use the addressing approach below and store 

the number 250 in N7:21.  

 

There is a dilemma with entering a constant in a storage location.  This occurs if a second person 

changes the value in the N7 location at a later date.  The documentation of the listing does not 

keep the constant’s value and the value of the constant 250 is lost unless it is kept in a rung 

comment (a very good reason to have rung comments).  A compromise is reached with the 

addition of a rung to load the constant’s value to the variable location at power-up or with the 

restart of RUN mode.  This approach employs use of the first scan bit, S:1/15. 

 

    
 

The above two rungs show an example of an ADD Block using a constant that may be changed but 

is restored each occurrence that power is restored or the processor is returned to the RUN mode.   

 
Multiple Step Calculations 
 

A calculation may require more than one block as shown below in Fig. 8-8.  If the file N7 is 

used, the address refers to an integer.  If the file F8 (not applicable to MicroLogix processors), 

the number refers to a floating point number.  Mixing of integer and floating-point numbers in 

the operation may be used if floating point is allowed by the processor.  Some of the instructions 

listed in Table 8-1 are not allowed on the MicroLogix processors.   

Fig. 8-17  A-B SLC Using 

Constants in ADD Block 

Fig. 8-18  A-B SLC Initializing 

a Constant in ADD Block 
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Example of Use of Calculation Blocks: 

 

Three numbers are stored in N7:8, N7:9 and N7:8.  Find the average of these three numbers 

using PLC logic.  Store the results in N7:15.  

 

 
 

 

Compare Instructions 
 

Another group of instructions use math expressions as contacts and are listed below.  They form 

the group of Comparison Instructions: 

 

“Mnemonic Name           Purpose 

EQU Equal Test whether two values are equal 

NEQ Not Equal Test whether one value is not equal to a second value 

LES Less Than Test whether one value is less than a second value 

LEQ Less Than or Equal Test whether one value is less than or equal to a second value 

GRT Greater Than Test whether one value is greater than another 

GEQ Greater Than or 

Equal 

Test whether one value is greater than or equal to a second value 

MEQ Masked 

Comparison for 

Equal 

Test portions of two values to see whether they are equal.  Compares 16-

bit data of a source address to 16-bit data at a reference address through 

a mask 

LIM Limit Test Test whether one value is within the limit range of two other values” 

 

 

An example of the Compare Block is seen below: 

In this example, the 

average of the numbers 

in N:8, N7:9 and N7:10 

are found.  The average 

is continuously being 

calculated and stored in 

N7:15.   

 

Temporary storage 

locations are used to 

hold partial results of 

the operation.  These 

locations are N7:11 and 

N7:12.  

 

Fig. 8-19  Multiple 

Blocks Perform Single 

Operation 
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This rung turns on B3:2/0 as long as the number in N7:20 is less than 50.  N7:20 ranges from -

32768 to +32767 

 

Math instructions are found at the output of a rung while comparison instructions are found as 

contacts that allow the output to operate under certain conditions.  In the example, when the 

number in N7:0 is less than the number 100, the subtraction block will be performed.  The 

subtraction block subtracts the number in N7:3 from the number in N7:2 and stores the result in 

N7:4.   

 

 

 

  
 

Mixing of Relay Contacts and Compare Instruction: 

 

  

  
 

The circuit above shows the combination of Comparison and contact logic turning on an output 

(O:0/1). 

 

 

Fig. 8-20  A-B SLC 

Compare Block 

Fig. 8-21  A-B SLC Compare 

Block followed by Math SUB 

Fig. 8-22  A-B SLC 

Mixed Contact and 

Compare Logic 
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Multiple Compare Instructions: 

 

 

  
 

The circuit above gives a combination of Comparison statements that turn on output B3:0/9.  If 

N7:12 is equal to any of the values 100, 101, or 108, the output turns on. This is an example of 

‘OR’ logic. If N7:12 = 100 or N7:12 = 101 or N7:12 = 108, then turn on B3:0/9. 

 

 

LIMIT Compare Block 
 

The Limit Test  (LIM) uses three values to determine if a value is within a certain limit.  The three 

values are: 

 

- Low Limit 

- Test Value 

- High Limit 

 

If the test parameter is a constant, then both the low and high limit values must be word 

addresses.  If the test parameter is a word address, then the low and high limit values may be 

either a constant or word address.   

 

The LIM instruction passes power when the test value is between the two limits of the lower and 

upper limit.  It is false when either above the high limit or below the lower limit.  When the 

lower limit is greater than the upper limit, LIM true when the test value is greater than the lower 

number (stored in the upper limit) or less than the higher number (stored in the lower limit).  

 

  

Fig. 8-23  A-B SLC 

Multiple Compare Logic 
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For example, in rung 0001 above, B3:0/2 will turn on if the value in N7:20 lies between 100 and 

200.  In rung 0002, B3:0/3 will turn on if the value in N7:21 is greater than 200 or is less than 

100. 

 

 
Other Compare Examples 
 

To insert high and low limits on a number, use the following circuit:  

 

  
 

When the number input into I:1.0 ranges less than 3277 or higher than 16384, the number will be 

limited to the high value of 16384 or to the low value of 3277.  

 

Fig. 8-24  A-B SLC 

Limit Test Instruction 

Fig. 8-25  A-B SLC 

High and Low Limit 

Test Instructions 
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Comparison values to turn on a valve: 

 

  
 

While the circuit above may be useful in turning on or off an output, usually a dead band must be 

inserted in the circuit so that output O:2/0 will not chatter on and off. Results of the circuit of are 

shown in the graph below.  Note the chatter as the output turns on and off at a high frequency.  

To slow the frequency to a much slower rate, the number in Source B must be made to vary and 

change so that the output must climb higher than 450 when increasing but turn off at a lesser 

value than 450 when falling.   

 

For instance, if the output provided cooling to a process and the number 450 represents a 

temperature setpoint.  N7:23 represents the value of the temperature of the process.  If the 

temperature rises above 450 degrees, then turn on some cooling through output O:2/0.  The 

circuit may work well as is, but if the output tends to chatter on and off, a dead-band circuit must 

be provided.  

 

 

 

450 (Setpoint) 

 

 

 

 

 
Temp 

 

Output      On Off On  Off On Off On  Off On Off On  Off On Off On Off  On Off On  

   

Output turns On-Off per Rung 0000.  

 

Fixing the High-Frequency On-Off with a Dead Band: 

 

Fig. 8-26  A-B SLC Compar-

ision to Turn on Valve 
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The circuit above provides a dead-band between 400 and 450 degrees.  When the temperature 

rises above 450, the coolant solenoid turns on.  When the temperature decreases to 400 degrees, 

the coolant turns off.  Providing a dead-band keeps the coolant solenoid from constantly turning 

on and off.  Care must be taken to initialize the circuit above to 450.  One approach to this is 

with a rung triggered by S:1/15 (First Scan).  One could also place 450 into N7:24 manually.   

The second approach is not as trustworthy, however, since programs tend to be written over and 

constants lost with programs that change after the program has been working for days or even 

years.  

 

 

450 (upper setpoint) 

 

 

 

 

 

 

 

 

 

400 (lower setpoint) 

 

 
PV 

 

Output          On        Off   

 

Fig. 8-27  A-B SLC Logic 

for Dead Band Application 
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Use of Memory using Latch or Seal with Compare 
 

Combination of memory circuits with compare operations was subtly introduced in the example 

of the valve above.  The two figures below provide functionally equivalent control of the dead-

band problem with the temperature controller.  However, the circuits employ standard memory 

logic to provide the same functional dead-band control. 

 

 

 
 

This program uses latch-unlatch logic to turn on and off the output with a dead-band of 50 

between the turn-on at 450 and turn-off at 400.   

 

  
 

This program uses seal-circuit logic to turn on and off the output with a dead-band of 50 between 

the turn-on at 450 and turn-off at 400.  Seal-circuit logic may be the preferred logic to use since 

it needs little additional logic to work correctly under all conditions.   

Fig. 8-28  A-B SLC Logic 

for Dead Band Application – 

a Second Approach 

Fig. 8-29  A-B SLC Logic 

for Dead Band Application – 

a Third Approach 
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Start-up conditions must be considered for each of the three approaches.  With the first circuit, 

the initial status of N7:23 must be considered.  Location N7:23 should be initialized to 450.  

With the latch logic and the seal logic, the circuit will automatically initialize to a known value 

in all cases which is preferred.  In general, using a seal circuit eliminates unnecessary logic to 

initialize the logic.   

 

What is used as a memory component in the first of the three circuits above?  

 

Status Table 
 

When an arithmetic operation is performed, results from the operation are stored in the Status 

Table in a manner similar to the operation of a microprocessor.  If two numbers are added, the 

carry and overflow are set or reset.  Other operations use similar status bits. They are reviewed in 

the Table 8-3 below: (from Allen-Bradley’s SLC-500 Instruction Reference Manual) 
 

“With this Bit:   The Controller: 

S:0/0 Carry (C) Sets if carry is generated; otherwise cleared 

S:0/1 Overflow (V) Indicates that the actual result of a math instruction does not fit in the 

designated destination 

S:0/2 Zero (Z) Indicates a 0 value after a math, move, or logical instruction 

S:0/3 Sign (S) Indicates a negative (less than 0) value after a math, move, or logic 

instruction 

S:5/0 Minor Error 

Overflow 

Set upon detection of a mathematical overflow or division by zero.  If 

set upon execution of an END statement or a Temporary End (TND) 

instruction, or an I/O Refresh (REF), the recoverable major error code 

0020 is declared.” 

 

Also, from the same manual, on Changes to the Math Register, S:13 and S:14, the status words 

for long integer math are described as follows: 

 

“Status word S:13 contains the least significant word of the 32-bit values of the MUL and DDV 

instructions.  It contains the remainder for DIV and DDV instructions.  It also contains the first 

four BCD digits for the Convert from BCD (FRD) and Convert to BCD (TOD) instructions. 

 

Status word S:14 contains the most significant word of the 32-bit values of the MUL and DDV 

instructions.  It contains the unrounded quotient for DIV and DDV instructions.  It also contains 

the most significant digit (digit 5) for the TOD and FRD instructions.” 

 

Another table from the same reference book describes the math overflow or 32-bit integer math 

function.  It is as follows: 
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“Address      Classification Description  

S:2/14 Dynamic Config Math Overflow Selection Bit 

Set this bit when you intend to use 32-bit addition and subtraction.  

When S:2/14 is set, and the result of an ADD, SUB, MUL, or DIV 

instruction cannot be represented in the destination address (underflow 

or overflow), 

 

- the overflow bit S:0/1 is set. 

- the overflow trap bit S:5/0 is set, and 

- the destination address contains the unsigned truncated least 

significant 16 bits of the result. 

 

The default condition of S:2/14 is reset (0).  When S:2/14 is reset, and 

the result of an ADD, SUB, MUL, or DIV instruction cannot be 

represented in the destination address (underflow or overflow), 

 

- the overflow bit S:0/1 is set, 

- the overflow trap bit S:5/0 is set, and 

- the destination address contains 32767 if the result is positive 

or –32768 if the result is negative. 

 

Note:  The status of bit S:2/14 has no effect on the DDV instruction.  

Also, it has no effect on the math register content when using MUL and 

DIV instructions. 

 

To program this feature, use the Data Monitor function to set or clear 

this bit.  To provide protection from inadvertent data monitor alteration 

of your selection, program an unconditional OTL instruction at address 

S:2/14 to ensure the new math overflow operation.  Program an 

unconditional OTU instruction at address S:2/14 to ensure the original 

math overflow operation.” 

  

This table shows a description of the operation to set S:2/14 when performing  a 16 bit non-

signed arithmetic operation instead of a 15 bit signed operation. 
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Status Table Math Section from RSLogix 500 
 

Display of the Math portion of the Status Table can be seen by opening the Status Table file S2 

and then the Math tab.   

 

 
 

Notice the Math Register locations S:13 and S:14.  The high order portion of the 32-bit number 

is saved in the ‘hi word’ and the low order portion is saved in the ‘lo word’. 

 

A very good example of 32-bit addition is included in the Allen-Bradley SLC-500 Reference 

Manual. The introduction to the section on 32-bit math is important and should be reviewed prior 

to tackling this subject. 

 

In general, math is done with the programmer choosing to use either integers or floating-point 

numbers.  If possible, always use floating-point math.  Integer math constantly must be 

concerned with overflowing the range of the number 32767 or –32768.   

 

Using Advanced Math Instructions 
 

 
 

A very useful command found under the Advanced Math tab of RSLogix 500, is the SCP or 

Scale with Parameters block.  The block above scales the input found at I:1.0 from an expected 

Fig. 8-30  A-B SLC Status 

Table, Math Portion 

Fig. 8-31  A-B SLC Scale 

with Parameters Instruction 
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input value ranging from 100 to 500 to an output value ranging from 200 to 250.  This function 

allows for scaling of input and output values, multiplication of any number by a second number 

with an offset or any other mathematical operation of the form y = mx + b without performing 

the operation of the programmer mathematically calculating m or b.   

 

Math Overflow Problem 
 

Rungs should be examined before entered to insure that the rung will not allow a numeric 

overflow.  The following is an example of a circuit that may experience an overflow: 

 

  
 

In the figure above, after the processor is turned to the run mode, the ADD Block of rung 0000 is 

executed each scan rung 0000 is executed.  Each scan the ADD Block is executed and 1 is added 

to N7:20.  Since the result is stored in N7:20, this location is incremented by 1.  Since a scan 

may take approximately 5 msec, in about 160 seconds, the number in N7:20 will reach 32767.  

This instruction will fault the machine and the processor will turn off.  The fault light will turn 

on.   

 

Care must be taken to not program rungs such as rung 0000 above unless the contents of N7:20 

are reset or limited in another rung.  Use one-shots before math operations as a general rule to 

avoid situations such as the mistake above. 

 

On the other hand, the use of a rung such as the one above may be useful in a program to 

calculate time duration of a scan.  If properly used with a timer, the ADD Block may be 

programmed to calculate the average scan time of the program. 

 

Status Table Contents on Faults 
 

To clear a fault that stops the program from running and to diagnose the problem, click on S2 – 

STATUS in the Data Files section of the Project Tree.  Then click Errors and read the description 

and analysis of the error in the window.  An alternate method is simply reset the error from the 

Command Line and hope the fault doesn’t reoccur.  It usually does.  Make that, it always does.     

 

Fig. 8-32  A-B SLC Math 

Overflow Problem 
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The CompactLogix Processor L16ER-BB1B gives the following properties page which is similar 

to the above SLC status page: 

 

 
 

The RSLogix help topic "Access Runtime Controller Configuration and Status" describes the 

following: 

 
S:FS   First Scan flag 
S:N   Negative flag 
S:Z   Zero flag 
S:V   Overflow flag 
S:C   Carry flag 
S:MINOR  Minor Fault flag 

 

Any other processor information must be obtained by using the GSV (get system variable) 

instruction. 

Fig. 8-33  Errors are described in 

the Error Description window. 
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When entering a GSV/SSV instruction, specify the object and its attribute to access. In some 

cases, there will be more than one instance of the same type of object. Be sure to specify the 

object name. For example, each task has its own TASK object that requires specifying the task 

name to gain access.  

 

These are the GSV/SSV objects. The objects available for access are dependent on the controller. 

 
AddOnInstructionDefinition 
Axis 
Controller 
ControllerDevice 
CoordinateSystem 
CST 
DF1 
FaultLog 
HardwareStatus 
Message 
Module 
MotionGroup 
Program 
Redundancy 
Routine 
Safety 
SerialPort 
Task 
TimeSynchronize 
WallClockTime 

 
Siemens gives similar results with the following pages when choosing the properties tab.  We are 

not able to see every similar device for Siemens listed above.  However, the help function for 

TIA provides a broad range of options for finding similar functions.  We will discuss in Chapter 

18 OB100, the Siemens start-up object block. This is the block containing instructions for start-

up of the machine or re-initializing the machine after a shutdown.   
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Use of Add Blocks 
 

Use of Add blocks using the same Source and Destination addresses may be used.  When 

programmed, a one-shot should be added to guarantee that the Add block does not continue for 

many scans.  As an example, consider using a button to add 5% or 1% to a value in N7:29 in the 

range 1000 to 5000.  The range of the ADD is 40 if 1% is chosen or 200 if 5% is chosen. 

 

The circuit may be programmed as follows: 

 

Fig. 8-34  Siemens 

Properties Pages 
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The two ADD Blocks above increment a number in N7:29 by either 1% or 5%. 

 

The following circuit decrements the number in N7:29 by 1% or 5%. 

 

 

  
 

 

To protect the limits of 1000 or 5000 in N7:29, add the following: 

 

Fig. 8-35  Example 

of 1%  or 5% ADD 

for Variable 

Fig. 8-36  Example of 

1% or 5% Decrement 

for Variable 
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CPT Calculation Block  
 

The CPT or Compute instruction is a very flexible instruction that is accessible only on SLC 5/03 

through 5/05 processors.  It provides expression statements similar to a computer language.   

 

 
   Fig. 8-38  The Compute Block Instructions 

 

The CPT or Compute instruction is a very flexible instruction that is accessible only on SLC 5/03 

through 5/05 processors.  It provides expression statements similar to a computer language.  

Multiple variables may be manipulated similarly to a statement in the language BASIC. 

Fig. 8-37  Example of 

Limit Protection for 

Variable 
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Mixing Counters and Math 
 

With the math instructions available, it is now possible to combine circuits using relay contacts 

and coils, timers, counters and math operations.  Coordination between the various rungs will 

continue to become more complicated as each new instruction is introduced. 

 

 

  
 
 
Mixing of Data Types 
 

A very good feature of the PLC/5 and SLC architecture in general is the ability to mix numeric 

types in the same instruction.  For instance, the instruction below adds the contents of F8:2 to 

N7:10 and places the results in B3:18.  As can be seen,  0 + 0 = 0.   

 

 

 
 

 

To mix numeric types, the difference between integer and floating point numbers must be taken 

into consideration.  If an F location is added to an N location and the result is placed in an F 

location, the fraction will be kept. However, if the result is placed in an N location, the fraction 

will be lost.  If this is desired, then mixed formatting is to be used.  

 

 

  

Fig. 8-39  Example of 

Mixing Counting and Math 

Fig. 8-40  Example of 

Mixing of Data Types 
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CompactLogix Math Instructions 
 

 

 
Compare 
 

If the CMP instruction finds the expression true, the rung-condition-out is set to true.   

 

 
 

If you enter an expression without a comparison operator, such as value_1 + value_2, or value_1, 

the instruction evaluates the expression as follows:  

 

If the expression is non-zero, tung-condition-out is set to true.  If the expression is zero, the rung-

condition-out is set to false.  See the following: 

 

 
 

Limit Test (CIRC) 
 
Example of Low Limit ≤ High Limit: 

0 ≤ value ≥ 100, set light_1.  If value < 0 or value > 100, turn off light_1. 

 

 
 

 

Example of Low Limit ≥ High Limit: 

When value ≥ 0 or value < -100, set light_1.  If value < 0 or value > -100, clear light_1.   

 

Fig. 8-41  A-B CompactLogix 

Compare Instruction 

Fig. 8-42  A-B CompactLogix 

Compare Instruction 

Compared to Zero 

Fig. 8-43  A-B CompactLogix 

Limit Instruction Testing for 

Value In Range 
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Mask Equal  
 

The following example shows a true rung-condition-out for an MEQ command: 

 

 
 

The following example shows rung-condition-out for an MEQ command that failed or was false: 

 

 
 

Equal 
If value_1 is equal to value_2, set the rung-condition-out to true for the EQU command. 

 

 

Fig. 8-44  A-B CompactLogix 

Limit Instruction Testing for 

Value Outside the Range 

Fig. 8-45  A-B CompactLogix 

Masked Equal Instruction 

True Rung Condition 

Fig. 8-46  A-B CompactLogix 

Masked Equal Instruction 

False Rung Condition 

Fig. 8-47  A-B CompactLogix 

Equal Instruction 
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Not Equal 
 
If value_1 is not equal to value_2, set the rung-condition-out to true for the EQU command. 

 

 
 
Less Than (A<B) 
 

If value_1 is less than value_2, set the rung-condition-out to true for the LES command. 

 

 
 
Greater Than (A>B) 
 

If value_1 is greater than value_2, set the rung-condition-out to true for the GRT command. 

 

 
 

 

Less Than or Eql (A<=B) 
 

If value_1 is less than or equal to value_2, then set the rung-condition-out to true for the LEQ 

command. 

 

 
 

 

Fig. 8-48  A-B CompactLogix 

Not Equal Instruction 

Fig. 8-49  A-B CompactLogix 

Not Equal Instruction 

Fig. 8-50  A-B CompactLogix 

Greater Than Instruction 

Fig. 8-51  A-B CompactLogix 

Less Than or Equal Instruction 
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Grtr Than or Eql (A>=B) 
 

If value_1 is greater than or equal to value_2, then set the rung-condition-out to true for the GEQ 

command. 

 

 
 

 

Compact Logix Compute/Math Instructions 
 

 
 

Compute 
 

For the example, the CPT instruction, evaluates value_1 multiplied by 5 and divides the result by 

the result of value_2 divided by 7, placing the final result in result_1. 

 

 
Add 
 

The ADD instruction adds Source A to Source B and places the result in the Destination. 

 

 
 

Subtract 
 

Subtract float_value_2 from float_value_1 and place the result in subtract_result. 

 

Fig. 8-52  A-B CompactLogix 

Greater Than or Equal Instruction 

Fig. 8-53  A-B CompactLogix 

Compute Instruction 

Fig. 8-54  A-B CompactLogix 

ADD Instruction 
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Multiply 
 

Multiply float_value_1 by float_value_2 and place the result in multiply_result. 

 

 
Divide 
 

Divide float_value_1 by float_value_2 and place the result in divide_result.  

 

 
 

Modulo 
 

Divide dividend by divisor and place the remainder in remainder.  In the example, 3 goes into 10 

three times with remainder 1.  The value remainder is saved in the destination.  

 

 
 

Square Root 
 

Calculate the square root of value_1 and place the result in sqr_result.  

 

Fig. 8-55  A-B CompactLogix 

SUB Instruction 

Fig. 8-56  A-B CompactLogix 

Multiply Instruction 

Fig. 8-57  A-B CompactLogix 

Divide Instruction 

Fig. 8-58  A-B CompactLogix 

Modulo Instruction 
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Negate 
 

Change the sign of value_1 and place the result in negate_result. 

 

 

 
Absolute Value 
 
Place the absolute value of value_1 into value_1_absolute.  In the example, the absolute value of 

-4 is +4.  

 
 

 

Move Instructions 
 

 
 

 

If you want to: Use this instruction: 

copy a value MOV 

copy a specific part of an integer MVM 

move bits within an integer or 
between integers 

BTD 

clear a value CLR 

 

 

 
 
 
 

Fig. 8-59  A-B CompactLogix 

Square Root Instruction 

Fig. 8-60  A-B CompactLogix 

Negate Instruction 

Fig. 8-61  A-B CompactLogix 

Absolute Value Instruction 

mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Move_MOV.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Masked_Move_MVM.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Bit_Distribute_BTD.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Clear_CLR.htm
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Move (MOV) 
 

The MOV instruction copies the Source to the Destination.  The Source remains unchanged. 

 

 
 

 

 

An Additional Look at the Juice Condenser 
 
The Juice Condenser project was introduced in chapter 5 and discussed again in chapter 6.  The 

juice condenser problem includes memory that the use of numbers encourage a new look.   

 

The operation included a fill, a condensate portion and a drain.  These operations were not to be 

overlaid but rather were to be consecutive.  This leads to a memory circuit that includes more 

than one set of events.   

 

 

V-2

High Level

Half Level

 

V-1

Temperature Sw

Agitator

Heat

Start

Done/Ready

(Fig. 5-1   The Juice Maker)
 

Fig. 8-63  Processor Needing Numbers for States 

 

Fig. 8-62  A-B CompactLogix 

Move Instruction 
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Each memory circuit must be exclusive of the other two events and must occur in a proper 

sequence.  For example, the fill operation must occur first, then the condensate operation and 

finally the drain operation.  This may be expressed using a number representing the state of the 

operation.  For example: 

 

EQU
State_No
=
1

This rung passes power when 
the Fill operation is running

EQU
State_No
=
2

This rung passes power when the 
Condensate operation is running

EQU
State_No
=
3

This rung passes power when the Drain 
operation is running

 
 

Fig. 8-64  Step Numbers for the Process 

 

The three operations must be done in order.  This requires that before the first operation starts, 

the requirement that there is not a fill, condensate or drain action presently active must be 

determined.  This can be expressed in the start portion of the fill operation as: 

 

EQU
State_No
=
0

P

Start 
Operation

Mov
1 
State_No

 
 

 

Succeeding operations must likewise be programmed using a start portion with the prior 

operation present.   
 

Fig. 8-65a  Method of 

Moving Between States 
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EQU
State_No
=
1

Conditions 
allowing 

Condensate 
to begin

Mov
2 
State_No

 
 

EQU
State_No
=
2

Conditions 
allowing 
Drain to 

begin

Mov
3
State_No

  
 

The conclusion of this problem is left as an exercise.   
 

  

Fig. 8-65b  Method of 

Moving Between States 

cont. 
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Paper Making Process 
 

A process with logic, timers, compare and math is a mixing tank for making paper.  The process 

works as follows: 

 

1. A tank is filled to medium level with water. 

2. The tank continues to fill with water and paper is added through a loss-in-weight 

feeder. 

3. A stirrer starts as soon as the paper begins to be added and continues until a batch is 

made and dumped and the level falls to the low level. 

4. The water finishes when the high level is reached and the paper finishes being added. 

5. The water and paper continue to be mixed until the paper is thoroughly mixed into a 

slurry by use of a timer. 

6. The tank is emptied by pumping the mixture out of the tank until the low level switch 

is reached.  Then the process of making a new batch begins again. 

 
 

Fig. 8-66a Paper Making Process Described 

 

The most difficult part of the program is the control of the loss-in-weight feeder.  The number is 

read as an integer and may be at any value in a range.  The program is to start at this value, turn 

on an output and watch the number representing the weight decrement a set amount and turn off 

the output.   

Addition of 

Water

Addition of 

Pulp

Agitator

High Level

Medium Level

Low Level

Drain Pump

Water is added through a valve.

Paper is added through a scale with a 
numeric input and an output to run.  The 
input is a number with the amount of 
weight in a hopper.    When the output is 
on, the hopper on the scale will discharge 
paper.  The scale weight will decrease.  
When the scale weight has decreased a set 
amount, the batch is done and the output 
is turned off.  This is called a loss-in-weight 
feeder.  The hopper is filled from above 
when the hopper is not being used. The 
hopper is filled by an operator manually.
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Fig. 8-66b Paper Making Process Described 

 

 
 

 

 

Addition of 

Water

Agitator

High Level

Medium Level

Low Level

Drain Pump

Starting a new batch:
Tank is empty
Water starts filling

Addition of 

Water

Agitator

High Level

Medium Level

Low Level

Drain Pump

Water fills to Medium Level
Agitator starts
Paper starts filling

Addition of 

Pulp

Agitator

High Level

Medium Level

Low Level

Drain Pump

Water fills to High Level
Paper fills to weight set- point
Agitator continues to run for preset time  
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Fig. 8-66c Paper Making Process Described 

 

 

 

Fig. 8-66d Paper Making Process Described 

To start the program for the paper-making process, begin by providing a start-up rung.  The rung 

must provide a memory circuit (probably a seal circuit) to start the process.  The program uses an 

action by an operator to start the mixing operation.  It is always good to check all the level 

switches for proper status but the low level switch is the only switch that must be checked for 

Agitator

High Level

Medium Level

Low Level

Drain Pump

Tank begins to empty
Agitator continues to run

Agitator

High Level

Medium Level

Low Level

Drain Pump

Agitator turns off
Pump continues to drain tank

Agitator

High Level

Medium Level

Low Level

Drain Pump

Pump turns off for time delay 
after level drops below low 
level.  Tank is drained, ready 
for next mix.
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proper level prior to starting.  The low level switch must be off.  The other two switches may be 

checked as well but are secondary to the low level switch for control of the batch.  If either one 

of these two switches report a water level, the switch should be replaced or cleaned.  It is not 

working properly or the low level switch is not working properly.  Alert a maintenance person if 

this is a problem of any magnitude. 

Where to begin the rest of the program is the responsibility of the programmer.  Concentrate on 

one event at a time.  Write down the requirements.   

  First, water must be added 
  Next, paper is added through a loss-in-weight scale  
  Next, other ingredients are added 
  Next, stirring occurs 

 

When the paper pulp is to be added, start with a box of pulp and a vibratory feeder.   Add the 

following: 

Feeder with 
Pulp in Box

Vibrator

Scale (Weight 
Measurement)

Into Vat

 

 

Fig. 8-67 Paper Making Process – Loss in Weight Feed 



  

Ch. 8   Math  42 

 

Stepping Program for Machine 
 

The following machine is similar to the conveyor of previous chapters except we now are filling 

a box with material coming from a process line.  The name of this device is a festooner.  The 

machine moves back and forth placing the material in the box.  The box is weighed and when a 

weight is achieved, the box is full.  There is usually an automatic knife that cuts the material and 

starts the material in a second box.  The logic is similar to the previous conveyors in that there is 

a motor that drives the product to the right and then to the left.  End of travel photo-eyes reverse 

the movement.  The end of process is achieved when a weight is exceeded.  A start button begins 

the action.  Provide a .5 sec dwell when the photo-eye sees the product to stop the movement 

before reversing the motor. 

 

Start Button PB1

Festooner
Lays material in box 
by moving back and 

forth

 
 

Fig. 8-68a Festooner Process 

An actual festooner is pictured below with no box included.  The material is placed on the table 

without enclosure.  In the program on next page, the right-most bit of Count_Cycle is used to 

drive the machine right or left. 

 

Fig. 8-68b 

Festooner Process 
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Number Systems 

Decimal numbers 

 

All number systems are positional in that each digit is weighted differently. For example, to 

write the number 287.54 represents 287.54 units of something.  The 2 at the extreme left is the 

most important digit and is usually referred to as the most significant digit. The 4 on the right of 

the number is the least significant and is usually not as highly desired as the number on the left.  

For instance if 287.54 represented $287.54, we would be very interested if the number were 

$387.54 or even $187.54, especially if this was a bill we were to pay.  On the other hand, we 

could hardly care if the 4 at the right of the number were a 5, 3, 8, 9 or whatever.  The weights of 

the number represent the following: 

 

2 · 100 + 8 · 10 + 7 · 1 + 5 · 0.1 + 4 · 0.01 

 

or: 

 

2 · 102 + 8 · 101 + 7 · 100 + 5 · 8-1 + 4 · 8-2 

 

 

Binary numbers 

 

Binary numbers are used in microprocessors, programmable logic controllers, and in all digital 

circuits. The binary number system only contains 2 digits: 0 and 1. Each digit is called a 'bit' and 

can contain either the value 0 or 1. The binary number system is like the decimal number system 

a positional number system and is written in the same general manner as decimal except that 10x 

is replaced with 2x. 

dn · 2
n-1 + … + d4 · 2

3 + d3 · 2
2 + d2 · 2

1 + d1 · 2
0 

 

Here dn is the nth digit (counting from right to left). If the number is an 8-bit number (called a 

byte), n is 8 (8 digits) and the binary number is 10101001, then it is calculated like this: 

 

1   0   1   0   1   0   0   1 

 

1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 

 

1 · 128 + 0 · 64 + 1 · 32 + 0 · 16 + 1 · 8 + 0 · 4 + 0 · 2 + 1 · 1 

 

 = 169 (decimal) 

  
or 

 

101010012 = 16910 
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Another example: 

 

10011101 

 

1   0   0   1   1   1   0   1 

 

1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 

 

1 · 128 + 0 · 64 + 0 · 32 + 1 · 16 + 1 · 8 + 1 · 4 + 0 · 2 + 1 · 1 

  

 = 15710 

 

 or 

 

 100111012 = 15710 

 

The radix of binary numbers is 2. 

 

 

Hexadecimal Numbers 

 

Hexadecimal numbers have 16 different digits (radix 16). The 6 first letters of the alphabet are 

used for the last 6 digits in the hexadecimal system. The digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 

C, D, E and F representing the decimal numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 

15 respectively. Upper case for A-F is optional. 

 

The weights of numbers in hexadecimal is as follows: 

 

dn · 16n-1 + … + d4 · 163 + d3 · 162 + d2 · 161 + d1 · 160 

 

dn is the nth digit (counting from right to left). This is the same as in any positional number 

system. If the number is a 4-digit number, n is 4 (4 digits) and the hexadecimal number is 5A2E 

or: 

5   A   2   E 

5 · 163 + 10 · 162 + 2 · 161 + 14 · 160 

5 · 4096 + 10 · 256 + 2 · 16 + 14 · 1 

  

 = 23086 (decimal) 

 

or 

 

5A2E16 = 2308610 
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Octal Numbers 

 

The octal number system is used a little in plc texts and an explanation is as follows: 

 The octal number system contains 8 digits numbered from 0 to 7. To convert from octal to 

decimal, apply the following general formula: 

 

dn · 8
n-1 + … + d4 · 8

3 + d3 · 8
2 + d2 · 8

1 + d1 · 8
0 

 

dn is the nth digit (counting from right to left). 

A conversion of the octal number 2417 to decimal follows: 

 

2   4   1   7 

 

2 · 83 + 4 · 82 + 1 · 81 + 7 · 80 

 

2 · 512 + 4 · 64 + 1 · 8 + 7 · 1 

  

 = 1295 (decimal) 

 

 or 

 
 24178 = 129510 

 

Converting between the binary and hexadecimal numbers: 

 

To convert from binary to hexadecimal, simply line the bits in 4 bit groups as follows: 

 

10010111010110102 

 

 

Binary 
 

1001 0111 0101 1010 

 

Decimal 
 

9 7 5 10 

 

Hexadecimal 
 

9 7 5 A 

 

or 10010111010110102 = 975A16 

 

Hexadecimal numbers are usually easier to remember because they are shorter than binary 

numbers. 
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Another example: 

 

E551A0F816 

 

 

Hexadecimal 
 

E 5 5 1 A 0 F 8 

 

Decimal 
 

14 5 5 1 10 0 15 8 

 

Binary 
 

1110 0101 0101 0001 1010 0000 1111 1000 

 

= 111001010101000110100000111110002 

 

 

The table shown below summarizes the digits. 

 

Binary 
 

Octal 
 

Decimal 
 

Hexadecimal 

 

0000 
 

0 
 

0 
 

0 

 

0001 
 

1 
 

1 
 

1 

 

0010 
 

2 
 

2 
 

2 

 

0011 
 

3 
 

3 
 

3 

 

0100 
 

4 
 

4 
 

4 

 

0101 
 

5 
 

5 
 

5 

 

0110 
 

6 
 

6 
 

6 

 

0111 
 

7 
 

7 
 

7 

 

1000 
 

10 
 

8 
 

8 

 

1001 
 

11 
 

9 
 

9 

 

1010 
 

12 
 

10 
 

A 

 

1011 
 

13 
 

11 
 

B 

 

1100 
 

14 
 

12 
 

C 

 

1101 
 

15 
 

13 
 

D 

 

1110 
 

16 
 

14 
 

E 

 

1111 
 

17 
 

15 
 

F 
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Binary Addition 

 

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 0 carry 1 

1 + 0 + carry = 0 carry 1 

1 + 1 + carry = 1 carry 1 

 

These are the rules for binary addition. 

 

To see binary addition at work: 

 
Carry    1 1 1 1     

   Number 1 0 1 0 0 1 1 0 1 1 0 0 

+ Number 2 0 1 0 1 1 0 1 1 0 1 0 

   Results 1 0 1 0 1 0 0 0 1 1 0 

 

 

 

Binary addition may take place in ladder logic.  Instructions are provided to carry out this 

function (ADD), but it is worthwhile to examine the process of binary addition using ladder 

logic.  In Figs. 8-35 and 8-36, logic to add two numbers using only combinational logic is 

shown.   

 

Since Bit 0 does not have a carry_in, half-adder logic may be employed but only for this bit.  It 

can be seen that half-adder logic is simpler than full-add logic by comparing Fig. 8-35 (Half-

Adder) to Fig. 8-36 (Full Adder).   

 

Fig. 8-69

Half Adder 

Logic

Word Address

Bit Address

 
 

The number in location N7:0 is added to the number in N7:1.  The result is stored in location 

N7:2.  The carry is located in N7:3.  The same locations are used for remaining bits of the word 

shown in Fig. 8-36.  Full adder logic for each remaining bit from 1 to 15 is required.  The logic 

must be duplicated for each bit.  Carry_In is from the prior bit.  The Carry_In for bit 1 is found in 
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Carry_Out of bit 0.     

 

Fig. 8-70

Full Adder

Full Adder

Carry Logic

 
 

 

 

It is worth noting that to actually build this logic requires a great deal of time unless the Copy-

Paste function is employed.  Once the logic is built, changing the bit numbers in the logic is all 

that is required for succeeding bits from 2 to 15.  



  

Ch. 8   Math  50 

 

 Binary Subtraction 

 

To perform binary subtraction, the easiest method is to find the 2’s complement of the second 

number and then add the two numbers together.  To find the 2’s complement, invert all the bits 

(1’s complement and add 1). 

 

 

To find the 2’s complement: 

 
number 0 1 0 0 1 1 0 1 0 1 1 

1’s complement 1 0 1 1 0 0 1 0 1 0 0 

+1            1 

2’s complement 1 0 1 1 0 0 1 0 1 0 1 

 

Then add the 2’s complement to the first number. 

 

A second method of finding the 2’s complement requires the use of a memory bit.  The rule 

requires that bits from the original number be copied to the 2’s complement number starting at 

the right-most bit.  The rule applies until a “1” is encountered.  The first “1” is copied but a 

memory bit is set after which the bits are “flipped”.  Try this rule.  It works and may be 

employed using ladder logic and a Latch bit to quickly find the 2’s complement of a number.   

 

Again, logic must be added to complete the function using rungs similar to rungs 4 and 5 of this 

figure but using bits 2 through15. 

 

 

Fig. 8-71 

Rung 1,2, 3 

Bit 0 Logic 

 

Rung 4, 5  

Bit 1 Logic which 

must be repeated 

for Bits 2-15 
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Binary Comparisons 
 

To find if two numbers are equal, use the Equal Block.  Use of combinational ladder logic may 

be employed as well.  Using combination logic may be easy to employ but should not be used in 

PLC programming instead of the Equal Block.  See below an example of the use of 

combinational ladder logic to determine if the number in N7:0 is equal to the number in 

C5:3.ACC.  Notice that only the high bite or bits 8-15 are being checked for equality.  If all bits 

are to be checked, the rung must double in size to check for the 8 additional bits (bits 0-7). 

 

 

 
   

  

Fig. 8-72 
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Radix 
 

The term “radix” is used to describe the number base used to display numbers.  For B3, notice 

the natural radix is binary although several other bases may be used.   

 

 
 

 Fig. 8-73    Use Radix to Display Binary Layout   

 

  

Likewise, for integer numbers, decimal is the natural base used although any of the same group 

as binary can be chosen. 

 

 
 

   Fig. 8-74    Use Radix to Display Integer Layout  
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Accessing a "slice" of a tagged data type 
 
PLC tags and data block tags can be accessed at the bit, byte, or word level depending on their 

size. The syntax for accessing such a data slice (Siemens) is as follows: 

 

● "<PLC tag name>".xn (bit access) 

● "<PLC tag name>".bn (byte access) 

● "<PLC tag name>".wn (word access) 

● "<Data block name>".<tag name>.xn (bit access) 

● "<Data block name>".<tag name>.bn (byte access) 

● "<Data block name>".<tag name>.wn (word access) 

 

A double word-sized tag can be accessed by bits 0 - 31, bytes 0 - 3, or word 0 - 1. A word sized 

tag can be accessed by bits 0 - 15, bytes 0 - 2, or word 0. A byte-sized tag can be accessed by bits 

0 - 8, or byte 0. Bit, byte, and word slices can be used anywhere that bits, bytes, or words are 

expected operands. 
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Accessing a tag with an AT overlay (Also Siemens) 
 

The AT tag overlay allows you to access an already-declared tag of a standard access block with 

an overlaid declaration of a different data type. You can, for example, address the individual bits 

of a tag of a Byte, Word, or DWord data type with an Array of Bool.  To overlay a parameter, 

declare an additional parameter directly after the parameter that is to be overlaid and select the 

data type "AT". The editor creates the overlay, and you can then choose the data type, struct, or 

array that you wish to use for the overlay. 
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Allen-Bradley Data Slice 
 
Below is an example of an expansion of a 32-bit word test_tag1 with the tag displayed as a DINT 

and the bits addressed sequentially starting with bit 0 through bit 31.   
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Summary of Addressing Individual Bits 
 
For a 16 bit integer, we have: 

 

Bit 1

5 

1

4 

1

3 

1

2 

1

1 

1

0 

0

9 

0

8 

0

7 

0

6 

0

5 

0

4 

0

3 

0

2 

0

1 

0

0 

                 

Siemens  M 0

.

7 

0

.

6 

0

.

5 

0

.

4 

0

.

3 

0

.

2 

0

.

1 

0

.

0 

1

.

7 

1

.

6 

1

.

5 

1

.

4 

1

.

3 

1

.

2 

1

.

1 

1

.

0 

                 

Siemens Addr .

x

1

5 

.

x

1

4 

.

x

1

3 

.

x

1

2 

.

x

1

1 

.

x

1

0 

.

x

9 

.

x

8 

.

x

7 

.

x

6 

.

x

5 

.

x

4 

.

x

3 

.

x

2 

.

x

1 

.

x

0 

                 

Logix .

1

5 

.

1

4 

.

1

3 

.

1

2 

.

1

1 

.

1

0 

.

9 

.

8 

.

7 

.

6 

.

5 

.

4 

.

3 

.

2 

.

1 

.

0 

                 

SLC /

1

5 

/

1

4 

/

1

3 

/

1

2 

/

1

1 

/

1

0 

/

9 

/

8 

/

7 

/

6 

/

5 

/

4 

/

3 

/

2 

/

1 

/

0 

 

Data Slice Last Look 
 

With the above table, we can assign contacts or coils referencing specific bits in the word 

test_tag1.  These examples show addressing for the most significant or sign bit. 

 

test_tag1.x15

Siemens Addr

test_tag1.15

A-B Logix

N7:0/15

A-B SLC
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Summary 

 

In summary, the chapter discusses manipulation of numeric data in the PLC.  Math Function 

Blocks were described first.  Math Function Blocks replace the relay coil at the right of a rung.   

Execution of the function block happens with either regular or one-shot contacts.  The Math 

Function Block may also be programmed to execute continuously.  

 

Compare Instructions allow power to pass in a manner similar to relay contacts.  A Compare 

Instruction, LIM, was discussed and found to control a contact over a range of numbers.  

Comparison Instructions with memory were used to provide a dead-band for switching on or off 

an output.  Various memory circuits were demonstrated in programs to provide this control 

algorithm. 

 

The Status Table in coordination with math operations was discussed.  Several Status Table 

locations described the use of math operations and locations of math holding registers. Thirty-

two bit integer math was briefly described.  The status table is also used to control the 32-bit 

math operation.  Floating point math as well as floating-point_integer math instructions were 

also discussed. 

 

The SCP or Scale with Parameters Instruction was summarized.  A method of protecting against 

numeric overflow was described. ADD and SUB blocks to add or subtract 1% or 5% from a 

number were also programmed.   

 

Use of Instruction Help with the example of the CPT block was also given.  Logic was 

developed showing the mixing of logic for counters and math.   

 

A paper-making process was described with many implications for the use of math in PLC logic. 

 

Various number systems were described including decimal, hexadecimal and octal.  The Radix 

box in RSLogix 500 was described. 

 

Labs and exercises follow. 
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Exercises 
 

 

1. Write a rung to turn on a coil when the value in int_1 > 20 and int_2 < 25. 

 

2. Write a rung to turn on a coil when the value in int_1 < 20 or float_1 > 8. 

 

3. Write a rung to turn on a coil when the value in byte_3 < 120. 

 

4. Multiply 10 * int_1 and display results in an integer variable.   

 

5. Divide the contents of int_4/(constant = 4). 

 

6. Write logic to create six time intervals as in the traffic light problem but using only one 

timer: (Only provide enough code to illustrate the concept.) 

 

7. Two numbers are stored in float_1 and float_2.  If these numbers represent the sides of a 

triangle, find the length of the hypotenuse.   

 

8. Write a single rung to turn on an output when the value in int_1 is less than 200, greater 

than 1000 or equal to 555: 

 

9. The accumulated number of widgets on the production line is found in counter 

widget_count_accum.  Each widget is worth 35 cents.  Write ladder logic to show in 

total_cost the total worth of widgets on the line. What are the numerical limitations of 

your calculation? 

 

10. Write a rung of logic that turns on when the number in int_1= 22. Use only relay contacts 

and one output coil. 

 

11. Three numbers are stored in int_1, int_2 and int_3.  Find the average of these three 

numbers and store the results.  

 

12. The following conveyor system has five outputs, lights for percent complete of packages 

going down conveyor 1 to conveyor 2.  Write a program to turn on these lights based on 

the fact that packages must pass photoeye 1 to enter the storage area and pass photoeye 2 

to exit. 
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13. Use Fig. 8-25 and describe how to program high and low limit tests with Siemens and 

CompactLogix Ladder Logic. 

 

14. Use Fig. 8-27 and describe how to program a dead band application with Siemens and 

CompactLogix Ladder Logic. 

 

15. Find the equivalent instruction to the SCP instruction for the Siemens and CompactLogix 

processors. 

 
16. Describe a program statement to add 1% to the full scale value of a variable using the 

Siemens and CompactLogix processors. 

 

17. Write the loss-in-weight portion of the paper-making process in which weight is lost from 

a scale that feeds pulp to the batch.   The scale is represented by a number that must 

decrease a set amount from an arbitrary number downward a set amount.  During the feed 

cycle, an output is on running a loss-in-weight feeder, usually a vibratory feed device. 

 

18. Finish the Juice Condensate program using numbers for states. 

 

19. Convert the following seal circuit to a S/R circuit. 
 

A

F

C D E F

 EQU

 Val_1

 250

 
 
  

Photoeye 1

Conveyor 1

Photoeye 2

Temporary 

storage for 100 

packages

Conveyor 2

Storage 

area empty

Storage 

area not 

empty
Storage 

area 50%

Storage 

area 90%

Storage 

area full

Packages outPackages in
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20. Write logic to place the material in the festooner box: 

Start Button PB1

Festooner
Lays material in box 
by moving back and 

forth

 
 

 

21. The festooner pictured above now lays material in a box by moving an arm back and forth.  

The action reverses after a small time delay after hitting the end-of-travel photo-eye.  The 

box is considered complete when the weight exceeds 100 pounds or 50 back-and-forth 

actions – whichever occurs first.  Design an I/O table and write a program in Ladder Logic to 

perform the action.  
 

22. The festooner pictured above is changed to lay material into the box with an arm that moves 

left and right with the following conditions: 

 

The sensors at each end stop the movement and, after a short time delay, reverse the motion.  

The scale under the box records the weight at the beginning of the fill.  The arm stops close 

to when 100# is met.  The arm is to come to rest at the left sensor.  If the weight isn’t yet at 

100# but closer to 100# than if the arm were to move through another pass, the arm is to stop 

and the operation is over.  The goal is to place as close to 100# material as possible with the 

fill ending at the left sensor. 

 

23. Write a program that turns on a heater when the temperature falls less than 300 oF and turns 

off the heater when the temperature exceeds 325 oF for the liquid in a vessel.  The 

temperature is input in a variable labelled ‘temp’.  In a table, define each variable used by 

type. 

 

24. Design a ramp up block for the lab below using the servo motor (Ramp to setpoint). 
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Lab 8.1  Integer Math 
 

 

Lab 8.1a  Using only contacts and coils, add two integer numbers found in two integer 

numbers.  Counts may be 8 bit, 16 bit or 32 bit in length. 

 

 

Lab 8.1b  Using only contacts and coils, subtract one integer number from another integer. 

 

 

Lab 8.1c Using only contacts and coils, multiply two integer numbers. 

 

 

Use the following as a guide to labs 8.1: 

  
                

 

+ (- or *) 

  
                

 

  
                

 

 

 

Lab 8.1d Using only contacts and coils, create an equivalent of an up counter.  Use inputs 

for counting up and count reset.  Turn on an output when the count equals a 

preset.  For memory, use latch or coil outputs.  Make the counter 8 bits long or 

from 0 to 255.  Use a constant in an integer location for the compare (between 0 

and 255). 

 

 

Lab 8.1e Using only contacts and coils, create an equivalent of a down counter.  Use inputs 

for counting down and count reset.  Turn on an output when the count equals a 

preset.  For memory, use latch or coil outputs.  Make the counter 8 bits long or 

from 0 to 255.  Use a constant in an integer location for the compare (between 0 

and 255). 
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Again, quoting from the Siemens Easy Book: “ 

 

 

”  
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Lab 8.2  PWM and RAMP 
 
In this lab we are introduced to the PWM output of the Siemens 1200 PLC. Described below is 

the configuration of the PWM output channels of the first 4 outputs of the Siemens S7-1215 

DCDCDC processor.  The configuration shown is just part of the process to program a pwm output. 
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The picture below is a hobby servo controller.  The movement and control is based on a number 

in the output word associated with the output.  With a configuration as above, the pulse width is 

determined by the servo specification.  The specification below shows 1500 micro seconds or 1.5 

msec duration.  Both servo applications below use the HS-422 servo motor.   
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The instruction for driving the PWM output is the CTRL_PWM instruction.  This instruction is 

explained in the Easy Manual and copied below: “ 

 

 

 
“  
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Lab 8.2A 
 

This lab requires the number in QW1000 to be modulated between two numbers to engage the 

vacuum and disengage the vacuum.  The numbers and command to turn the vacuum on and off 

must be determined by trial and error. 

 

“ 

 
 

” 
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Lab 8.2B 
 

This lab requires the number in QW1000 to be modulated between two numbers to open and 

close the gripper.  The numbers and command to open and close must be determined by trial and 

error.  There must be a ramping of the numbers between the open and close values in order to 

move the gripper gradually instead of in a jerking manner.  The speed of the move should be a 

variable controlled by the program. 

 
 

 

 
The time to close and time to open should be programmable and controlled.  The speed at which 

these grippers close should be a variable in the program. The signal is wired as shown below. 
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From the Hitec Manual: 
 
Pulse Data 
All Hitec servos require 3-5V peak to peak square wave pulse. Pulse duration is from 0.9mS to 2.1mS 
with 1.5mS as center. The pulse refreshes at 50Hz (20mS). 
 
Voltage Range 
All Hitec Servos can be operated within a 4.8V-6V. range. 
Only the HS-50 operates exclusively with 4 Nicad cells ( 4.8 volt ). 
 
Wire Color Meanings 
On all Hitec servos the Black wire is 'ground', the Red wire ( center ) is 'power' and the 
third wire is 'signal'. 
 
Direction of Rotation 
All Hitec servos turn Clockwise direction ( CW ) 

 

The circuit below shows the electrical connection and design to be used in the program for 

controlling the two grippers: 
 

0-24 V
PWM 

Output

3.6K

1K

PWM Signal 
@ 5 V
Yellow

M

Circuit from S7-1200 
Output

5V

0V

Black

Red
(Middle)

5V

This circuit may be from either a dedicated 
power supply or from a zener circuit 

referenced from the 24 V circuit

Signals to the Hitec 
HS-422 Servo Motor

Low 
Number

High 
Number

Low 
Number

Circuit for Vacuum Gripper

Low 
Number

High 
Number

Low 
Number

Circuit for Hand Gripper

RampingRamping
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The following figures outline the method of setting up the PWM output for the PLC and servo.  

The next figure shows the PWM instruction which must be added to the program.  It may be 

inserted in any OB that is active.  This instruction is inserted in OB1. 

 

 
 

The configuration of the PWM for output on output 0.0 for the above servo is as follows: 
 

 
 

 

 

This must be done before the program is loaded and run.  It should also be saved before running.  
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The following sets up the pulse duration for the servo above that requires a pulse duration of 20 

msec. 
 

 
 

The following sets up the output word for entry of the pulse length in QW1000 (includes 1001): 
 

 
 

The above initialization allows the user (program) to input values in the QW1000 location to test 

the servo using the Watch Table: 
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The experiment concludes with the values for the limits of QW1000 found. Completely 

clockwise is 175 and completely counter-clockwise is 1275.  The servo ranges from 0 to 180o in 

the process.  The power supply shown is a good way to provide the +5V and +24 V to the 

process.  This power supply has a variable supply A and B that can be set to close to +24 V. 

 

 

 
 

 
 

 

 

 

 

The experiment does not end here.  This lab continues with a program in Lab Text Ch. 8.  The 

inclusion of four servo controllers in Ch. 13 in the discussion of arrays and Lab Text Ch. 31 

where the program for moving of the robot built with the four servo controllers is discussed. 
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