
Chapter 8 PWM and RAMP

In this lab we are introduced to the PWM output of the Siemens 1200 PLC. Described below is the configuration of the PWM output channels of the first 4 outputs of the Siemens S7-1215 DCDCDC processor. The configuration shown is just part of the process to program a pwm output.

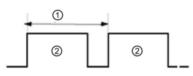
PLC_1 [CPU 1215C DC/D	DC] 🔽 Properties 🔂 Info 🗌 🗓 Diagnostics 🚽 💷 🗖
General IO tags	System constants Texts
▼ PTO1/PWM1	
General	> General
Parameter assign	Enable
Hardware outputs	
I/O addresses	🗹 Enable this pulse generator
▼ PTO2/PWM2	
General	Project information
Parameter assign	
Hardware outputs	Name: Pulse_1
I/O addresses PTO3/PWM3	Comment:
General	
Parameter assign	
Hardware outputs	
I/O addresses	
▼ PTO4/PWM4	
General	
Parameter assign	
Hardware outputs	
I/O addresses	
General IO tags	System constants Texts
General	Parameter assignment
Parameter assign	Pulse options
Hardware outputs	
I/O addresses	Signal type: PWM
 PTO2/PWM2 	Time base: Microseconds
General	Pulse duration format: Ten thousandths
Parameter assign	
Hardware outputs	Cycle time: 1500 µs 🖨
I/O addresses	Initial pulse duration: 50 Ten thousa 🗢
→ PTO3/PWM3	Allow runtime modification of the cycle time
General	
▼ PTO1/PWM1	Hardware outputs
General	
Parameter assign	
Hardware outputs	Pulse output: %Q0.0 100 kHz on-board output
I/O addresses	
PTO2/PWM2 General	
Parameter assign Hardware outputs	Enable direction output
I/O addresses	
▼ PTO3/PWM3	Direction output: %Q0.1 100 kHz on-board output
General	
Parameter assign	
General	> I/O addresses
Parameter assign	Output addresses
Hardware outputs	o apar addresses
I/O addresses	Start address: 1000 .0
▼ PTO2/PWM2	End address: 1001 .7
General	
Parameter assign	Organization block: (Automatic update)
Hardware outputs	Process image: Automatic update
I/O addresses	

The picture below is a hobby servo controller. The movement and control is based on a number in the output word associated with the output. With a configuration as above, the pulse width is determined by the servo specification. The specification below shows 1500 micro seconds or 1.5 msec duration. Both servo applications below use the HS-422 servo motor.

CONTROL SYSTEM OPERATING VOLTAGE RANGE OPERATING TEMPERATURE RANGE TEST VOLTAGE OPERATING SPEED STALL TORQUE OPERATING ANGLE DIRECTION CURRENT DRAIN DEAD BAND WIDTH CONNECTOR WIRE LENGTH DIMENSIONS WEIGHT : +PULSE WIDTH CONTROL 1500usec NEUTRAL : 4.8V TO 6.0V : -20 T0 +60°C : AT 4.8V AT 6.0V : 0.21sec/60°AT NO LOAD 0.16sec/60°AT NO LOAD : 3.3kg.cm(45.82oz.in) 4.1kg.cm(56.93oz.in) : 45°/ONE SIDE PULSE TRAVELING 400usec : CLOCK WISE/PULSE TRAVELING 1500 TO 1900usec : 8mA/IDLE AND 150mA/NO LOAD RUNNING : 8usec : 300mm(11.81in) : 40.6x19.8x36.6mm(1.59x0.77x1.44in) : 45.5g(1.6oz) The instruction for driving the PWM output is the CTRL_PWM instruction. This instruction is explained in the Easy Manual and copied below:

Programming made easy

6.3 Powerful instructions make programming easy


6.3.7 Pulse-width modulation (PWM)

The CTRL_PWM instruction is available in the Pulse group of the Extended instructions.

Table 6- 20	CTRL PV	VM instruction
-------------	---------	----------------

LAD / FBD	SCL	Desciption		
"CTRL_PWM_ DB" EN ENO PWM BUSY ENABLE STATUS	<pre>"ctrl_pwm_db" (</pre>	The CTRL_PWM instruction provides a fixed cycle time output with a variable duty cycle. The PWM output runs continuously after being started at the specified frequency (cycle time). The pulse width is varied as required to affect the desired control.		

When you insert the CTRL_PWM instruction in your code block, you create the DB for the instruction from the "Call options" dialog. The CTRL_PWM instruction stores the parameter information in the DB and controls the data block parameters.

Duty cycle can be expressed, for example, as a percentage of the cycle time or as a relative quantity (such as 0 to 1000 or 0 to 10000). The pulse width can vary from 0 (no pulse, always off) to full scale (no pulse, always on).

① Cycle time

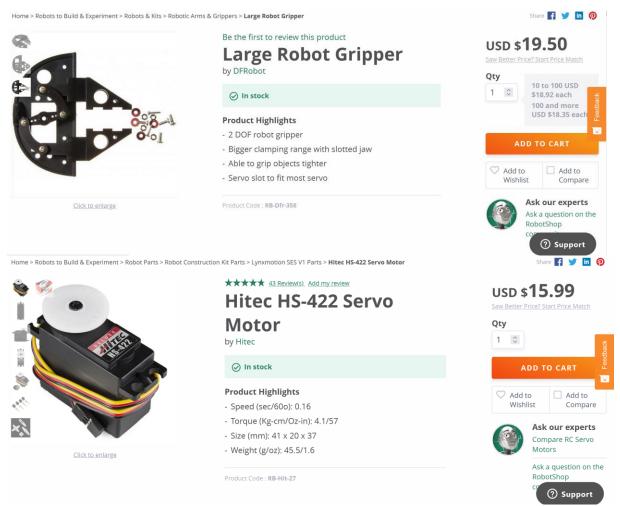
2 Pulse width time

The PWM output can be varied from 0 to full scale, providing a digital output that in many ways is the same as an analog output. For example, the PWM output can be used to control the speed of a motor from stop to full speed, or it can be used to control position of a valve from closed to fully opened.

Lab 8A

This lab requires the number in QW1000 to be modulated between two numbers to engage the vacuum and disengage the vacuum. The numbers and command to turn the vacuum on and off must be determined by trial and error.

Description


- Compatible with AL5 series of robotic arms
- Pickup any small light object that has a smooth exterior finish
- Requires super-glue and common hand tools to construct
- Uses one servo channel

The **Lynxmotion Vacuum Gripper Kit** is a fun accessory to the AL5 series of robotic arms. This unique gripper uses an inexpensive syringe as the vacuum source. In the testing manufacturer was able to hold 3.5 ounces for over 30 minutes. The gripper will pickup any small light object that has a smooth exterior finish. The Vacuum Gripper uses one servo channel which removes/adds air to the vacuum tube.

Lab 8B

This lab requires the number in QW1000 to be modulated between two numbers to open and close the gripper. The numbers and command to open and close must be determined by trial and error. There must be a ramping of the numbers between the open and close values in order to move the gripper gradually instead of in a jerking manner. The speed of the move should be a variable controlled by the program.

The time to close and time to open should be programmable and controlled. The speed at which these grippers close should be a variable in the program. The signal is wired as shown below.

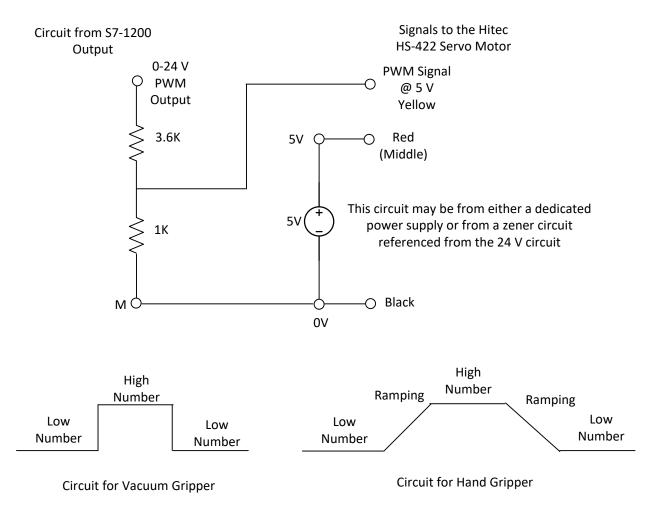
From the Hitec Manual:

Pulse Data

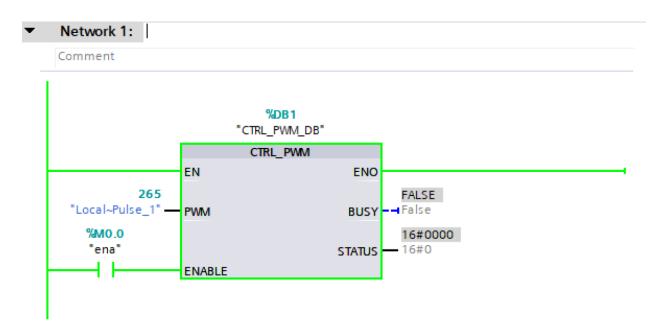
All Hitec servos require 3-5V peak to peak square wave pulse. Pulse duration is from 0.9mS to 2.1mS with 1.5mS as center. The pulse refreshes at 50Hz (20mS).

Voltage Range

All Hitec Servos can be operated within a 4.8V-6V. range. Only the HS-50 operates exclusively with 4 Nicad cells (4.8 volt).


Wire Color Meanings

On all Hitec servos the Black wire is 'ground', the Red wire (center) is 'power' and the third wire is 'signal'.


Direction of Rotation

All Hitec servos turn Clockwise direction (CW)

The circuit below shows the electrical connection and design to be used in the program for controlling the two grippers:

The following figures outline the method of setting up the PWM output for the PLC and servo. The next figure shows the PWM instruction which must be added to the program. It may be inserted in any OB that is active. This instruction is inserted in OB1.

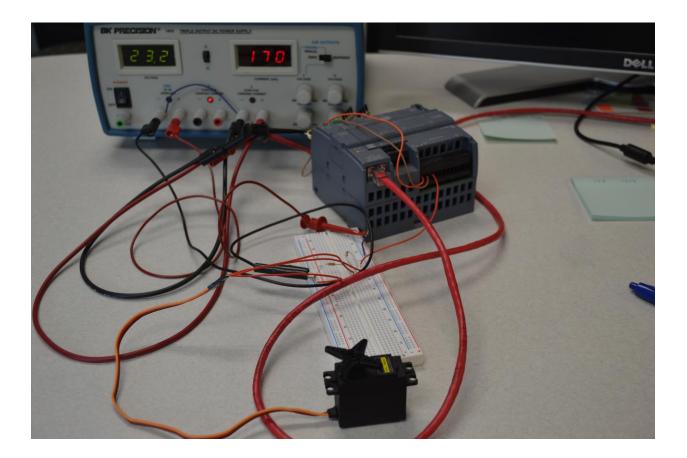
The configuration of the PWM for output on output 0.0 for the above servo is as follows:

General IO ta	gs	System constants	Texts
► HSC4	^	Pulse generators (PTO)	/PWM)
HSC5		J	
► HSC6		PTO1/PWM1	
Pulse generators			
▼ PTO1/PWM1		 General 	
General			
Parameter as		Enable	
Hardware out			_
I/O addresses			Enable this pulse generator
▼ PTO2/PWM2	۲		
General		Project information	
Parameter as			
Hardware out			Name: Pulse_1
I/O addresses		Co	omment:
▼ PTO3/PWM3			
General	\mathbf{v}		

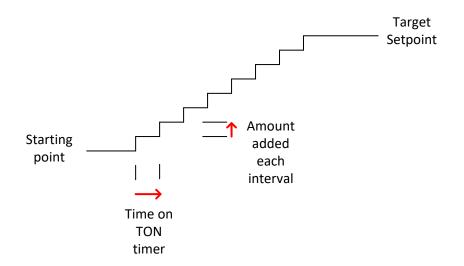
This must be done before the program is loaded and run. It should also be saved before running.

The following sets up the pulse duration for the servo above that requires a pulse duration of 20 msec.

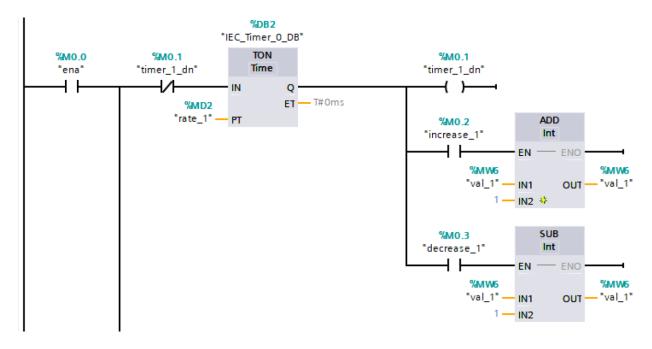
General IO ta	gs	System constants Texts	
HSC4	^		
HSC5		Parameter assignment	
HSC6			
 Pulse generators 		Pulse options	
▼ PTO1/PWM1			
General		Signal type: PWM	
Parameter as		Time base: Microseconds	
Hardware out	≡ .	Pulse duration format: Ten thousandths	
I/O addresses	170 100		
▼ PTO2/PWM2	۲	Cycle time: 20000 µs 🌩	
General		Initial pulse duration: 50 Ten thousa 🜩	
Parameter as			
Hardware out		Hardware outputs	
I/O addresses			
▼ PTO3/PWM3			
General	~	Pulse output: %Q0.0 100 kHz on-board output	

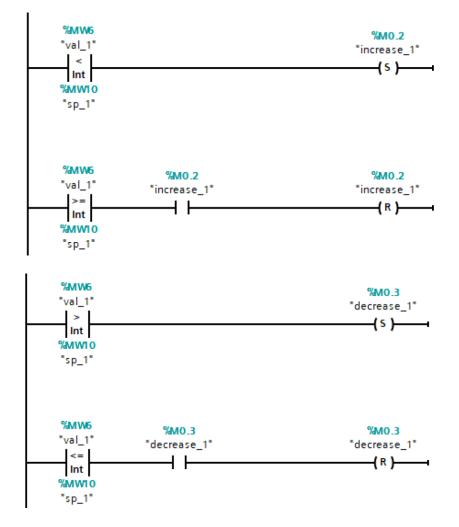

The following sets up the output word for entry of the pulse length in QW1000 (includes 1001):

General IO ta	gs	System constants Texts					
► HSC4	^	Enable direction output					
HSC5							
HSC6		Direction output: %Q0.1 100 kHz on-board output					
 Pulse generators 		Direction output: %Q0.1 100 kHz on-board output					
▼ PTO1/PWM1							
General							
Parameter as		> I/O addresses					
Hardware out							
I/O addresses		Output addresses					
▼ PTO2/PWM2	Þ						
General		Start address: 1000 .0					
Parameter as		End address: 1001 .7					
Hardware out							
I/O addresses		Organization block: (Automatic update)					
▼ PTO3/PWM3		Process image: Automatic update					
General	\mathbf{v}						

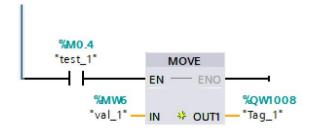

The above initialization allows the user (program) to input values in the QW1000 location to test the servo using the Watch Table:

Pro	Project18 PLC_1 [CPU 1214C DC/DC/DC] Watch and force tables Watch table_1									
#	🛫 🛫 📠 🔰 🗓 🍠 🖧 🙄 📭									
	i	Name		Address	Display for	mat	Monitor value	Modify value	4	Comment
1				%QW1000	DEC	-	1200	1200		4
2				<add new=""></add>						


The experiment concludes with the values for the limits of QW1000 found. Completely clockwise is 175 and completely counter-clockwise is 1275. The servo ranges from 0 to 180° in the process. The power supply shown is a good way to provide the +5V and +24 V to the process. This power supply has a variable supply A and B that can be set to close to +24 V.



To add the ramp function, consider the program following. It ramps the value up or down from a present value to a target setpoint.


The 'ena' bit must be set on for the ramp function to operate. When the setpoint 'sp_1' is less than the present value, the 'decrease_1' bit is set. When the setpoint 'sp_1 is greater than the present value, the 'decrease_1' is set. The value added per this program per interval is 1. This may be 2, 3, or another step value. You need to try various time intervals and step values to find a combination that works best in your application. The ramp will move up or down based on the combination of the two values.

These rungs set the ramp to either increase or decrease:

The following rung moves the value out to the PWM word. In this example, the output is QW1008. You need to verify what word is appropriate for your application.

The next lab will be discussed in Ch. 13 of the text and Ch. 31 of the Lab Text. The servos discussed here are used in a robotic application to move the axes of a robot to automate an operation.

This work is licensed under a Creative Commons Attribution 4.0 International License.