

Ch. 8 Math 1

Chapter 8 Math Functions

Introduction

The introduction of mathematical operations in the PLC provided major benefits to control logic.

Numeric data could be combined with logic to provide more powerful control strategies. For

instance, decisions could be made concerning mathematical operations concerning counts of

products, weights of a product, the temperature of an oven or any numeric variable in a process.

Siemens Math Instructions

The instructions are briefly divided into three categories: Compare Blocks, Math Blocks and

Move Blocks. First will be the Compare blocks:

Again, instructions given have the TIA definition quoted below. The full definition for these

instructions can be found in the reference manual.

Compare Instruction

“You use the compare instructions to compare two values of the same data type. When the LAD

contact comparison is TRUE, then the contact is activated. When the FBD box comparison is TRUE,

then the box output is TRUE.

Relation type The comparison is true if:
 == IN1 is equal to IN2
 <> IN1 is not equal to IN2
 >= IN1 is greater than or equal to IN2

Fig. 8-1 Siemens

Comparator Operations

Fig. 8-2 Siemens Compare

If Equal Operations

Ch. 8 Math 2

 <= IN1 is less than or equal to IN2
 > IN1 is greater than IN2
 < IN1 is less than IN2”

In Range and Out of Range Instructions

“You use the IN_RANGE and OUT_RANGE instructions to test whether an input value is in or

out of a specified value range. If the comparison is TRUE, then the box output is TRUE.

The input parameters MIN, VAL, and MAX must be the same data type.”

Relation type The comparision is TRUE if:
IN_RANGE MIN <= VAL <= MAX
OUT_RANGE VAL < MIN or VAL > MAX

OK and Not OK Instructions

“You use the OK and NOT_OK instructions to test whether an input data reference is a valid real

number according to IEEE specification 754. When the LAD contact is TRUE, the contact is

activated and passes power flow. When the FBD box is TRUE, then the box output is TRUE.”

Instruction The Real number test is TRUE if:
 OK The input value is a valid Real number
 NOT_OK The input value is not a valid Real number

Fig. 8-3 Siemens Test If In

Range Instruction

Fig. 8-4 Siemens Test If

Data OK Instruction

Ch. 8 Math 3

Math Instructions

Add, Sub, Mul, Div, Calculate

Fig. 8-5 Siemens Table of

Math Functions

Fig. 8-6 Siemens

Calculate Instruction

Ch. 8 Math 4

“You use a math box instruction to program the basic mathematical operations:

ADD: Addition (IN1 + IN2 = OUT)
SUB: Subtraction (IN1 - IN2 = OUT)
MUL: Multiplication (IN1 * IN2 = OUT)
DIV: Division (IN1 / IN2 = OUT)

An Integer division operation truncates the fractional part of the quotient to produce an integer

output.

When enabled (EN = 1), the math instruction performs the specified operation on the input values

(IN1 and IN2) and stores the result in the memory address specified by the output parameter

(OUT). After the successful completion of the operation, the instruction sets ENO = 1.”

ENO status Description

1 No error
0 The Math operation result value would be outside the valid number range of the data

type selected. The least significant part of the result that fits in the destination size is
returned.

0 Division by 0 (IN2 = 0): The result is undefined and zero is returned.
0 Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.
0 ADD Real/LReal: If both IN values are INF with different signs, this is an illegal

operation and NaN is returned.
0 SUB Real/LReal: If both IN values are INF with the same sign, this is an illegal

operation and NaN is returned.
0 MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal

operation and NaN is returned.
0 DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN

is returned.

Mod

“You use a MOD (modulo) instruction for the IN1 modulo IN2 math operation. The operation IN1

MOD IN2 = IN1 - (IN1 / IN2) = parameter OUT.”

Fig. 8-7 Siemens

Modulo Instruction

Ch. 8 Math 5

NEG

“You use the NEG (negation) instruction to invert the arithmetic sign of the value at parameter IN

and store the result in parameter OUT.”

Increment and Decrement

“You use the INC and DEC instructions to:

Increment a signed or unsigned integer number value

INC (increment): Parameter IN/OUT value +1 = parameter IN/OUT value

Decrement a signed or unsigned integer number value

DEC (decrement): Parameter IN/OUT value - 1 = parameter IN/OUT value”

Absolute Value

“You use the ABS instruction to get the absolute value of a signed integer or real number at

parameter IN and store the result in parameter OUT.”

Fig. 8-8 Siemens

Negation Instruction

Fig. 8-9 Siemens

Increment Instruction

Fig. 8-10 Siemens

Absolute Value Instruction

Ch. 8 Math 6

MIN and MAX

“You use the MIN (minimum) and MAX (maximum) instructions as follows:

MIN compares the value of two parameters IN1 and IN2 and assigns the minimum (lesser)

value to parameter OUT.

MAX compares the value of two parameters IN1 and IN2 and assigns the maximum

(greater) value to parameter OUT.”

Limit

“You use the Limit instruction to test if the value of parameter IN is inside the value range

specified by parameters MIN and MAX. The OUT value is clamped at the MIN or MAX value, if the

IN value is outside this range.

If the value of parameter IN is inside specified range, then the value of IN is stored in

parameter OUT.

If the value of parameter IN is outside of the specified range, then the OUT value is the

value of parameter MIN (if the IN value is less than the MIN value) or the value of

parameter MAX (if the IN value is greater than the MAX value).”

Fig. 8-11 Siemens

Limit Instruction

Ch. 8 Math 7

Floating-Point Math

You use the floating point instructions to program mathematical operations using a Real or

LReal data type:

SQR: Square (IN 2 = OUT)
SQRT: Square root (√IN = OUT)
LN: Natural logarithm (LN(IN) = OUT)
EXP: Natural exponential (e IN =OUT), where base e = 2.71828182845904523536
SIN: Sine (sin(IN radians) = OUT)
COS: Cosine (cos(IN radians) = OUT)
TAN: Tangent (tan(IN radians) = OUT)

 ASIN: Inverse sine (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN
ACOS: Inverse cosine (arccos(IN) = OUT radians), where the cos(OUT radians) = IN
ATAN: Inverse tangent (arctan(IN) = OUT radians), where the tan(OUT radians) = IN
FRAC: Fraction (fractional part of floating point number IN = OUT)
EXPT: General exponential (IN1 IN2 = OUT)

MOVE Operations

“Use the move instructions to copy data elements to a new memory address and convert from

one data type to another. The source data is not changed by the move process.

MOVE: Copies a data element stored at a specified address to a new address

MOVE_BLK: Interruptible move that copies a block of data elements to a new address

UMOVE_BLK: Uninterruptible move that copies a block of data elements to a new

Address”

Fig. 8-12 Siemens

Square Instruction

Fig. 8-13 Siemens

Move Operations

Ch. 8 Math 8

MOVE_BLK, UMOVE_BLK

“The MOVE instruction copies a single data element from the source address specified by the

IN parameter to the destination address specified by the OUT parameter. The MOVE_BLK and

UMOVE_BLK instructions have an additional COUNT parameter. The COUNT specifies how many

data elements are copied. The number of bytes per element copied depends on the data type

assigned to the IN and OUT parameter tag names in the PLC tag table.”

Fill

“You use the FILL_BLK and UFILL_BLK instructions as follows:

 FILL_BLK: The interruptible fill instruction fills an address range with copies of a

 specified data element.

 UFILL_BLK: The uninterruptible fill instruction fills an address range with copies of a

 specified data element.”

Swap

“You use the SWAP instruction to reverse the byte order for two-byte and four-byte data

elements. No change is made to the bit order within each byte. ENO is always TRUE following

execution of the SWAP instruction.”

Convert

“You use the CONVERT instruction to convert a data element from one data type to another data

type. Click below the box name and then select IN and OUT data types from the dropdown list.

After you select the (convert from) data type, a list of possible conversions is shown in the

(convert to) dropdown list. Conversions from and to BCD16 are restricted to the Int data type.

Conversions from and to BCD32 are restricted to the DInt data type.”

Round and Truncate

“ROUND converts a real number to an integer. The real number fraction is rounded to the nearest

integer value (IEEE - round to nearest). If the Real number is exactly one-half the span between

two integers (i.e. 10.5), then the Real number is rounded to the even integer. For example,

ROUND (10.5) = 10 or ROUND (11.5) = 12.”

Ceiling and Floor

“CEIL converts a real number to the smallest integer greater than or equal to that real number

(IEEE - round to +infinity).

FLOOR converts a real number to the greatest integer smaller than or equal to that real number

(IEEE - round to -infinity).”

Ch. 8 Math 9

Scale and Normalize

“SCALE_X scales the normalized real parameter VALUE where (0.0 <= VALUE <= 1.0) in

the data type and value range specified by the MIN and MAX parameters:

 OUT = VALUE (MAX - MIN) + MIN”

Allen-Bradley SLC Math Instructions

A Review of Math Function Blocks from SLC-500 Reference Manual:

“Instruction Name Purpose
ADD Add Adds source A to source B and stores the result in the destination

SUB Subtraction Subtracts source B from source A and stores the result in the destination

MUL Multiply Multiplies source A by source B and stores the result in the destination

DIV Divide Divides source A by source B and stores the result in the destination and

the math register

DDV Double

Divide

Divides the contents of the math register by the source and stores the

result in the destination and the math register

CLR Clear Sets all bits of a word to zero

SQR Square

Root

Calculates the square root of the source and places the integer result in

the destination

SCP Scale with

Parameters

Produces a scaled output value that has a linear relationship between the

input and scaled values

SCL Scale Data Multiplies the source by a specified rate, adds to an offset value, and

stores the result in the destination

ABS Absolute Calculates the absolute value of the source and places the result in the

destination

CPT Compute Evaluates an expression and stores the result in the destination

SWP Swap Swaps the low and high bytes of a specified number of words in a bit,

integer, ASCII, or string file

ASN Arc Sine Takes the arc sine of a number and stores the result (in radians) in the

destination

ACS Arc Cosine Takes the arc cosine of a number and stores the result (in radians) in the

destination

ATN Arc

Tangent

Takes the arc tangent of a number and stores the result (in radians) in the

destination

COS Cosine Takes the cosine of a number and stores the result in the destination

LN Natural Log Takes the natural log of the value in the source and stores it in the

destination

LOG Log to the

Base 10

Takes the log base 10 of the value in the source and stores the result in

the destination

SIN Sine Takes the sine of a number and stores the result in the destination

TAN Tangent Takes the tangent of a number and stores the result in the destination

XPY X to the

Power of Y

Raise a value to a power and stores the result in the destination”

Ch. 8 Math 10

Some instructions are available for all processors. Some of the more advanced instructions are

only available with the more powerful processors.

An example of a math block used in logic follows:

The ADD Block above adds the contents of N7:20 to the contents of N7:21 and saves the result in

location N7:22. This occurs only when B3:2/5 is true.

Using one-shot logic with the ADD Block:

The ADD Block above adds the contents of N7:20 to the contents of N7:21 and saves the results in

N7:22 only on the leading edge of B3:2/5. The use of the one-shot allows only a single

occurrence of the calculation and is a very efficient way to execute math operations.

Use of the Continuous Execution Math Block:

The ADD Block above adds the same data as earlier. In this example, however, execution of the

ADD Block occurs continuously (once each scan).

Use of Constants in Math Blocks:

Fig. 8-14 A-B SLC

ADD Instruction

Fig. 8-15 A-B SLC ADD

Instruction with One Shot

Fig. 8-16 A-B SLC

Continuous ADD

Ch. 8 Math 11

In this example, the ADD Block adds a variable (N7:20) to a constant (250) and places the results

in a variable location (N7:21).

The decision must be made when programming how to treat constants. If the number in Source B

above is never changed, then entering 250 into Source B is the preferred approach. If the

number is to be changed at a later date, however, use the addressing approach below and store

the number 250 in N7:21.

There is a dilemma with entering a constant in a storage location. This occurs if a second person

changes the value in the N7 location at a later date. The documentation of the listing does not

keep the constant’s value and the value of the constant 250 is lost unless it is kept in a rung

comment (a very good reason to have rung comments). A compromise is reached with the

addition of a rung to load the constant’s value to the variable location at power-up or with the

restart of RUN mode. This approach employs use of the first scan bit, S:1/15.

The above two rungs show an example of an ADD Block using a constant that may be changed but

is restored each occurrence that power is restored or the processor is returned to the RUN mode.

Multiple Step Calculations

A calculation may require more than one block as shown below in Fig. 8-8. If the file N7 is

used, the address refers to an integer. If the file F8 (not applicable to MicroLogix processors),

the number refers to a floating point number. Mixing of integer and floating-point numbers in

the operation may be used if floating point is allowed by the processor. Some of the instructions

listed in Table 8-1 are not allowed on the MicroLogix processors.

Fig. 8-17 A-B SLC Using

Constants in ADD Block

Fig. 8-18 A-B SLC Initializing

a Constant in ADD Block

Ch. 8 Math 12

Example of Use of Calculation Blocks:

Three numbers are stored in N7:8, N7:9 and N7:8. Find the average of these three numbers

using PLC logic. Store the results in N7:15.

Compare Instructions

Another group of instructions use math expressions as contacts and are listed below. They form

the group of Comparison Instructions:

“Mnemonic Name Purpose

EQU Equal Test whether two values are equal

NEQ Not Equal Test whether one value is not equal to a second value

LES Less Than Test whether one value is less than a second value

LEQ Less Than or Equal Test whether one value is less than or equal to a second value

GRT Greater Than Test whether one value is greater than another

GEQ Greater Than or

Equal

Test whether one value is greater than or equal to a second value

MEQ Masked

Comparison for

Equal

Test portions of two values to see whether they are equal. Compares 16-

bit data of a source address to 16-bit data at a reference address through

a mask

LIM Limit Test Test whether one value is within the limit range of two other values”

An example of the Compare Block is seen below:

In this example, the

average of the numbers

in N:8, N7:9 and N7:10

are found. The average

is continuously being

calculated and stored in

N7:15.

Temporary storage

locations are used to

hold partial results of

the operation. These

locations are N7:11 and

N7:12.

Fig. 8-19 Multiple

Blocks Perform Single

Operation

Ch. 8 Math 13

This rung turns on B3:2/0 as long as the number in N7:20 is less than 50. N7:20 ranges from -

32768 to +32767

Math instructions are found at the output of a rung while comparison instructions are found as

contacts that allow the output to operate under certain conditions. In the example, when the

number in N7:0 is less than the number 100, the subtraction block will be performed. The

subtraction block subtracts the number in N7:3 from the number in N7:2 and stores the result in

N7:4.

Mixing of Relay Contacts and Compare Instruction:

The circuit above shows the combination of Comparison and contact logic turning on an output

(O:0/1).

Fig. 8-20 A-B SLC

Compare Block

Fig. 8-21 A-B SLC Compare

Block followed by Math SUB

Fig. 8-22 A-B SLC

Mixed Contact and

Compare Logic

Ch. 8 Math 14

Multiple Compare Instructions:

The circuit above gives a combination of Comparison statements that turn on output B3:0/9. If

N7:12 is equal to any of the values 100, 101, or 108, the output turns on. This is an example of

‘OR’ logic. If N7:12 = 100 or N7:12 = 101 or N7:12 = 108, then turn on B3:0/9.

LIMIT Compare Block

The Limit Test (LIM) uses three values to determine if a value is within a certain limit. The three

values are:

- Low Limit

- Test Value

- High Limit

If the test parameter is a constant, then both the low and high limit values must be word

addresses. If the test parameter is a word address, then the low and high limit values may be

either a constant or word address.

The LIM instruction passes power when the test value is between the two limits of the lower and

upper limit. It is false when either above the high limit or below the lower limit. When the

lower limit is greater than the upper limit, LIM true when the test value is greater than the lower

number (stored in the upper limit) or less than the higher number (stored in the lower limit).

Fig. 8-23 A-B SLC

Multiple Compare Logic

Ch. 8 Math 15

For example, in rung 0001 above, B3:0/2 will turn on if the value in N7:20 lies between 100 and

200. In rung 0002, B3:0/3 will turn on if the value in N7:21 is greater than 200 or is less than

100.

Other Compare Examples

To insert high and low limits on a number, use the following circuit:

When the number input into I:1.0 ranges less than 3277 or higher than 16384, the number will be

limited to the high value of 16384 or to the low value of 3277.

Fig. 8-24 A-B SLC

Limit Test Instruction

Fig. 8-25 A-B SLC

High and Low Limit

Test Instructions

Ch. 8 Math 16

Comparison values to turn on a valve:

While the circuit above may be useful in turning on or off an output, usually a dead band must be

inserted in the circuit so that output O:2/0 will not chatter on and off. Results of the circuit of are

shown in the graph below. Note the chatter as the output turns on and off at a high frequency.

To slow the frequency to a much slower rate, the number in Source B must be made to vary and

change so that the output must climb higher than 450 when increasing but turn off at a lesser

value than 450 when falling.

For instance, if the output provided cooling to a process and the number 450 represents a

temperature setpoint. N7:23 represents the value of the temperature of the process. If the

temperature rises above 450 degrees, then turn on some cooling through output O:2/0. The

circuit may work well as is, but if the output tends to chatter on and off, a dead-band circuit must

be provided.

450 (Setpoint)

Temp

Output On Off On Off On Off On Off On Off On Off On Off On Off On Off On

Output turns On-Off per Rung 0000.

Fixing the High-Frequency On-Off with a Dead Band:

Fig. 8-26 A-B SLC Compar-

ision to Turn on Valve

Ch. 8 Math 17

The circuit above provides a dead-band between 400 and 450 degrees. When the temperature

rises above 450, the coolant solenoid turns on. When the temperature decreases to 400 degrees,

the coolant turns off. Providing a dead-band keeps the coolant solenoid from constantly turning

on and off. Care must be taken to initialize the circuit above to 450. One approach to this is

with a rung triggered by S:1/15 (First Scan). One could also place 450 into N7:24 manually.

The second approach is not as trustworthy, however, since programs tend to be written over and

constants lost with programs that change after the program has been working for days or even

years.

450 (upper setpoint)

400 (lower setpoint)

PV

Output On Off

Fig. 8-27 A-B SLC Logic

for Dead Band Application

Ch. 8 Math 18

Use of Memory using Latch or Seal with Compare

Combination of memory circuits with compare operations was subtly introduced in the example

of the valve above. The two figures below provide functionally equivalent control of the dead-

band problem with the temperature controller. However, the circuits employ standard memory

logic to provide the same functional dead-band control.

This program uses latch-unlatch logic to turn on and off the output with a dead-band of 50

between the turn-on at 450 and turn-off at 400.

This program uses seal-circuit logic to turn on and off the output with a dead-band of 50 between

the turn-on at 450 and turn-off at 400. Seal-circuit logic may be the preferred logic to use since

it needs little additional logic to work correctly under all conditions.

Fig. 8-28 A-B SLC Logic

for Dead Band Application –

a Second Approach

Fig. 8-29 A-B SLC Logic

for Dead Band Application –

a Third Approach

Ch. 8 Math 19

Start-up conditions must be considered for each of the three approaches. With the first circuit,

the initial status of N7:23 must be considered. Location N7:23 should be initialized to 450.

With the latch logic and the seal logic, the circuit will automatically initialize to a known value

in all cases which is preferred. In general, using a seal circuit eliminates unnecessary logic to

initialize the logic.

What is used as a memory component in the first of the three circuits above?

Status Table

When an arithmetic operation is performed, results from the operation are stored in the Status

Table in a manner similar to the operation of a microprocessor. If two numbers are added, the

carry and overflow are set or reset. Other operations use similar status bits. They are reviewed in

the Table 8-3 below: (from Allen-Bradley’s SLC-500 Instruction Reference Manual)

“With this Bit: The Controller:

S:0/0 Carry (C) Sets if carry is generated; otherwise cleared

S:0/1 Overflow (V) Indicates that the actual result of a math instruction does not fit in the

designated destination

S:0/2 Zero (Z) Indicates a 0 value after a math, move, or logical instruction

S:0/3 Sign (S) Indicates a negative (less than 0) value after a math, move, or logic

instruction

S:5/0 Minor Error

Overflow

Set upon detection of a mathematical overflow or division by zero. If

set upon execution of an END statement or a Temporary End (TND)

instruction, or an I/O Refresh (REF), the recoverable major error code

0020 is declared.”

Also, from the same manual, on Changes to the Math Register, S:13 and S:14, the status words

for long integer math are described as follows:

“Status word S:13 contains the least significant word of the 32-bit values of the MUL and DDV

instructions. It contains the remainder for DIV and DDV instructions. It also contains the first

four BCD digits for the Convert from BCD (FRD) and Convert to BCD (TOD) instructions.

Status word S:14 contains the most significant word of the 32-bit values of the MUL and DDV

instructions. It contains the unrounded quotient for DIV and DDV instructions. It also contains

the most significant digit (digit 5) for the TOD and FRD instructions.”

Another table from the same reference book describes the math overflow or 32-bit integer math

function. It is as follows:

Ch. 8 Math 20

“Address Classification Description

S:2/14 Dynamic Config Math Overflow Selection Bit

Set this bit when you intend to use 32-bit addition and subtraction.

When S:2/14 is set, and the result of an ADD, SUB, MUL, or DIV

instruction cannot be represented in the destination address (underflow

or overflow),

- the overflow bit S:0/1 is set.

- the overflow trap bit S:5/0 is set, and

- the destination address contains the unsigned truncated least

significant 16 bits of the result.

The default condition of S:2/14 is reset (0). When S:2/14 is reset, and

the result of an ADD, SUB, MUL, or DIV instruction cannot be

represented in the destination address (underflow or overflow),

- the overflow bit S:0/1 is set,

- the overflow trap bit S:5/0 is set, and

- the destination address contains 32767 if the result is positive

or –32768 if the result is negative.

Note: The status of bit S:2/14 has no effect on the DDV instruction.

Also, it has no effect on the math register content when using MUL and

DIV instructions.

To program this feature, use the Data Monitor function to set or clear

this bit. To provide protection from inadvertent data monitor alteration

of your selection, program an unconditional OTL instruction at address

S:2/14 to ensure the new math overflow operation. Program an

unconditional OTU instruction at address S:2/14 to ensure the original

math overflow operation.”

This table shows a description of the operation to set S:2/14 when performing a 16 bit non-

signed arithmetic operation instead of a 15 bit signed operation.

Ch. 8 Math 21

Status Table Math Section from RSLogix 500

Display of the Math portion of the Status Table can be seen by opening the Status Table file S2

and then the Math tab.

Notice the Math Register locations S:13 and S:14. The high order portion of the 32-bit number

is saved in the ‘hi word’ and the low order portion is saved in the ‘lo word’.

A very good example of 32-bit addition is included in the Allen-Bradley SLC-500 Reference

Manual. The introduction to the section on 32-bit math is important and should be reviewed prior

to tackling this subject.

In general, math is done with the programmer choosing to use either integers or floating-point

numbers. If possible, always use floating-point math. Integer math constantly must be

concerned with overflowing the range of the number 32767 or –32768.

Using Advanced Math Instructions

A very useful command found under the Advanced Math tab of RSLogix 500, is the SCP or

Scale with Parameters block. The block above scales the input found at I:1.0 from an expected

Fig. 8-30 A-B SLC Status

Table, Math Portion

Fig. 8-31 A-B SLC Scale

with Parameters Instruction

Ch. 8 Math 22

input value ranging from 100 to 500 to an output value ranging from 200 to 250. This function

allows for scaling of input and output values, multiplication of any number by a second number

with an offset or any other mathematical operation of the form y = mx + b without performing

the operation of the programmer mathematically calculating m or b.

Math Overflow Problem

Rungs should be examined before entered to insure that the rung will not allow a numeric

overflow. The following is an example of a circuit that may experience an overflow:

In the figure above, after the processor is turned to the run mode, the ADD Block of rung 0000 is

executed each scan rung 0000 is executed. Each scan the ADD Block is executed and 1 is added

to N7:20. Since the result is stored in N7:20, this location is incremented by 1. Since a scan

may take approximately 5 msec, in about 160 seconds, the number in N7:20 will reach 32767.

This instruction will fault the machine and the processor will turn off. The fault light will turn

on.

Care must be taken to not program rungs such as rung 0000 above unless the contents of N7:20

are reset or limited in another rung. Use one-shots before math operations as a general rule to

avoid situations such as the mistake above.

On the other hand, the use of a rung such as the one above may be useful in a program to

calculate time duration of a scan. If properly used with a timer, the ADD Block may be

programmed to calculate the average scan time of the program.

Status Table Contents on Faults

To clear a fault that stops the program from running and to diagnose the problem, click on S2 –

STATUS in the Data Files section of the Project Tree. Then click Errors and read the description

and analysis of the error in the window. An alternate method is simply reset the error from the

Command Line and hope the fault doesn’t reoccur. It usually does. Make that, it always does.

Fig. 8-32 A-B SLC Math

Overflow Problem

Ch. 8 Math 23

The CompactLogix Processor L16ER-BB1B gives the following properties page which is similar

to the above SLC status page:

The RSLogix help topic "Access Runtime Controller Configuration and Status" describes the

following:

S:FS First Scan flag
S:N Negative flag
S:Z Zero flag
S:V Overflow flag
S:C Carry flag
S:MINOR Minor Fault flag

Any other processor information must be obtained by using the GSV (get system variable)

instruction.

Fig. 8-33 Errors are described in

the Error Description window.

Ch. 8 Math 24

When entering a GSV/SSV instruction, specify the object and its attribute to access. In some

cases, there will be more than one instance of the same type of object. Be sure to specify the

object name. For example, each task has its own TASK object that requires specifying the task

name to gain access.

These are the GSV/SSV objects. The objects available for access are dependent on the controller.

AddOnInstructionDefinition
Axis
Controller
ControllerDevice
CoordinateSystem
CST
DF1
FaultLog
HardwareStatus
Message
Module
MotionGroup
Program
Redundancy
Routine
Safety
SerialPort
Task
TimeSynchronize
WallClockTime

Siemens gives similar results with the following pages when choosing the properties tab. We are

not able to see every similar device for Siemens listed above. However, the help function for

TIA provides a broad range of options for finding similar functions. We will discuss in Chapter

18 OB100, the Siemens start-up object block. This is the block containing instructions for start-

up of the machine or re-initializing the machine after a shutdown.

Ch. 8 Math 25

Use of Add Blocks

Use of Add blocks using the same Source and Destination addresses may be used. When

programmed, a one-shot should be added to guarantee that the Add block does not continue for

many scans. As an example, consider using a button to add 5% or 1% to a value in N7:29 in the

range 1000 to 5000. The range of the ADD is 40 if 1% is chosen or 200 if 5% is chosen.

The circuit may be programmed as follows:

Fig. 8-34 Siemens

Properties Pages

Ch. 8 Math 26

The two ADD Blocks above increment a number in N7:29 by either 1% or 5%.

The following circuit decrements the number in N7:29 by 1% or 5%.

To protect the limits of 1000 or 5000 in N7:29, add the following:

Fig. 8-35 Example

of 1% or 5% ADD

for Variable

Fig. 8-36 Example of

1% or 5% Decrement

for Variable

Ch. 8 Math 27

CPT Calculation Block

The CPT or Compute instruction is a very flexible instruction that is accessible only on SLC 5/03

through 5/05 processors. It provides expression statements similar to a computer language.

 Fig. 8-38 The Compute Block Instructions

The CPT or Compute instruction is a very flexible instruction that is accessible only on SLC 5/03

through 5/05 processors. It provides expression statements similar to a computer language.

Multiple variables may be manipulated similarly to a statement in the language BASIC.

Fig. 8-37 Example of

Limit Protection for

Variable

Ch. 8 Math 28

Mixing Counters and Math

With the math instructions available, it is now possible to combine circuits using relay contacts

and coils, timers, counters and math operations. Coordination between the various rungs will

continue to become more complicated as each new instruction is introduced.

Mixing of Data Types

A very good feature of the PLC/5 and SLC architecture in general is the ability to mix numeric

types in the same instruction. For instance, the instruction below adds the contents of F8:2 to

N7:10 and places the results in B3:18. As can be seen, 0 + 0 = 0.

To mix numeric types, the difference between integer and floating point numbers must be taken

into consideration. If an F location is added to an N location and the result is placed in an F

location, the fraction will be kept. However, if the result is placed in an N location, the fraction

will be lost. If this is desired, then mixed formatting is to be used.

Fig. 8-39 Example of

Mixing Counting and Math

Fig. 8-40 Example of

Mixing of Data Types

Ch. 8 Math 29

CompactLogix Math Instructions

Compare

If the CMP instruction finds the expression true, the rung-condition-out is set to true.

If you enter an expression without a comparison operator, such as value_1 + value_2, or value_1,

the instruction evaluates the expression as follows:

If the expression is non-zero, tung-condition-out is set to true. If the expression is zero, the rung-

condition-out is set to false. See the following:

Limit Test (CIRC)

Example of Low Limit ≤ High Limit:

0 ≤ value ≥ 100, set light_1. If value < 0 or value > 100, turn off light_1.

Example of Low Limit ≥ High Limit:

When value ≥ 0 or value < -100, set light_1. If value < 0 or value > -100, clear light_1.

Fig. 8-41 A-B CompactLogix

Compare Instruction

Fig. 8-42 A-B CompactLogix

Compare Instruction

Compared to Zero

Fig. 8-43 A-B CompactLogix

Limit Instruction Testing for

Value In Range

Ch. 8 Math 30

Mask Equal

The following example shows a true rung-condition-out for an MEQ command:

The following example shows rung-condition-out for an MEQ command that failed or was false:

Equal
If value_1 is equal to value_2, set the rung-condition-out to true for the EQU command.

Fig. 8-44 A-B CompactLogix

Limit Instruction Testing for

Value Outside the Range

Fig. 8-45 A-B CompactLogix

Masked Equal Instruction

True Rung Condition

Fig. 8-46 A-B CompactLogix

Masked Equal Instruction

False Rung Condition

Fig. 8-47 A-B CompactLogix

Equal Instruction

Ch. 8 Math 31

Not Equal

If value_1 is not equal to value_2, set the rung-condition-out to true for the EQU command.

Less Than (A<B)

If value_1 is less than value_2, set the rung-condition-out to true for the LES command.

Greater Than (A>B)

If value_1 is greater than value_2, set the rung-condition-out to true for the GRT command.

Less Than or Eql (A<=B)

If value_1 is less than or equal to value_2, then set the rung-condition-out to true for the LEQ

command.

Fig. 8-48 A-B CompactLogix

Not Equal Instruction

Fig. 8-49 A-B CompactLogix

Not Equal Instruction

Fig. 8-50 A-B CompactLogix

Greater Than Instruction

Fig. 8-51 A-B CompactLogix

Less Than or Equal Instruction

Ch. 8 Math 32

Grtr Than or Eql (A>=B)

If value_1 is greater than or equal to value_2, then set the rung-condition-out to true for the GEQ

command.

Compact Logix Compute/Math Instructions

Compute

For the example, the CPT instruction, evaluates value_1 multiplied by 5 and divides the result by

the result of value_2 divided by 7, placing the final result in result_1.

Add

The ADD instruction adds Source A to Source B and places the result in the Destination.

Subtract

Subtract float_value_2 from float_value_1 and place the result in subtract_result.

Fig. 8-52 A-B CompactLogix

Greater Than or Equal Instruction

Fig. 8-53 A-B CompactLogix

Compute Instruction

Fig. 8-54 A-B CompactLogix

ADD Instruction

Ch. 8 Math 33

Multiply

Multiply float_value_1 by float_value_2 and place the result in multiply_result.

Divide

Divide float_value_1 by float_value_2 and place the result in divide_result.

Modulo

Divide dividend by divisor and place the remainder in remainder. In the example, 3 goes into 10

three times with remainder 1. The value remainder is saved in the destination.

Square Root

Calculate the square root of value_1 and place the result in sqr_result.

Fig. 8-55 A-B CompactLogix

SUB Instruction

Fig. 8-56 A-B CompactLogix

Multiply Instruction

Fig. 8-57 A-B CompactLogix

Divide Instruction

Fig. 8-58 A-B CompactLogix

Modulo Instruction

Ch. 8 Math 34

Negate

Change the sign of value_1 and place the result in negate_result.

Absolute Value

Place the absolute value of value_1 into value_1_absolute. In the example, the absolute value of

-4 is +4.

Move Instructions

If you want to: Use this instruction:

copy a value MOV

copy a specific part of an integer MVM

move bits within an integer or
between integers

BTD

clear a value CLR

Fig. 8-59 A-B CompactLogix

Square Root Instruction

Fig. 8-60 A-B CompactLogix

Negate Instruction

Fig. 8-61 A-B CompactLogix

Absolute Value Instruction

mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Move_MOV.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Masked_Move_MVM.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Bit_Distribute_BTD.htm
mk:@MSITStore:C:/Program%20Files/Rockwell%20Software/RSLogix%205000/ENU/v19/Help/clinset.CHM::/General_Move_Logical/Clear_CLR.htm

Ch. 8 Math 35

Move (MOV)

The MOV instruction copies the Source to the Destination. The Source remains unchanged.

An Additional Look at the Juice Condenser

The Juice Condenser project was introduced in chapter 5 and discussed again in chapter 6. The

juice condenser problem includes memory that the use of numbers encourage a new look.

The operation included a fill, a condensate portion and a drain. These operations were not to be

overlaid but rather were to be consecutive. This leads to a memory circuit that includes more

than one set of events.

V-2

High Level

Half Level

V-1

Temperature Sw

Agitator

Heat

Start

Done/Ready

(Fig. 5-1 The Juice Maker)

Fig. 8-63 Processor Needing Numbers for States

Fig. 8-62 A-B CompactLogix

Move Instruction

Ch. 8 Math 36

Each memory circuit must be exclusive of the other two events and must occur in a proper

sequence. For example, the fill operation must occur first, then the condensate operation and

finally the drain operation. This may be expressed using a number representing the state of the

operation. For example:

EQU
State_No
=
1

This rung passes power when
the Fill operation is running

EQU
State_No
=
2

This rung passes power when the
Condensate operation is running

EQU
State_No
=
3

This rung passes power when the Drain
operation is running

Fig. 8-64 Step Numbers for the Process

The three operations must be done in order. This requires that before the first operation starts,

the requirement that there is not a fill, condensate or drain action presently active must be

determined. This can be expressed in the start portion of the fill operation as:

EQU
State_No
=
0

P

Start
Operation

Mov
1
State_No

Succeeding operations must likewise be programmed using a start portion with the prior

operation present.

Fig. 8-65a Method of

Moving Between States

Ch. 8 Math 37

EQU
State_No
=
1

Conditions
allowing

Condensate
to begin

Mov
2
State_No

EQU
State_No
=
2

Conditions
allowing
Drain to

begin

Mov
3
State_No

The conclusion of this problem is left as an exercise.

Fig. 8-65b Method of

Moving Between States

cont.

Ch. 8 Math 38

Paper Making Process

A process with logic, timers, compare and math is a mixing tank for making paper. The process

works as follows:

1. A tank is filled to medium level with water.

2. The tank continues to fill with water and paper is added through a loss-in-weight

feeder.

3. A stirrer starts as soon as the paper begins to be added and continues until a batch is

made and dumped and the level falls to the low level.

4. The water finishes when the high level is reached and the paper finishes being added.

5. The water and paper continue to be mixed until the paper is thoroughly mixed into a

slurry by use of a timer.

6. The tank is emptied by pumping the mixture out of the tank until the low level switch

is reached. Then the process of making a new batch begins again.

Fig. 8-66a Paper Making Process Described

The most difficult part of the program is the control of the loss-in-weight feeder. The number is

read as an integer and may be at any value in a range. The program is to start at this value, turn

on an output and watch the number representing the weight decrement a set amount and turn off

the output.

Addition of

Water

Addition of

Pulp

Agitator

High Level

Medium Level

Low Level

Drain Pump

Water is added through a valve.

Paper is added through a scale with a
numeric input and an output to run. The
input is a number with the amount of
weight in a hopper. When the output is
on, the hopper on the scale will discharge
paper. The scale weight will decrease.
When the scale weight has decreased a set
amount, the batch is done and the output
is turned off. This is called a loss-in-weight
feeder. The hopper is filled from above
when the hopper is not being used. The
hopper is filled by an operator manually.

Ch. 8 Math 39

Fig. 8-66b Paper Making Process Described

Addition of

Water

Agitator

High Level

Medium Level

Low Level

Drain Pump

Starting a new batch:
Tank is empty
Water starts filling

Addition of

Water

Agitator

High Level

Medium Level

Low Level

Drain Pump

Water fills to Medium Level
Agitator starts
Paper starts filling

Addition of

Pulp

Agitator

High Level

Medium Level

Low Level

Drain Pump

Water fills to High Level
Paper fills to weight set- point
Agitator continues to run for preset time

Ch. 8 Math 40

Fig. 8-66c Paper Making Process Described

Fig. 8-66d Paper Making Process Described

To start the program for the paper-making process, begin by providing a start-up rung. The rung

must provide a memory circuit (probably a seal circuit) to start the process. The program uses an

action by an operator to start the mixing operation. It is always good to check all the level

switches for proper status but the low level switch is the only switch that must be checked for

Agitator

High Level

Medium Level

Low Level

Drain Pump

Tank begins to empty
Agitator continues to run

Agitator

High Level

Medium Level

Low Level

Drain Pump

Agitator turns off
Pump continues to drain tank

Agitator

High Level

Medium Level

Low Level

Drain Pump

Pump turns off for time delay
after level drops below low
level. Tank is drained, ready
for next mix.

Ch. 8 Math 41

proper level prior to starting. The low level switch must be off. The other two switches may be

checked as well but are secondary to the low level switch for control of the batch. If either one

of these two switches report a water level, the switch should be replaced or cleaned. It is not

working properly or the low level switch is not working properly. Alert a maintenance person if

this is a problem of any magnitude.

Where to begin the rest of the program is the responsibility of the programmer. Concentrate on

one event at a time. Write down the requirements.

 First, water must be added
 Next, paper is added through a loss-in-weight scale
 Next, other ingredients are added
 Next, stirring occurs

When the paper pulp is to be added, start with a box of pulp and a vibratory feeder. Add the

following:

Feeder with
Pulp in Box

Vibrator

Scale (Weight
Measurement)

Into Vat

Fig. 8-67 Paper Making Process – Loss in Weight Feed

Ch. 8 Math 42

Stepping Program for Machine

The following machine is similar to the conveyor of previous chapters except we now are filling

a box with material coming from a process line. The name of this device is a festooner. The

machine moves back and forth placing the material in the box. The box is weighed and when a

weight is achieved, the box is full. There is usually an automatic knife that cuts the material and

starts the material in a second box. The logic is similar to the previous conveyors in that there is

a motor that drives the product to the right and then to the left. End of travel photo-eyes reverse

the movement. The end of process is achieved when a weight is exceeded. A start button begins

the action. Provide a .5 sec dwell when the photo-eye sees the product to stop the movement

before reversing the motor.

Start Button PB1

Festooner
Lays material in box
by moving back and

forth

Fig. 8-68a Festooner Process

An actual festooner is pictured below with no box included. The material is placed on the table

without enclosure. In the program on next page, the right-most bit of Count_Cycle is used to

drive the machine right or left.

Fig. 8-68b

Festooner Process

Ch. 8 Math 43

Ch. 8 Math 44

Number Systems

Decimal numbers

All number systems are positional in that each digit is weighted differently. For example, to

write the number 287.54 represents 287.54 units of something. The 2 at the extreme left is the

most important digit and is usually referred to as the most significant digit. The 4 on the right of

the number is the least significant and is usually not as highly desired as the number on the left.

For instance if 287.54 represented $287.54, we would be very interested if the number were

$387.54 or even $187.54, especially if this was a bill we were to pay. On the other hand, we

could hardly care if the 4 at the right of the number were a 5, 3, 8, 9 or whatever. The weights of

the number represent the following:

2 · 100 + 8 · 10 + 7 · 1 + 5 · 0.1 + 4 · 0.01

or:

2 · 102 + 8 · 101 + 7 · 100 + 5 · 8-1 + 4 · 8-2

Binary numbers

Binary numbers are used in microprocessors, programmable logic controllers, and in all digital

circuits. The binary number system only contains 2 digits: 0 and 1. Each digit is called a 'bit' and

can contain either the value 0 or 1. The binary number system is like the decimal number system

a positional number system and is written in the same general manner as decimal except that 10x

is replaced with 2x.

dn · 2
n-1 + … + d4 · 2

3 + d3 · 2
2 + d2 · 2

1 + d1 · 2
0

Here dn is the nth digit (counting from right to left). If the number is an 8-bit number (called a

byte), n is 8 (8 digits) and the binary number is 10101001, then it is calculated like this:

1 0 1 0 1 0 0 1

1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

1 · 128 + 0 · 64 + 1 · 32 + 0 · 16 + 1 · 8 + 0 · 4 + 0 · 2 + 1 · 1

 = 169 (decimal)

or

101010012 = 16910

Ch. 8 Math 45

Another example:

10011101

1 0 0 1 1 1 0 1

1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

1 · 128 + 0 · 64 + 0 · 32 + 1 · 16 + 1 · 8 + 1 · 4 + 0 · 2 + 1 · 1

 = 15710

 or

 100111012 = 15710

The radix of binary numbers is 2.

Hexadecimal Numbers

Hexadecimal numbers have 16 different digits (radix 16). The 6 first letters of the alphabet are

used for the last 6 digits in the hexadecimal system. The digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D, E and F representing the decimal numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and

15 respectively. Upper case for A-F is optional.

The weights of numbers in hexadecimal is as follows:

dn · 16n-1 + … + d4 · 163 + d3 · 162 + d2 · 161 + d1 · 160

dn is the nth digit (counting from right to left). This is the same as in any positional number

system. If the number is a 4-digit number, n is 4 (4 digits) and the hexadecimal number is 5A2E

or:

5 A 2 E

5 · 163 + 10 · 162 + 2 · 161 + 14 · 160

5 · 4096 + 10 · 256 + 2 · 16 + 14 · 1

 = 23086 (decimal)

or

5A2E16 = 2308610

Ch. 8 Math 46

Octal Numbers

The octal number system is used a little in plc texts and an explanation is as follows:

 The octal number system contains 8 digits numbered from 0 to 7. To convert from octal to

decimal, apply the following general formula:

dn · 8
n-1 + … + d4 · 8

3 + d3 · 8
2 + d2 · 8

1 + d1 · 8
0

dn is the nth digit (counting from right to left).

A conversion of the octal number 2417 to decimal follows:

2 4 1 7

2 · 83 + 4 · 82 + 1 · 81 + 7 · 80

2 · 512 + 4 · 64 + 1 · 8 + 7 · 1

 = 1295 (decimal)

 or

 24178 = 129510

Converting between the binary and hexadecimal numbers:

To convert from binary to hexadecimal, simply line the bits in 4 bit groups as follows:

10010111010110102

Binary

1001 0111 0101 1010

Decimal

9 7 5 10

Hexadecimal

9 7 5 A

or 10010111010110102 = 975A16

Hexadecimal numbers are usually easier to remember because they are shorter than binary

numbers.

Ch. 8 Math 47

Another example:

E551A0F816

Hexadecimal

E 5 5 1 A 0 F 8

Decimal

14 5 5 1 10 0 15 8

Binary

1110 0101 0101 0001 1010 0000 1111 1000

= 111001010101000110100000111110002

The table shown below summarizes the digits.

Binary

Octal

Decimal

Hexadecimal

0000

0

0

0

0001

1

1

1

0010

2

2

2

0011

3

3

3

0100

4

4

4

0101

5

5

5

0110

6

6

6

0111

7

7

7

1000

10

8

8

1001

11

9

9

1010

12

10

A

1011

13

11

B

1100

14

12

C

1101

15

13

D

1110

16

14

E

1111

17

15

F

Ch. 8 Math 48

Binary Addition

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 carry 1

1 + 0 + carry = 0 carry 1

1 + 1 + carry = 1 carry 1

These are the rules for binary addition.

To see binary addition at work:

Carry 1 1 1 1

 Number 1 0 1 0 0 1 1 0 1 1 0 0

+ Number 2 0 1 0 1 1 0 1 1 0 1 0

 Results 1 0 1 0 1 0 0 0 1 1 0

Binary addition may take place in ladder logic. Instructions are provided to carry out this

function (ADD), but it is worthwhile to examine the process of binary addition using ladder

logic. In Figs. 8-35 and 8-36, logic to add two numbers using only combinational logic is

shown.

Since Bit 0 does not have a carry_in, half-adder logic may be employed but only for this bit. It

can be seen that half-adder logic is simpler than full-add logic by comparing Fig. 8-35 (Half-

Adder) to Fig. 8-36 (Full Adder).

Fig. 8-69

Half Adder

Logic

Word Address

Bit Address

The number in location N7:0 is added to the number in N7:1. The result is stored in location

N7:2. The carry is located in N7:3. The same locations are used for remaining bits of the word

shown in Fig. 8-36. Full adder logic for each remaining bit from 1 to 15 is required. The logic

must be duplicated for each bit. Carry_In is from the prior bit. The Carry_In for bit 1 is found in

Ch. 8 Math 49

Carry_Out of bit 0.

Fig. 8-70

Full Adder

Full Adder

Carry Logic

It is worth noting that to actually build this logic requires a great deal of time unless the Copy-

Paste function is employed. Once the logic is built, changing the bit numbers in the logic is all

that is required for succeeding bits from 2 to 15.

Ch. 8 Math 50

 Binary Subtraction

To perform binary subtraction, the easiest method is to find the 2’s complement of the second

number and then add the two numbers together. To find the 2’s complement, invert all the bits

(1’s complement and add 1).

To find the 2’s complement:

number 0 1 0 0 1 1 0 1 0 1 1

1’s complement 1 0 1 1 0 0 1 0 1 0 0

+1 1

2’s complement 1 0 1 1 0 0 1 0 1 0 1

Then add the 2’s complement to the first number.

A second method of finding the 2’s complement requires the use of a memory bit. The rule

requires that bits from the original number be copied to the 2’s complement number starting at

the right-most bit. The rule applies until a “1” is encountered. The first “1” is copied but a

memory bit is set after which the bits are “flipped”. Try this rule. It works and may be

employed using ladder logic and a Latch bit to quickly find the 2’s complement of a number.

Again, logic must be added to complete the function using rungs similar to rungs 4 and 5 of this

figure but using bits 2 through15.

Fig. 8-71

Rung 1,2, 3

Bit 0 Logic

Rung 4, 5

Bit 1 Logic which

must be repeated

for Bits 2-15

Ch. 8 Math 51

Binary Comparisons

To find if two numbers are equal, use the Equal Block. Use of combinational ladder logic may

be employed as well. Using combination logic may be easy to employ but should not be used in

PLC programming instead of the Equal Block. See below an example of the use of

combinational ladder logic to determine if the number in N7:0 is equal to the number in

C5:3.ACC. Notice that only the high bite or bits 8-15 are being checked for equality. If all bits

are to be checked, the rung must double in size to check for the 8 additional bits (bits 0-7).

Fig. 8-72

Ch. 8 Math 52

Radix

The term “radix” is used to describe the number base used to display numbers. For B3, notice

the natural radix is binary although several other bases may be used.

 Fig. 8-73 Use Radix to Display Binary Layout

Likewise, for integer numbers, decimal is the natural base used although any of the same group

as binary can be chosen.

 Fig. 8-74 Use Radix to Display Integer Layout

Ch. 8 Math 53

Accessing a "slice" of a tagged data type

PLC tags and data block tags can be accessed at the bit, byte, or word level depending on their

size. The syntax for accessing such a data slice (Siemens) is as follows:

● "<PLC tag name>".xn (bit access)

● "<PLC tag name>".bn (byte access)

● "<PLC tag name>".wn (word access)

● "<Data block name>".<tag name>.xn (bit access)

● "<Data block name>".<tag name>.bn (byte access)

● "<Data block name>".<tag name>.wn (word access)

A double word-sized tag can be accessed by bits 0 - 31, bytes 0 - 3, or word 0 - 1. A word sized

tag can be accessed by bits 0 - 15, bytes 0 - 2, or word 0. A byte-sized tag can be accessed by bits

0 - 8, or byte 0. Bit, byte, and word slices can be used anywhere that bits, bytes, or words are

expected operands.

Ch. 8 Math 54

Accessing a tag with an AT overlay (Also Siemens)

The AT tag overlay allows you to access an already-declared tag of a standard access block with

an overlaid declaration of a different data type. You can, for example, address the individual bits

of a tag of a Byte, Word, or DWord data type with an Array of Bool. To overlay a parameter,

declare an additional parameter directly after the parameter that is to be overlaid and select the

data type "AT". The editor creates the overlay, and you can then choose the data type, struct, or

array that you wish to use for the overlay.

Ch. 8 Math 55

Allen-Bradley Data Slice

Below is an example of an expansion of a 32-bit word test_tag1 with the tag displayed as a DINT

and the bits addressed sequentially starting with bit 0 through bit 31.

Ch. 8 Math 56

Summary of Addressing Individual Bits

For a 16 bit integer, we have:

Bit 1

5

1

4

1

3

1

2

1

1

1

0

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

Siemens M 0

.

7

0

.

6

0

.

5

0

.

4

0

.

3

0

.

2

0

.

1

0

.

0

1

.

7

1

.

6

1

.

5

1

.

4

1

.

3

1

.

2

1

.

1

1

.

0

Siemens Addr .

x

1

5

.

x

1

4

.

x

1

3

.

x

1

2

.

x

1

1

.

x

1

0

.

x

9

.

x

8

.

x

7

.

x

6

.

x

5

.

x

4

.

x

3

.

x

2

.

x

1

.

x

0

Logix .

1

5

.

1

4

.

1

3

.

1

2

.

1

1

.

1

0

.

9

.

8

.

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

SLC /

1

5

/

1

4

/

1

3

/

1

2

/

1

1

/

1

0

/

9

/

8

/

7

/

6

/

5

/

4

/

3

/

2

/

1

/

0

Data Slice Last Look

With the above table, we can assign contacts or coils referencing specific bits in the word

test_tag1. These examples show addressing for the most significant or sign bit.

test_tag1.x15

Siemens Addr

test_tag1.15

A-B Logix

N7:0/15

A-B SLC

Ch. 8 Math 57

Summary

In summary, the chapter discusses manipulation of numeric data in the PLC. Math Function

Blocks were described first. Math Function Blocks replace the relay coil at the right of a rung.

Execution of the function block happens with either regular or one-shot contacts. The Math

Function Block may also be programmed to execute continuously.

Compare Instructions allow power to pass in a manner similar to relay contacts. A Compare

Instruction, LIM, was discussed and found to control a contact over a range of numbers.

Comparison Instructions with memory were used to provide a dead-band for switching on or off

an output. Various memory circuits were demonstrated in programs to provide this control

algorithm.

The Status Table in coordination with math operations was discussed. Several Status Table

locations described the use of math operations and locations of math holding registers. Thirty-

two bit integer math was briefly described. The status table is also used to control the 32-bit

math operation. Floating point math as well as floating-point_integer math instructions were

also discussed.

The SCP or Scale with Parameters Instruction was summarized. A method of protecting against

numeric overflow was described. ADD and SUB blocks to add or subtract 1% or 5% from a

number were also programmed.

Use of Instruction Help with the example of the CPT block was also given. Logic was

developed showing the mixing of logic for counters and math.

A paper-making process was described with many implications for the use of math in PLC logic.

Various number systems were described including decimal, hexadecimal and octal. The Radix

box in RSLogix 500 was described.

Labs and exercises follow.

Ch. 8 Math 58

Exercises

1. Write a rung to turn on a coil when the value in int_1 > 20 and int_2 < 25.

2. Write a rung to turn on a coil when the value in int_1 < 20 or float_1 > 8.

3. Write a rung to turn on a coil when the value in byte_3 < 120.

4. Multiply 10 * int_1 and display results in an integer variable.

5. Divide the contents of int_4/(constant = 4).

6. Write logic to create six time intervals as in the traffic light problem but using only one

timer: (Only provide enough code to illustrate the concept.)

7. Two numbers are stored in float_1 and float_2. If these numbers represent the sides of a

triangle, find the length of the hypotenuse.

8. Write a single rung to turn on an output when the value in int_1 is less than 200, greater

than 1000 or equal to 555:

9. The accumulated number of widgets on the production line is found in counter

widget_count_accum. Each widget is worth 35 cents. Write ladder logic to show in

total_cost the total worth of widgets on the line. What are the numerical limitations of

your calculation?

10. Write a rung of logic that turns on when the number in int_1= 22. Use only relay contacts

and one output coil.

11. Three numbers are stored in int_1, int_2 and int_3. Find the average of these three

numbers and store the results.

12. The following conveyor system has five outputs, lights for percent complete of packages

going down conveyor 1 to conveyor 2. Write a program to turn on these lights based on

the fact that packages must pass photoeye 1 to enter the storage area and pass photoeye 2

to exit.

Ch. 8 Math 59

13. Use Fig. 8-25 and describe how to program high and low limit tests with Siemens and

CompactLogix Ladder Logic.

14. Use Fig. 8-27 and describe how to program a dead band application with Siemens and

CompactLogix Ladder Logic.

15. Find the equivalent instruction to the SCP instruction for the Siemens and CompactLogix

processors.

16. Describe a program statement to add 1% to the full scale value of a variable using the

Siemens and CompactLogix processors.

17. Write the loss-in-weight portion of the paper-making process in which weight is lost from

a scale that feeds pulp to the batch. The scale is represented by a number that must

decrease a set amount from an arbitrary number downward a set amount. During the feed

cycle, an output is on running a loss-in-weight feeder, usually a vibratory feed device.

18. Finish the Juice Condensate program using numbers for states.

19. Convert the following seal circuit to a S/R circuit.

A

F

C D E F

 EQU

 Val_1

 250

Photoeye 1

Conveyor 1

Photoeye 2

Temporary

storage for 100

packages

Conveyor 2

Storage

area empty

Storage

area not

empty
Storage

area 50%

Storage

area 90%

Storage

area full

Packages outPackages in

Ch. 8 Math 60

20. Write logic to place the material in the festooner box:

Start Button PB1

Festooner
Lays material in box
by moving back and

forth

21. The festooner pictured above now lays material in a box by moving an arm back and forth.

The action reverses after a small time delay after hitting the end-of-travel photo-eye. The

box is considered complete when the weight exceeds 100 pounds or 50 back-and-forth

actions – whichever occurs first. Design an I/O table and write a program in Ladder Logic to

perform the action.

22. The festooner pictured above is changed to lay material into the box with an arm that moves

left and right with the following conditions:

The sensors at each end stop the movement and, after a short time delay, reverse the motion.

The scale under the box records the weight at the beginning of the fill. The arm stops close

to when 100# is met. The arm is to come to rest at the left sensor. If the weight isn’t yet at

100# but closer to 100# than if the arm were to move through another pass, the arm is to stop

and the operation is over. The goal is to place as close to 100# material as possible with the

fill ending at the left sensor.

23. Write a program that turns on a heater when the temperature falls less than 300 oF and turns

off the heater when the temperature exceeds 325 oF for the liquid in a vessel. The

temperature is input in a variable labelled ‘temp’. In a table, define each variable used by

type.

24. Design a ramp up block for the lab below using the servo motor (Ramp to setpoint).

Ch. 8 Math 61

Lab 8.1 Integer Math

Lab 8.1a Using only contacts and coils, add two integer numbers found in two integer

numbers. Counts may be 8 bit, 16 bit or 32 bit in length.

Lab 8.1b Using only contacts and coils, subtract one integer number from another integer.

Lab 8.1c Using only contacts and coils, multiply two integer numbers.

Use the following as a guide to labs 8.1:

+ (- or *)

Lab 8.1d Using only contacts and coils, create an equivalent of an up counter. Use inputs

for counting up and count reset. Turn on an output when the count equals a

preset. For memory, use latch or coil outputs. Make the counter 8 bits long or

from 0 to 255. Use a constant in an integer location for the compare (between 0

and 255).

Lab 8.1e Using only contacts and coils, create an equivalent of a down counter. Use inputs

for counting down and count reset. Turn on an output when the count equals a

preset. For memory, use latch or coil outputs. Make the counter 8 bits long or

from 0 to 255. Use a constant in an integer location for the compare (between 0

and 255).

Ch. 8 Math 62

Again, quoting from the Siemens Easy Book: “

”

Ch. 8 Math 63

Lab 8.2 PWM and RAMP

In this lab we are introduced to the PWM output of the Siemens 1200 PLC. Described below is

the configuration of the PWM output channels of the first 4 outputs of the Siemens S7-1215

DCDCDC processor. The configuration shown is just part of the process to program a pwm output.

Ch. 8 Math 64

The picture below is a hobby servo controller. The movement and control is based on a number

in the output word associated with the output. With a configuration as above, the pulse width is

determined by the servo specification. The specification below shows 1500 micro seconds or 1.5

msec duration. Both servo applications below use the HS-422 servo motor.

Ch. 8 Math 65

The instruction for driving the PWM output is the CTRL_PWM instruction. This instruction is

explained in the Easy Manual and copied below: “

“

Ch. 8 Math 66

Lab 8.2A

This lab requires the number in QW1000 to be modulated between two numbers to engage the

vacuum and disengage the vacuum. The numbers and command to turn the vacuum on and off

must be determined by trial and error.

“

”

Ch. 8 Math 67

Lab 8.2B

This lab requires the number in QW1000 to be modulated between two numbers to open and

close the gripper. The numbers and command to open and close must be determined by trial and

error. There must be a ramping of the numbers between the open and close values in order to

move the gripper gradually instead of in a jerking manner. The speed of the move should be a

variable controlled by the program.

The time to close and time to open should be programmable and controlled. The speed at which

these grippers close should be a variable in the program. The signal is wired as shown below.

Ch. 8 Math 68

From the Hitec Manual:

Pulse Data
All Hitec servos require 3-5V peak to peak square wave pulse. Pulse duration is from 0.9mS to 2.1mS
with 1.5mS as center. The pulse refreshes at 50Hz (20mS).

Voltage Range
All Hitec Servos can be operated within a 4.8V-6V. range.
Only the HS-50 operates exclusively with 4 Nicad cells (4.8 volt).

Wire Color Meanings
On all Hitec servos the Black wire is 'ground', the Red wire (center) is 'power' and the
third wire is 'signal'.

Direction of Rotation
All Hitec servos turn Clockwise direction (CW)

The circuit below shows the electrical connection and design to be used in the program for

controlling the two grippers:

0-24 V
PWM

Output

3.6K

1K

PWM Signal
@ 5 V
Yellow

M

Circuit from S7-1200
Output

5V

0V

Black

Red
(Middle)

5V

This circuit may be from either a dedicated
power supply or from a zener circuit

referenced from the 24 V circuit

Signals to the Hitec
HS-422 Servo Motor

Low
Number

High
Number

Low
Number

Circuit for Vacuum Gripper

Low
Number

High
Number

Low
Number

Circuit for Hand Gripper

RampingRamping

Ch. 8 Math 69

The following figures outline the method of setting up the PWM output for the PLC and servo.

The next figure shows the PWM instruction which must be added to the program. It may be

inserted in any OB that is active. This instruction is inserted in OB1.

The configuration of the PWM for output on output 0.0 for the above servo is as follows:

This must be done before the program is loaded and run. It should also be saved before running.

Ch. 8 Math 70

The following sets up the pulse duration for the servo above that requires a pulse duration of 20

msec.

The following sets up the output word for entry of the pulse length in QW1000 (includes 1001):

The above initialization allows the user (program) to input values in the QW1000 location to test

the servo using the Watch Table:

Ch. 8 Math 71

The experiment concludes with the values for the limits of QW1000 found. Completely

clockwise is 175 and completely counter-clockwise is 1275. The servo ranges from 0 to 180o in

the process. The power supply shown is a good way to provide the +5V and +24 V to the

process. This power supply has a variable supply A and B that can be set to close to +24 V.

The experiment does not end here. This lab continues with a program in Lab Text Ch. 8. The

inclusion of four servo controllers in Ch. 13 in the discussion of arrays and Lab Text Ch. 31

where the program for moving of the robot built with the four servo controllers is discussed.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

